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The relation between the s-state Ashkin-Teller-Potts model and the percolation problem given by Kasteleyn
and Fortuin is used to formulate a renormalization-group treatment of the percolation problem. The varia-

tional renormalization-group scheme given by Kadanoff is used to treat the s-state model on a square lattice
and the s ~1 limit is taken to get the critical exponents for the percolation problem.

In this paper, we present a renormalization-
group (RG) calculation of critical behavior in per-
colating systems. ' The systems we study are de-
scribed as follows.

For the site (bond) percolation problem, we con-
sider a lattice in which sites (bonds) are randomly
occupied with probability p and are vacant with
probability q = 1 —p. For p less than a critical
value p„occupied sites (bonds) form unconnected
clusters. P(p), the fraction of sites (bonds) in an
infinitely large cluster is zero for P (p, and as
p-p, from above, P(p)-(p-p, )~. The mean-
square cluster size S(p) diverges as p approaches

p,: S(p) -
~p

—p, (
" as p -p, . Our objective is to

calculate the critical exponents for this "phase
transition" at p =p, .

In a recent Letter, ' we presented a RG approach
to percolation problems. This was based on a
series of papers by Kasteleyn and Fortuin. '~
They considered an s-state Ashkin- Teller-Potts
(ATP) model defined by the Hamiltonian

H"'= —Jg (sV„„—1) —a+ (sV„,, -1),
(~g&

where for each site i, the variable n,. assumes the
values 1, 2, . . . , s, the sum (ij) is over nearest-
neighbor pairs and 0 „is the Kronecker delta.
This model and the bond percolation problem are
related by

(2a)

(2b)

with q =e ~ (ksT= 1), where f is the free energy
per site for the s-state ATP model. So, one can
use a RQ technique to treat the s-state model and
then take the s -1 limit to get the critical behav-
ior in percolating systems. The nature of the
phase transition in the s-state ATP model in three
dimensions is not precisely known. However,
Baxter' has shown that in two dimensions, the s-

H„-, {p.) = -InTr, exp[S(p, , o) —Hx(o)],

where S satisfies Tr„exp[S(p, , o)]=1, so that the
total free energy E of the system remains invari-
ant under the transformation. The transformation
(3) can also be considered to be a transformation
upon the E's of the form

K' =H(K). (4)

In this scheme, one constructs a "lower bounding"
approximation to 8, denoted by R~, which has the

state model has a continuous phase transition for
s ~4.

Of the various RQ techniques, the & expansion
is not very suitable for studying the s-state model
in two or three dimensions. This is because the
critical dimension for the problem is six" and
&=6 —d is rather large for both d=2 and d=3. %e
have treated the s-state ATP model by using the
variational RQ scheme given by Kadanoff. ' This
scheme gives excellent results' for the Ising
model and the approximate RG recursion relations
in this scheme are relatively easy to obtain. Pre-
viously, ' the finite-cluster method proposed by
Niemeyer and van Leeuwen' was found to give
rather poor results for the two-dimensional per-
colation problem. Young and Stinchcombe9 have
since obtained better results using a method anal-
ogous to the decimation procedure discussed by
Kadanoff and Houghton. " However, the scheme
they used could give only a single critical expo-
nent v. In contrast, the procedure used here is
expected to give reasonable values for v and 5,
from which, using scaling relations, the other
static exponents a, P, and y can be obtained.
Briefly, the Kadanoff scheme is as follows.

The RQ transformation takes a Hamiltonian
H„-(o) in which o represents the initial set of spin
variables and K represents a set of coupling con-
stants, to a new Hamiltonian H-„, (p) which involves
a new set of coupling constants K' and a smaller
number of variables, p, . This transformation is
taken to be of the form
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s2 =— s5„—1,1

s3= P [s26, ~, —s(5,~+5~, + 5„)+2],
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FIG. 1. Kadanoff*s renorma1ization scheme for the
square 1attice. 0: o variables. Each square marked ~
contains a p variable.

property

F(R (K)) ~E(K).

s4 = Cs'5, b,~
—s'5, b, +s 5„+&5„—&,

P

ss = Q (ps 6,(5,~ —s5, (,+ ~2),

se=[s 5, 5M —s(5„+5M)+ 1].
Here a, 5, c, and d represent in cyclic order the
four o's at the corners of the square; Z~ means
a sum over the four cyclic permutations of the
four quantities a, b, c, and d; and 5„,...,
=—5, , 6, ~ ~ ~ 5, , All these interactions have

6(ifI2 '2~g ffn-&fan'

been made traceless with respect to each of the
variables involved. If we introduce an "external
field" in one of the s "directions, " ten more in-
teractions (s, through s„) have to be taken into
account. Every fourth square (which has been
labeled by X tn Fig. 1) contains a new variable

We use an 8 which depends on a parameter x:

s(v, , (r)=I, (*[ (t'„„+5„+5„+()„)—4]
X squaxes

This is done by writing —PU;s;,
f

(6)

Hs z «)(i() = -ln Tr.exp[8(i(., o) H„-(o)+ V—(u, o)],

where V(p, , o) is a sum of terms which are each
odd under a lattice symmetry operation for H.
[For the proof that R~ defined in (6) satisfies (5),
see Ref. (V).] A suitable choice of V factorizes
the sum in (6) into a product of independent terms
each of which can be evaluated exactly. Any pa-
rameter in the transformation may then be varied
to get an optimal bound for the free energy and
the corresponding "optimal lower bounding" re-
cursion relation K' = R~(K) is used to calculate
the critical exponents.

We have applied this technique to the s-state
ATP model on a square lattice. The Hamiltonian
is written in the form

Hg(o) = —Q Q E,s„
Iqumea

where, within each square, the set s,. includes all
the possible interactions which satisfy the point
group symmetries of the square. When all the s
states 1, 2, . . . , s are equivalent, we have to con-
sider the following seven interactions:

so= &,

s, = s5, b
—1,

where', 8, C, and D are the four cr's at the cor-
ners of the X square and the coefficients U, are
determined from the condition Tr„exp[8(p, , o)]= 1.
This is the most straightforward generalization of
the transformation used by Kadanoff to treat the
Ising model. [The Ising model is identical with
the s = 2 ATP model and for s =2, the transforma-
tion (8) reduces to the one used by Kadanoff. ]

Following Kadanoff, we now write V(p, &r)

=Z „,Z;v, s;, where v; is chosen to be (-Z, + U, )
in squares marked X, (-K, ) in squares marked G,
and (SK; —U, ) in squares marked B. Then we have,
from (6),

exp[-Hsr (x)(&)]

= Tr exp x s 5„~+5~~+5„~+5„~-4
X squaxel

g (4((—((,)s,),. .

The right-hand side of Eq. (9) is a product of
independent sums over p squares. These sums
are easily evaluated and the lower bound recursion
relation K'=R~(K) is thus obtained for any x. This
recursion relation has s as a parameter in it and
we can take the s-1 limit analytically. The re-
sulting recursion relation has a second-order
fixed point. The location of this fixed point in the
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TABLE I. Numerical results for the critical exponents.

Exponent This work
Value obtained from

Series expansion bronte Carlo simulation

-0.686

O.f40

1.343

f 8.249

-0.7 + 0.2 ~

0.$48 +0.004 ~

O.i4 +0.03"
243 ~0.03'
2.38 +0.02

-0 65+0 i '
0,$4 +0.02 f

2.23 +0.2 ~

2.3 +O, f. ~

$.5 +0.2 ~

' See Ref. 2.
~See Ref. $3.

See Ref. i5.
d See Ref. 44.
~ See Ref. i8.

~ This was obtained in Ref. 2 by analyzing
the data of Ref. i6.

g This was obtained in Ref. 17 by analyzing
the data of Ref. $6,

coupling cons~ant space depends on t e viue of
the variational parameter x. x+, the value of x
appx opriate for this fixed point is determined by
extremizing the lower bound to the free energy
for the fixed-point Hamiltonian. This is done in
the following way.

The set of interactions 8, contains a constant
term s, =1, Eo being the corresponding coupling
constant. This constant term grows at each re-
normalization step, and after a large number of
iterations dominates the free energy. Therefore,
x* is that value of x for which Eo"', the constant
term per square after n applications of the lower
bound transformation to the fixed-point Hamilto-
nian, is an extremum for large n. For 8 = 1, how-
ever, Eo~"~=4"Eoo' for all x. So, in the 8-1 limit,
we take x* to be that x which extremizes (mini-
mizes)

values of the exponents a, P, and y. The results
are shown in Table I, where we have also listed
the values obtained from series expansion'" "
and from Monte Carlo sjmulatjon. 2 ~8 lt js
readily seen that the numerical results of our RG
calculation are in excellent agreement with the
results obtained from the other approaches.

In order to calculate p„we must find the inter-
section of the E, axis with the critical surface.
This cannot be done in this scheme because, for
the transformation (8), the critical surface does
not intersect the E, axis. However, starting from
a Hamiltonian containing only nearest-neighbox
coupling O'= J*, the fixed-point can be approached
by fixst applying an exact decimation transforma-
tion'0 in which every other spin variable on the
lattice is summed over, and then repeatedly ap-
plying the lower bound transformation. Numeri-
cally, we find that Z" =0.73. This gives

Numexically, we find that x~= 1.250. For x=x~,
the fixed point is located at

E, =E,=0.24715, E,=0.03372, E,=-0.01919,

E, =E6= -0.00274, E7= ' =E,6=0.

The standard procedure"'2 is used to calculate
the critical exponents v and 5 from this optimal
lower bounding recursion relation K' = R~~(K).
%e then use the scaling relations to obtain the

which is in good agreement with the exact value, "
p, = 0.5.
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