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Surface effects on the steady value of the diamagnetic susceptibility of a noninteracting electron gas are
investigated. Expressions for the susceptibility are obtained, in the presence of an arbitrary surface potential,
for both the zero- and high-temperature limits, By constructing explicit examples, it is shown that surface
corrections to the usual Landau value of the susceptibility vanish at high temperatures, while at zero
temperature small correction terms may persist.

I. INTRODVCTION

By considering a system of free electrons con-
fined in a large box and neglecting surface effects
due to the walls of the box, Landau' obtained the
diamagnetic susceptibility of the electron gas. In
the weak-field limit, simple expressions for this
quantity are obtained for a zero-temperature de-
generate gas, or a high-temperature classical
gas, and these are often referred to as the Landau
values. These are the so-called steady values,
and we are not concerned here about that part of
the orbital susceptibility that oscillates with a
varying field and shows up at low temperatures
as the de Haas-van Alphen effect. One may then ask
as to how the steady value of the susceptibility is
affected due to surface effects. Since the electrons
are confined by some sort of a potential barrier,
one may expect changes from the Landau values
as the classical radius of gyration of the electrons
becomes comparable to the confinement size, or
the "radius" of the potential barrier. Since the
radius of gyration of an electron is inversely pro-
portional to the applied magnetic field strength,
one may expect the surface effects to be of impor-
tance in the weak-field limit for electrons in a po-
tential barrier of small radius. The answer to the
above question has been sought by a large number
of authors' within the past 40 years and we shall
pay particular attention to the more recent papers
by Friedman' and Thomas. ' Both these authors
consider some simple specific models for the po-
tential barrier to answer the question posed earli-
er. Friedman' considered two types of one-dimen-
sional potential barriers in a direction perpendic-
ular to the applied field —an infinite wall, and a
harmonic barrier. For the infinite wall, he ob-
tained the Landau susceptibility for the degenerate
gas at zero temperature, ' as well as for the clas-
sical gas at high temperatures. For the harmonic
barrier, he considered only the high-temperature
behavior and obtained the Landau result. Thomas'

added a small fourth-order anharmonic term to the
one-dimensional harmonic barrier, and under cer-
tain restrictions on the anharmonic term, showed
that the high-temperature Landau value is repro-
duced. Since the two model potential barriers are
of very different shapes, it was argued that the
Landau susceptibility should remain unaltered in

any surface potential, even when the classical
radius of gyration of the electron is much larger
than the spatial dimension of the potential barrier.

In this paper, we consider the same problem
that was posed earlier, and answered by Fried-
man' and Thomas' for the cases of specific mod-
el potential barriers. We are able to obtain the
general expression for the diamagnetic suscepti-
bility of the electrons moving in a smooth poten-
tial barrier of arbitrary shape. Explicit expre-
ssions for the susceptibility are derived both in
the high-temperature limit of a classical gas and
the zero-temperature limit of the degenerate gas.
Our expressions yield the Landau values for both
cases as the leading term, plus a correction term
which is smaller by a factor of 5', and dependent
on the shape of the potential. ' In the high-temper-
ature limit, this correction term goes to zero
faster than T ', and one gets the Landau value
exactly. Applying our formulation to electrons at
high temperature moving in the same potential
barrier as that of Thomas, ' a thorough analysis
of the problem is made, and it is shown that the
Landau result is obtained under more general con-
ditions than imposed by Thomas. For the degen-
erate gas, when the specific example of one-di-
mensional harmonic barrier is taken, we again
obtain the Landau result, since our correction
term in this case vanishes identically. We show,
however, that in the degenerate gas it is possible
to have a small nonzero correction to the Landau
zero-temperature susceptibility when more gen-
eral shapes of potentials are considered.

In Sec. II, we develop the formalism that is em-
ployed to derive the expressions for diamagnetic
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susceptibility of the classical and degenerate gas
in the weak-field limit. In Sec. II, the formal ex-
pressions for the susceptibility are derived as-
suming the potential barrier to be symmetric
about the axis of the applied magnetic field. This
assumption is made solely for algebraic simplic-
ity, and the final expression that is obtained is
valid even in the absence of such symmetry, as is
indicated in the Appendix. In Sec. III, we evaluate
the susceptibility expression for specific potential
shapes, including the ones considered by Fried-
rnan' and Thomas. ' Implications of these results
are discussed in the same section.

II. DERIVATION OF THE RESULT

A. Diamagnetic susceptibility in terms of the one-body
electronic partition function

Consider an electron gas, in which each elec-
tron moves independently of the others, but in a
one-body potential U(r), whose form need not be
specified. A magnetic field B will couple with the
orbital as well as the spin angular momentum of
the electron. The spin coupling will give rise to
paramagnetism, and is irrelevant in the present
context. We shall therefore regard the electrons
as spinless in what follows, although it can be in-
cluded in the formalism easily. The orbital Ham-
iltonian of an electron in a magnetic field B is

Hs =(1/2m)[P+ (e/c)A]'+ U(r)

(3)

It is easy to show that the diamagnetic suscepti-
bility is completely determined in terms of Z~,
both in the zero- and high-temperature limits.
For a classical gas at high temperature, the mag-
netization per electron is given by

M 1 BZ~
N Z BB'B

where N is the number of electrons is a given vol-
ume V. In the weak-field limit it is only neces-
sary to evaluate Z~ to order B2, and the field-in-
dependent susceptibility per particle is

To express the zero-temperature susceptibility
of a degenerate gas in terms of Z~, note that the
magnetization M in a volume V at a temperature
T is

M =kT —in@
t 7

where Q is the grand-canonical partition function
and p, is the chemical potential. In our model,

1nQ = g(e) 1n(1+e'~ " "r)de.
0

For a degenerate gas, in the limit of T-O, this
reduces to

where —e is the charge, m is the mass of the
electron, and P = —ill'. For a uniform magnetic
field, the vector potential A = —,'(B && r). The above
Hamiltonian may be simplified by taking the z ax-
is along the direction of the magnetic field, and we
get

or

1
lnQ =— g(e) (p —e) dc

kT 0

lim(kT in@}= pN —E.
T-0

(7)

2
H~ =H, +„2r,+ „ l„8mc 2mt." '

with

A p2
H, =2 + U(r), r2 = (x'+y')

and

We now define the one-body partition function

Zs(P) = Tre "a =Pe (2)

where &,.'s are the single-particle eigenenergies
of Hs By defining g(e. ) =Z;5(e —e;) as the density
of states of an electron in the presence of the
magnetic field, we may rewrite Eq. (2} as

Here we have used the zero-temperature relations

l g(e) de =N
0

and

r fg(f) de =E.
0

From Eq. (3), we see that g(&) is the inverse La-
place transform of Z~, i.e.,

jae

g(&) = L'Zs(P) =2 . -Zs(P)e 'dP

Note that P here becomes just a dummy integra-
tion variable. Using standard properties of La-
place transforms, ' we get

,Z, (P)
d E i,Z, (P)
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Substituting these in Eq. (7), and using Eq. (6), we
get the zero-temperature magnetization

M =L„P2 BB

The weak-field susceptibility X of a degenerate gas
at zero temperature in a volume V is thus

terms in Eq. (12), which all involve 0, twice or
more, are at least of order B'. We may there-
fore neglect these and write

Z~ = Tre o exp —p, r, +2 l,Smc' ' 2mc '
By expanding the second exponential in the right
to order B', and noting that Tr exp(-PH, )l, =0, we
get

2~ 'B . p2 aB
e'"dp. (10)

P2e2B2
Z (li)=Z,()))+, , T e " i,' —— r,'}, (14)m'c'

Note again that P here is just an integration vari-
able. To examine the behavior of X in the zero-
or high-temperature limits, it is therefore nec-
essary to evaluate the one-body partition function
Z~ to order B'.

B. Wigner-Kirkwood expansion of the partition function

A straightforward calculation of Ze by Eq. (2)
would require a knowledge of the single-particle
eigenenergy spectrum of the Hamiltonian H~, and
this has forced most previous authors to assume
a simple potential U(r), like the harmonic oscil-
lator or infinite wall. It is also known' that taking
the approximate Wentzel-Kramers- Brillouin
(WKB) energies for the eigenspectrum yields a
spurious result for Z~. There exists, however,
the well-known expansion of the partition function
itself in powers of h', which is due to Wigner' and
Kirkwood, and is ideally suited for the present
problem. It is quite straightforward, as we now

show, to adapt this formalism to the presence of
a magnetic field.

The basic problem is the calculation, to order
B', of the partition function

Z~=Tr exp —P H, +S,r', +2 l,Smc 2mc

where the quantities in the exponent have been de-
fined following Eq. (1). For simplicity in algebra,
we shall assume here that the potential U(r) is
axially symmetric, so that H, and l, commute.
This restriction will be relaxed in the appendix,
and the final expression would remain unaltered.
Note that even if l, and H, commute, r', and H, do
not. If two operators 0, and 0, do not commute,
one cannot write Tr exp[- P(0, +0,)] as equal to
Tr exp(- PO, ) exp(- PO, ). The correct form is

Tre ~' ~+ 2'=Tre ~ j.e 8 2

p
3 p, A A

+&(Tre ~ '[0„0,]0,+ ~ ~ ~ . (12)

In Eq. (11}, the noncommuting part 0, is (e'B'/
6mc')1", , proportional to B', so the correction

with Z, (P) being the field-independent partition
function

Z, (P) = Tre '"o, (15}

which does not contribute to the magnetization.
The trace of the operator exp(- pH, )[l,' —(I/p)mr, ']
may be expressed in any complete basis, and it
is most convenient to take the plane-wave basis.
Then we get'

(e ~ oe'I' 1") I —m1 e'&' 1"d pd y.h3 z
p

j.

(16)

In the Wigner-Kirkwood expansion, one writes'

e Oe =e e 0(1+ffw +II w +tf w1 2 3

+II'w + ~ ~ ~ ), (17)

where, on the right-hand side, H, =p'/2m+ U(r) is
the classical Hamiltonian, and w„w„etc. , are
functions of the derivatives of the potential U(r)
and contain the classical variables p, r and the
parameter P. Obviously, the formalism is only
valid for smooth potentials whose spatial deriva-
tives exist. In the above expansion, if we retained
terms up to h'w„we shall obtain the usual Landau
values of the susceptibility. By retaining terms
up to h w„we shall find the next order correction
term to the Landau value. Expressions for w, and

w, are'

w, = —(iP'/2m)p VU,

w, = (P'/6m')(p &)'U —(P'/Sm')(p VU)'

—(P'/4m )&'U+ (P'/6m) (&U)'. (16)

In our calculation, the expressions for w„w4 are

mTre-' o l'- —r' =— e-"'"
z

p
' h3

1xe 8 o l~ -mrz p

x e"' "d'pd'r.

Since H, is Hermitian, the right-hand side may be
written



also requix'ed. These are very lengthy, but may

be obtained directly from the recursion formula

given by Kirkwood, 9 and will not be written here.
It is found that sv»ao» are imagina. x'y and contain

only odd power'8 Gf the clR881cRl VRx'lable p» while

~» m, are real and involve only even powers of p.
To evaluate the relevant trace from Eq. (16), we

use expansion (1 i) with the appropriate 20's up to

N4, Rnd the identity

l'.e"""= fib(xp„+yp„) + (xp, —yp„)']e"'".

all phase-space factor of k ' in front. In similar
notation,

„) 1 2m "'
ZO {p) 6 2/2ps/2 gs

2 @2d'~e-"") 1-— V20
122~

3/2
(0) 1 2m 3 -8 U(T)

Z0 {p) 6 2/ sps/2 @2 d /8

On doing the p integrations in Eq. (20), we get

Pl 2

"2 e
Tre '"0 l'- —~'

g p
j.

180 g 2 8 2 0

(22)

+N{xp„+yp,)'(hs(/,*+lfss()s) dss dsp (20)

» Eq (20), we have dropped the terms that are
lineax' in p and vanish on p integration, and the
resulting expression (20) is real. This expression,
apa, rt from the overall factor of A, 3, has terms of
order A, which are purely classical a.nd vanish
identically, ' terxns of order 5' which give xise to
Landau susceptibility, and terms of order 5'
which are the corrections that we are seeking.
Since the p dependence of m, to ce, ax'e known, all
the p integrations in Eq. (20) may be done analyt-
ically. This is a very tedious but straightforward
job, and we do not think it worthwhile to give the
extensive details here.

Befox'e pxesenting the final result, however, it
ls useful to write down the Kllkwood expRnsloQ Gf
'tile field-fl'ee pal'tltloll fllllc'tlol1 (15) to ol'del' )2

This is given by"

() 1 2m "'
2/sps/2 )f2

p2 I'2 83 @2 2

12 2m 1440 2'
x [ 7v'f/+ 5p(~'U)'+ p&'(«)'], (21)

where the supelscx'lpt 4 1Q pRrentheses ln Zo j.n-

dlcRtes thRt lt 18 R semlclasslcal expRnslon coQ-

taining tex'ms up to order S~, apart from the over-

+ = d3~e ~~ + d3~8 '~

This expression may now be substituted in Eq. (14)
to obtain a semiclassical expression fox' Za to the

desired ol del ln 8. Using the same supex"scx'lpt

notation in Z~ to indicate this order as in Zo, we

get

z«)(p) = z,")(p) „—...p' z."'(p)

(23)

Expression (23) is correct only to powe» t »d
up to ox dex I' in the Kirkwood expansion. %6 may

therefore replace Zo"' and Zo(0' in the right-hand

side of Eq. (23) by Z,"', incurring only errors of
higher order in tf. This expression for Z)s(P) may

be directly used in Eqs. (5) and {10)to obtain the

final expressions for the susceptibility. From
Eqs. (5) and (23), we get the high-temperature
susceptlblllty pel pR1 tlcle Gf R clRsslcRl gR8 Rs

1 e2@2-x(&-")=-
12m e kT

e252 1 A
' 82U 820'

+ 12m'C'()2T)s 60m SX' Sy'+ 24)

whexe the first texm is just the I andau value, and

the second the sought after correction term. "
Equations (10) and {23)may be used to obtain the

Eex o-temperatux e susceptibility of the degenerate
gas. Note from Eq. (23) that

8 p 8B 12 8 ~ @ 30 Bx 8
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Using Eq. (10), and some properties" of the Laplace transform, we get

e'g2 1 2m '/' 1 B &,
O'U O'U e(p —U)

X( ) 12 2 2 ZP(i ) 5 2 @2 20O O
2

O
2 ( U}1/2

where gp()/) is the density of states of an electron
at the Fermi energy p, in the absence of any mag-
netic field, and e(x) is the unit step function, zero
for x~ 0, and unity for x &0. Again, the first term
in Eq. (25) is the weII-known Landau term, while
the next term is the sought-after correction term.

III. SPECIFIC EXAMPLES

In this section, we shall apply formulas (24) and

(25) to evaluate the diamagnetic susceptibility for
some potential barriers of simple shape.

A. One-dimensional harmonic barrier

In this case, U= &mA'y2, where 0 is the oscilla-
tor "frequency. *' Then O'U/Bx'=0, O'U/By'= mQ',
and ((O'U/Bx'+ B U/By )) =mQ'. Substituting this
into Eq. (24), we get, for the classical gas,

I'n2
ZX( ) X, 50(y )21

where )t~ = —(e'h'/12m2c')(I/kT) is the classical
Landau value. Hence the correction term to the
Landau value goes to zero at high temperatures
irrespective of the parameter Q. This is in agree-
ment with Eq. (4.10) of Thomas. '

To calculate the zero-temperature susceptibil-
ity of a degenerate gas for the same potential, we
use Eq. (25). In this case it is necessary to evalu-
ate the integral

O'U e(i/, —U)
y Oy2 (~ U)1/2 1

and then take its derivative-with respect to p.. Be-
cause of the step function e(p —U), the y integra-
tion is cut off sty =+yp=(2y/mQ2)'/2. Thus

To evaluate the correction at zero temperature,
note that O' U/ Bx2+ O'U/By'= 2mQ', so we have to
evaluate the integral

I= 2mB' d'y p,
—'mO'y' ' '9 p ——'rnid'x'

25/ 2v2 i/ /(mQ2) 1/ 2

Substituting this in Eq. (25), we get

Remember lng that the smooth density of states
for a harmonic oscillator potential (without spin
degeneracy) is"

(29)

we see that the correction to Landau term is very
small.

C. Thomas (Ref. 4) potential U(y) = 2gpgQ y + &0$4y

%e shall evaluate the high-temperature suscep-
tibility for this potential. Here

(
82U'

=mA'+12V b I,
ay 2

with

+po

I $28-8(mA y /2+ Yob4y )

«po

-8(mA y /2+V()b4y4)d -1
«oo

2 8
]n +-8(fftA y /2+Vob4y2 2 4

PQ'e~

I=mQ' dy (p ——,'mQ'y') ' '=5/(2mQ2)'/'.
"o

Since this is independent of p, OI/Oi/. =0, and the
correction to the Landau value of susceptibility at
zero teInperature vanishes identically to this or-
der.

Using the relation"

f +po

e-8(m& y /2+&ob4y4)d

8. Isotropic Harmonic-oscillator potential

Now we choose U= &mQ'x2, isotropic in three di-
mensions. Using Eq. (24) again, it is straight-
forward to show that

I'2Q2

ITX(
-" =X, -20(IZ, )2

.

where K,« is defined" in terms of a Hankel's
function of imaginary argument, and the identity"

—„ IC„(x)= —If„(z)—IC„,(e),
d v

we immediately obtain
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mQ' 1 m'Q'
8V0b4 32 V0b4

m 2Q4

32 V0b4
(sl)

To take the proper high-temperature limit of this,
we assume the parameters of the potential U(y) to
be fixed, and let P-0. In this limit,

z = —,'2 pm'Q /Vob, « 1,

and we may write"

If„,(z) r(-')
( ), , [r(-')]'

R„,(z) r(-;) ' 'r(-;)r(-,')'

(32)

Putting this into Eq. (24), the high-temperature
susceptibility is

1 1 5', (,r(~)
(kT) I 5m ( ob ) r(')
n'Q' s[r(-')]'

120(kT)' r(—') 1'(-',)

which shows that it again reduces to the Landau
value at high temperatures. We emphasize that
relation (34) was not obtained by Thomas, since
he did not evaluate y in the high-temperature limit
(32). Rather, he used a perturbation formalism,
and assumed that the strength of the y4 term in
U(y) to be adjustable at high temperatures, so that
the condition'

Using relation (33) in Eq. (31}, we obtain I in the
high-temperature limit; and substituting this value
of I in Eq. (30), we get

O'U 12( V,
b)'~' r(—,') mQ' 3[r(—')]'

ff" ' r(-') 2 r(-')r(l)
APPENDIX

We will here indicate the procedure for obtain-
ing the partition function when H0 and l, do not
commute. The exponential in Eq. (11}can no long-
er be written as the product of two exponentials as
in Eq. (13}. However we can still write

e B eB "
Bgexp —P II,+,r', +2 f, =e 8"oS(P),

where S(IS) ca,n be written

S(P) = 1 — R(P') dS'
0

B'

+ R (f}') R (S")did "dS'+
0 0

with R(P} given by

(A1)

is the same result as obtained by Thomas, 4 after
minor algebraic errors" in his paper are correct-
ed.

To summarize, we have derived the cueak fie-ld
susceptibility expressions for the classical and
degenerate electron gas subject to a smooth poten-
tial barrier of arbitrary shape. These expressions
are given by Eqs. (24} and (25), and the main ad-
vantage of our method is that no knowledge of the
eigenspectrum of the potential in the presence of
the magnetic field is required. The disadvantage
of our method is that we cannot handle discontinu-
ous potential barriers, or even barriers that are
very steep, since then the higher-order terms in
powers of I containing higher derivatives may
contribute significantly. Even in this weak-field
limit, when surface effects should be most effec-
tive, we find that the corrections to the Landau
levels of susceptibility are unimportant.

Vob, /m'Q « p (35}

is satisfied, which is really the opposite of condi-
tion (32). Using the asymptotic relation" for z in
Eq. (31),

K.( )-(—)
e '(1 ~

8 ),
where z = ,', Pm'Q'/V, b„—the expression for I now

reduces to

I -1/ISm Q'.

Substituting this into Eq. (30),

R (P) =z'"', r'+ f, e '"0
8mc' ' 2mc z

e'B', eB " - e'B', eB
8mc ' 2mc ' 0' 8mc2 ' 2mc '
P2 ~ A e2B2 eB A

II, II, ', + 1, + . (A2)mc 2mc '

The partition function can now be written

Zz(P) = Tre '"'S(P),

or in analogy with Eq. (16},

From Eq. (24), we now get

1 @'2Q2 g'2Q2

N 60(kT)' 5(kT) m'Q' (36)

which is the result under the restriction (35}. This

Z (JS) =— (e "'e""") S(p}e"' "d'P d'r.

The effect of the operator S(IS} acting on the plane
wave can be determined to any desired order in I'
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by using Eqs. (Al) and (A2). The result can be
formally written

g (P) — e BtP -/2m+U(r}3
3 Q3

$(p)eiP r/tl
equi r/)i[i+~I (r p p)

+8'I,(r, p, P)+ ],

where I,(r, p, P) and I,(r, p, P) are lengthy expres-
sions involving r, j,P and derivatives of the poten-
tial. The partition function now becomes

x (l + Szo*, + 8'u/, + 5's/,*+h 's/, + )

x [1+BI,(r, p, P)+8'I, (r, p, P)+ ]

xd rd p.

Upon doing the p integrations, a straightforward
but lengthy procedure, the same expression (23)
as derived in the text for the axially symmetric
case, is, obtained.
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