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Calculation of g anti g' for iron and nickel*
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The spectroscopic splitting factor g and magnetomechanical ratio g' are studied in reference to ferromagnetic
metals within the framework of the tight-binding approximation. General formulas are obtained which include
overlap effects in the calculation of the average of the orbital angular momentum as well as terms resulting
from the nonperiodic nature of L„plus spin-orbit and other relativistic correction terms. Wave functions
obtained from recent band calculations are used to obtain numerical results for iron (g = 2.05„g' = 1.95) and
nickel (g = 2.14, g' = 1.87).

I. INTRODUCTION that we have"

There have been a few attempts to calculate the
magnetomechanical ratio g' and the spectroscopic
splitting factor g for ferromagnetic metals. '~
The magnetomechanical ratio is defined as the ra-
tio of the magnetic moment to the total angular
momentum, while the spectroscopic splitting fac-
tor is the ratio of magnetic moment to spin. '
More precisely, we must consider the components
of these vector quantities in the direction of the
magnetization (here called the e direction), so
that (mks units are used throughout)

eg (M,) eg' (M,)
2m (S,) ' 2m g, ,+S,)

The angular brackets indicate ground-state aver-
ages. The quantities can also be defined for a
single electron, in which case we refer to g„(k)
(n is the band index and k is the wave vector of an
electron state). More generally, we can define a
g tensor, relating the entire magnetization vector
to the spin vector. However, for a cubic crystal,
the only component of I. and 8 which has a nonzero
average over occupied states is that in the direc-
tion of magnetization.

We define

(1.2)

It follows from (1.1) that

g= (1+2e)g'.

To the extent that corrections due to spin-orbit
coupling and other relativistic effects can be ne-
glected,

Qf,) = (e/2m)((L, )+ 2(S,)).
In this case,

(1.5)

Since & is found to be small, it is a good approxi-
mation to neglect terms of second order in &, so

g —2=2 —g =2/, (1.6)

II. THEORY

The essential problem in a calculation of the g
or g' factors is to determine the magnetic moment.
We define the magnetic moment in the following
way. In the absence of an external magnetic field,
the system is described by a Hamiltonian II„say.
If there is an applied field 8, the Hamiltonian can
be written after some manipulation as

H = Ho+ M ' B+ O(B ). (2.1)

The available experimental data indicate that Eq.
(1.6) is satisfied within uncertainties of (10-
15@ ''

Previous calculations of the g factor in ferro-
magnetic transition metals have been based on
highly simplified forms of the tight-binding meth-
od or on related interpolation schemes. '~ The
present work was motivated by the availability of
wave functions from a detailed band calculation
including spin-orbit coupling, which should make
possible a more accurate calculation of g and g'.
Furthermore, it seemed desirable to present a
full expression for g within the framework of the
tight-binding method, as this has not been done
previously and at least to estimate all the terms
which arise. Our conclusion is that the terms
omitted in previous analyses are in fact, reason-
ably negligible, of the order of 5/p or less of the
dominant term.

The plan of this paper is as follows. Section II
contains a derivation of the formal expressions
from which g and g'are computed. The argument is
based on the Dirac equation and includes some dis-
cussion of the problems of gauge and phase which
have been quite troublesome in previous work. Sec-
tion III contains a brief discussion of the compu-
tational techniques, the results, and a comparison
with experiment.
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The notation O(B') indicates terms of second order
in the external field. The operator M is indepen-
dent of time and magnetic field. The field-inde-
pendent portion of the magnetization at T = O'K
can be determined as the expectation value of the
operator M, calculated with wave functions which
are eigenfunctions of Ho. This is all that is of in-
terest in our discussion of g' in ferromagnets. We
will call M the zero-order magnetic-moment op-
erator. In nonferromagnetic systems, the expec-
tation value of M wQ1 vanish, if calculated with
wave functions for 8 =0, and the magnetization is
ultimately found to be proportional to B. Even in
such cases M may still be used to calculate the
explicitly spin dependent contribution to the ener-
gy of the system in a magnetic field, and thus, the

g factor. Our first task is to obtain an expression
for M. We will consider only a single particle pic-
ture at T =0 K. The answer is simple when rela-
tivistic corrections can be neglected. It is then

M = e(L+ 28)/2m. (2.2)

Complications arise when relativistic effects are
included.

The theory underlying the calculation of g or g'
factors has been both complicated and controver-
sial."""%e will therefore begin with a derivation
of the effective interaction between an electron
and an external magnetic field starting from the
Dirac equation. This is done so that the origin of
the various terms included in M will be clear. The
Dirac equation for a single electron (charge -e)
1s

a
ih +e4 —4 = (co. ~ p+ pmc')'0,

~t
(2.3)

in which 4 is a fixed potential (including but not
restricted to the periodic potential of the crystal),
and P is given by

P=p+8A (2.4)

where p is the ordinary momentum [p= (+/i)V] and
A is the vector potential of the external field.

It is assumed that the external potential C and
the magnetic field B are time independent as is
the case for both the symmetric gauge and for the
Jones-Zener" gauge used by de Graaf and Over-
hauser. " The standard procedure" for reducing
the Dirac equation for the four component spinor
4 to the Pauli equation for a two component spinor
$ leads to

(p )'
N —= -eC+mc2 Pat 2m

4m2c 2m
gc ~ (eSxp) v ~ g q

1 (P cr)' - - ll'e
2

(2.5)

(2.6)

For the purpose of investigating the g factor, we
may drop all terms which are higher than first
order in the magnetic field. It is also assumed at
this point that B is uniform, and V' A= 0:

iK—= +—1 — » (A p) —e4+mc2~
~ II' P ~ P

2m m 2m'c'

-g s, +4 22 ( p)

Seao ~ (8 x A) 52e
+ + v-8 &4m2c2 am2c2

+2 j —
2

o (2.7)

The factor multiplying o ~ B contains a relativistic
correction discussed by Overhauser and de Graaf. "
A similar term multiplies A p.

In order to proceed, we have to choose an ex-
pression for the vector potential. The usual choice
is the symmetric gauge

A= —,Bxr (2 8)

de Graaf and Overhauser" criticize this choice of
gauge and recommend the Jones-Zener gauge"

A= —'B x(r —v i) (2.9a)

plus a scalar potential 4' (in addition to the crys-
tal potential)

4 ' = —,'(B x v, ) r, (2.9b)

in which v is the group velocity of a wave packet

v, =k 'vg(k).
Use of the symmetric gauge leads to the diffi-

culty that the expression obtained for the expecta-
tion value of the operator M in (2.1) will be altered
by a change in phase of the Bloch functions. The
Jones-Zener gauge as employed by de Graaf and
Overhauser" produces a time-dependent Hamil-
tonian. The average energy of a state in this case
cannot be found by simply setting t= 0 in the Ham-
iltonian and calculating the expectation value with
the usual Bloch function. Moore points out that an
additional term must be added tothe Hamiltonian
in order that the average energy can be calculated
in the usual way. " This term, which is propor-
tional to the time derivative of the function induc-
ing the gauge transformation has the effect of can-

The last term in (25) is obtained by using the rela-
tion

p $-$ p=(a/i)v ~ 8,
in which 8 is the electric field
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aqih =(H + M'B)$—
at (2.10)

in agreement with (2.1). H, and M are independent
of B and time, and

M= (e/2m)[(r —&r)) x v+ (2 -p2/m'c2)s]. (2.11)

The notation of (2.11) includes s= ,'Pfo, and-
v = (1 —p'/2m'c')p+ (1/2mc')s x e h. (2.12)

Equations (2.11)and (2.12}de cribe the first-order
interaction of an electron in a definite Bloch state
with a magnetic field, including the leading rela-
tivistic corrections.

The present work is concerned with the calcula-
tion of the average value of the operator M, using
the wave functions obtained in previous calcula-
tions of energy bands in iron' and nickel. ' These
calculations were made using a form of the linear-
combination-of-atomic-orbitals (LCAO) or tight-
binding method. Therefore, we develop expres-
sions for M based on an expansion of the wave
function in a basis of localized orbitals which are
not necessarily orthogonal. This contrasts with
procedures employed in studies of the g factor in
alkali metals for example where other wave-func-
tion expansions are frequently employed. In addi-
tion, the band calculations mentioned above in-
cluded spin-orbit coupling, so it is not necessary
for us to perform a perturbation calculation to al-
low for the modification of the band wave functions

ceiling the contribution of the potential 4' [Eq.
(2.9b)].

We will adopt a procedure which leads to the
same result as that of Moore. The origin of the
phase dependence of the expectation value of M is
that the operator r is not a bounded operator on the
space of Bloch functions. Its matrix elements are
highly singular. Suppose we consider the vector
potential relevant to a particular Bloch state
g„(k, r). We formally subtract from the coordinate
r in (2.8) its average value in this state (r) ignor-
ing the singularity of this object

A= —,'B x (r —&r)). (2.9c)

This is, in fact, the choice of Jones and Zener, "
except that we will consider &r) to be independent
of time, as is correct for a single Bloch state,
while for a wave packet &r) =v, t. Note that the av-
erage of the coordinate for a Bloch state does not van-
ish except for some points of high symmetry in the
Brillouin zone. In our case no additional scalar
potential need be added to the Hamiltonian. We
find results which agree with those of Moore and
are independent of the phase of the Bloch functions.

We substitute (2.9c) into (2.7). The result can
be expressed as

by spin-orbit effects. It is already there.
The calculation of the g factor still contains

technical difficulties. These arise from the fact,
mentioned previously, that the coordinate opera-
tor r in (2.11) is not a bounded operator. Its ma-
trix elements involve derivatives of 5 functions,
and must be handled with caution. In order to
facilitate this, we shall at first smear the Bloch
functions over a range of wave vectors. Let
())„(k, r) be a two-component spinor Bloch wave
function for a state of wave vector k in band n. We
introduce a function 4'„(k, r) through

O, (k, r)= Jfgc —k')(, (7', )d'),", (2.13)

where f(k -k') is a sharply peaked res.l time-in-
dependent function which is normalized so that

J f (k —k'} d k'= 1.
mOO

(2.14)

To be specific, we may consider f to be a Gaus-
sian, although an explicit form is not required.
At a suitable point in the calculation, we allow f '
to approach a 5 function. It may be objected that
this is a use of wave packets which requires con-
sideration of time dependence. However, if this
is admitted, the use of the procedure of Moore"
leads to the same results as we obtain below.

We shall calculate the expectation value of M
with the smeared function 4 „. A general formal
expression is given below

where

(2.18)S„(k)=& klsl~&,

L (")= &nklr x pink)- &nk lrrnk& x &nklplnk»

D„(k) =(nklr x (s x eS)lnk&

—&nk Irrnk) x &nk l(s x eS)lnk»

Q„"'(k)= (nklp'sink),

Q(2)(k) = (nk lr x p2pl k&- &nklrg& x &~ lp'pl k).

(2.17)

(2.18)

(2.19)

(2.20)

The angular brackets indicate matrix elements in-
volving states 4

(k(8+)=J'k„(k, )80„(k, )d'

The integrations in (2.15)-(2.20) include summa-
tions over spin components. We shall refer to the

M„(k)=( k(~M)k)= (2S„(k)+L„(k)~,D (k)

1 q(') k — 1 (2)
m'c' " 2m'c'

(2.15)
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direction of the magnetic field B as z, thus only
the z components of the vectors s, L, D, Q"', and
Q"' are required. After the expressions have been
evaluated and the limit f '-6 has been employed,
the result is to be summed over all occupied
states.

Aside from the obvious term S„, which gives the
average spin, the term L„ is expected to give the
most important contribution to g (or g') in a d band
metal. This is also the term whose analysis
causes the most difficulty. Let us consider the
first term on the right-hand side of (2.17), which
we shall denote L„")(k). We will examine this
term in detail. The Bloch function $„(k, r) is ex-
pressed as

x/a
P„(k, r)=( ge' '" P„(k, r —R„), (221)

in which 0 is the volume of the unit cell, R„ is a
direct lattice vector, and

(j)„(k, r —R„}= P c„,(k)u;(r —R„}.
i

(2.22)

The u, are the basis of localized orbitals, and the
coefficients c„,(k) are determined from the eigen-
vectors of the Hamiltonian and overlap matrices
in the energy-band calculation. In the specific
calculations referred to above, the u,. are Gaus-
sian-type orbitals. Equation (2.21) is substituted
into (2.17). After some straightforward algebra,
we obtain

T!!(k)=22, f d's fd ef(k —'saf(k —q) Qe'!'-'&'e"" f p(s r)[(r ~ R) xp]p(q, —R)d r'
va

+pe'"" e" f 2„'(s, r-R)[(r ~ R)xp]p(i, r)d*r .

(2.23)

To reduce this, we use the identities

R e'" 'Rp=-i V 5(q-s).. (2v)'
V 0

It is also convenient to define

(2.24)

(2.25)

I

to become a 5 function. We also note that p„„(q,q)
is real. Equation (2.28) becomes

L„(2'(k) = Re[I„„(k)]+Im[V, x p„„(s,k) ~, , (2.29)

In order to investigate the last term in (2.29) in
more detail, we substitute (2.22), and introduce
the matrix elements of momentum between or-
bitals of the basis set p', ,

p „(s,2)= I e "'" f d'r 2„"(s r- R )pp (2 r),
a

(2.26)
2!!(k) P e"' f d'r,"(r —R )ps!gr 2'r

(2.30)
The usual momentum matrix p „Q element is ob-
tained when s= q. We will, however, require the
more general object defined by (2.26). Finally,
we introduce

Thus, we have

p„„(s,k}= pc*„,Qsp', ~(s)c„~(k). (2.31)

I „(q)=p ' "'f d'rq (q, r —R,)(rxp)p„(q, r).
0

(2.27}

Equation (2.23) can be simplified with the aid of
(2.24)—(2.27),

2" (2) fd'ef .*('2 =2)—
x{Re[1 (q)]+Im[V, xp„„(s,q)], }

+Im d3q k — V' k —q xp q q.
(2.28)

In Eq. (2.28), Re and Im denote real and imaginary
parts, respectively. It is now possible to allow f'

We find

1m lim [v, x p„(s, k)] = 1m I c„",.(k)p!,.(k) x v,c„,.(k))
s=k tj

and

L„"'(k}= Re[ 1„„(k)]—Im[V, x p„„(k,s)] „

=Re[I„„(k)]~ Im gc„;(k)p',,(k)xv c„,.(k)).
ij

(2.32)

This is all that would be obtained for L„(k) if the
calculation were made in the symmetric gauge
(2.8}. However, the last term is sensitive to the
phase of the Bloch functions. If we make a trans-
formation of the eigenvectors
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c (k) e&w&k&cr (k)

we find

(2.33} hand side of (2.18),

D„"'(k}= (&&k Pr && (s && VV)~nk). (2.40}

x p„„(k), (2.35)

in which I,,(k) is an element of the orbital-overlap
matrix

(2.36)

and r„„is the nonsingular part of the diagonal part
of the coordinate matrix element

I,&"(y) = I,"&'(k)

+)m E c„",.(k)p', , (k) .tk) k 'v, tv(k))
$J

=L&'&r(k)+p (k) x V,W(k), (2.34)

in which L„""has the same form in terms of the
c' as L„"'did in terms of the c. This is, in prin-
ciple, a serious difficulty since the relative phase
of the eigenvectors c computed at neighboring
points of the Brillouin zone may vary in an ap-
parently random manner as a result of the com-
puter program used to diagonalize the Hamiltonian
matrix.

The second term on the right-hand side of (2.17)
will be denoted L„"'(k). It can be analyzed in the
same way as L„"',

L„((&;)= L"'(k) —L"'(k),

L„"'(k) = (nk ~r pk) x (nk p gk)

Re[ „„(k)]—(m( E „",.(k))c(k)v, „,.(k))

The decomposition of this term is quite similar
to that of L(»(k), and need not be described in de-
tail. We define two kinds of matrix elements:

d „(q,k)=pe

x Q qr —R, sxV'V „krd'~.

The result is

D„"'(k)= Re[6„„(k)]—Im[V, && d„„(k,s)], ,

(2.42)

=Refe„„(k))~ (m E „";(k)d(;(k)eve„;(k)),
4J

(2.43)

in which d, &(k) is the orbital-matrix element

d,', (k)=I ' ' f,. ( —R,)(ex vv), .( )d'

(2.44)

D„"' has the same sensitivity to the phase of the
Bloch functions as L„"' had. The counter term is

x [r && (s && VV)]&t)„(k, r) d3r

(2.41)

and [analogous to (2.26)]

r„„(k)=Ec""'fd' d„"(k, r-R) d„(k,

(2.37)

r

D„"'(k)= Re[r„„(k)]

—Im g cf, (k)I,, (k)Vkc„,.(k) && d (k),
iJ

The change of phase [Eq. (2.33)] gives

L„' '(k)= L„' '(k) V„W(k) xp (k), (2.38) and the combination

(2.45)

in which L„"'has the same form as L„"' except
that it contains the c', and we have used an iden-
tity expressing the normalization of the Bloch
wave function

g c*(k)I;,„(k,
. )c ,(k) = 1„.

ij
(2.39)

Evidently, the phase-dependent terms in (2.34)
and (2.38) cancel.

Now we consider the explicit spin-orbit contribu-
tion (2.18). The electric field 8 is obtained from
the crystal periodic energy function V, eS = V'V.

As in the previous case we separate D„(k) into two

parts: D„"'(k) being the first term on the right-

D„(k)=D"'(k) -D' '(k) (2.46)

is unchanged by the change of phase (2.33).
There is one more term which must be analyzed

in the same way. This is Q„"&, Eq. (2.20). How-
ever, this is a relativistic correction to a term
L„, which is already small: the ratio of @2&~l
2m'c' to ~L„~ should be of the order of the ratio of
the kinetic energy of a d electron to its rest ener-
gy. The former is of the order 15 Ry, so the ra-
tio is about 4x10 '. This we will ignore. A sim-
ilar argument can be applied to Q„"'. The ratio

~

Q&„'& ~/2mc'
~ S„~ should be of this order as well.

In transition metals (though not necessarily in
alkali metals" } this is a correction smaller by
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a factor of about 100 than L„. We are unable to
compute 1 „to 1% accuracy, as is discussed in
Sec. III, and so me mill discard Q~'~ as mell as Q~'~.

For completeness, we note that the spin moment
term S„can be expressed as

(2.47)

The procedures and results of our numerical cal-
culations are summarized in Sec. III.

m. COMPUTATIONS AND RESULTS

The computation of the g factor utilized the wave
functions and energy levels obtained in previous
calculations. "" The basis set employed consist-
ed of 38 terms for each spin (0, 0), as follows.
Atomic wave functions expressed as linear com-
binations of Gaussian-type orhitals as determined
hy a self-consistent calculation of Wachters" were
employed for all states except 3d (ls, 2s, 3s, 4s, 2p,
3p, 4p). Five independent Gaussian-type orbitals
were introduced for each of the five l = 2 angular
functions. The orbital exponents used in defining
these functions were the same as employed by
Wachters. Exchange was included in the spin po-
larized Xa approximation" (with c(= —,

' for nickel"
and o, =0.64 for iron). The calculations were iter-
ated, neglecting spin-orbit coupling, until self-
consisteney was achieved. The spin-orbit inter-
action was then inserted, and a final set of energy
hands was obtained. The di.rection of spin ali~-
ment was chosen as (0, 0, 1), and is called s. Ad-
ditional details can be found in the references
cited.""

The computation of the elements 1„„(k)is quite
simple and straightforward. Equation (2.22) is
inserted into (2.27) which becomes

/„"„'(k) = Q cf, (k)c„q(k)

x e'"R u*,. r —R, l~, r d'y

(3.1}

The operator /, in (3.1}affects only the angular
part of the function u, . The orbital matrix element
is proportional to an element of the overlap ma-
trix, and the evaluation of /' (k) requires little
more than a rearrangement of the overlap matrix.
If spin orbit coupling is neglected, the sum of
(3.1) over equivalent k in a star is zero; however,
the inclusion of spin-orbit coupling modifies the
wave functions of the Bloch states so that a non-
vanishing result is obtained. Apart from the spin

moment S„"'this term gives the largest contribu-
tion to M. The numerical evaluation of (3.1}in-
cluded 1357 points in —,', th of the Brillouin zone for
nickel and 729 points for iron. The sum included
all orbitals in the basis set and was carried to
convergence in regard to the direct lattice sum.
The eontx'ibution to M from this term, summed
over all occupied states is 0.0448 for nickel and
0.0588 for iron.

In contrast, the derivative terms in I,~„'~, Eq.
(2.32}, are extremely difficult to evaluate. The or-
bital matrix elements p,'~(k), Eq. (2.30), can be
made real by a unitary transformation. In the ab-
sence of spin-orbit coupling, the same transfor-
rnation makes the Hamiltonian into a real matrix,
and consequently the coefficients c„,are real.
Hence these terms vanish for zero spin-orbit cou-
pling. The inclusion of spin-orbit coupling leads
to a complex (but Hermitian) Hamiltonian and then
to complex coefficients c„,, so that the derivative
terms are no longer zero. We have attempted to
estimate the derivative contribution to Eq. (2.32)
by approximate numerical differentiation of the
wave function expansion coefficients c„, on a mesh
of points in —,', th of the Bx'illouin zone. This calcu-
lation is rather crude, and is subject to difficulties
in the vicinity of points where there is an avoided
crossing of the bands. Details of the estimation
procedure can be found in Ref. 23. We find that
this term is about 5% or less of the main (1„„)term
in both iron and nickel. The quantity L„"', Eq.
(2.35), has also been estimated for nickel. We
found I,„(2)= -7.6 x 10 ', about 2% of the dominant
term. However, we do not believe that we have
been able to obtain accurate numerical values for
terms involving derivatives and are therefore ne-
glecting both the derivative terms in (2.32) and
(2.35) in quoting our final results for (M). This is
the main limitation of our numerical work.

The spin-orbit term 6„'„*)(k)[Eq. (2.41)] can be
calculated in a straightforward way. In this ease,
it is sufficiently accurate to neglect overlap, and
include only the contribution in which the wave
functions and potentials are centered on the same
site. Numerical evaluation gave a contribution
0.0003 in atomic units for iron. This is negligible,
and, in view of the small value obtained for iron,
a, numerical calculation for nickel was not per-
formed. For the same reason, the derivative
terms in (2.43) and D„"', Eq. (2.45), were neglect-
ed. Retention of the terms discarded here may be
more important in systems, like the alkali metals,
where the dominance of /„„(k) is less pronounced.

We can now compute g and g' from (1.1), using
the spin moments of 0.62 ps (Ni) and 2.29ps (Fe)
also obtained from the band calculation. The re-
sults are
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g(th) g'(th) g(expt) g'(expt)

Fe 2.05 1.95 2.09 1.919

Ni 2.14 1.8V 2.18 1.835

The experimental values for Ni are taken from
Ref. 6 and those for Fe from Refs. 7 and 9. If we
use the experimental magneton numbers (2.12 for
Fe, 0.56 for Ni) instead of those coming from the
band calculation, the predicted values of g and g'
are changed slightly, becoming 2.06 and 1.95 for
Fe, xespectively, and 2.16 and 1.86 for Ni.

Our result for g' in nickel agrees reasonably
well with that calculated by Arlinghaus and Reck~
who obtained g' = 1.86. Theix' computation was
based on a semiempirical band-structure calcula-
tion by Ehrenreich and Hodges, '4 and neglected

overlap and hggbrldlzatton contributions 'to 1„~(k) .
Arlinghaus and Reck did not attempt to estimate
corrections due to the other contributions to M
described here.

The agreement between theoxetical and experi-
mental results is moderately good for nickel but
somewhat poorer for iron. %e have no explana-
tion for the discrepa cies, since it seems quite
unlikely that the major uncertainty in the present
calculations; the contribution of the derivative
terms to L„(k), could be large enough to increase
M by the percentage required.
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