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The critical behavior of the Blume-Capel model for d = 2,3 is analyzed using a renormalization transformation
based on Kadanoff’s lower-bound transformation. There are fixed points associated with first-order, second-
order, and tricritical phase transitions. The discontinuity fixed point onto which the line of first-order phase
transitions is mapped has two relevant eigenoperators with eigenvalue 2¢, corresponding to the discontinuities
in <o) and <{o*). Quite different values of the variational parameters in the renormalization transformation
optimize the free energy at each fixed point, making it difficult to calculate crossover behavior with the

present approach.

INTRODUCTION

The Blume-Capel model,’ a special case of the
Blume-Emery -Griffiths model,? has been widely
discussed in connection with tricritical phenomena
in magnetic systems and in *He-*He mixtures.
The spin-1 Hamiltonian with nearest-neighbor in-
teractions has the form
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where 0;=+1,0. No exact solutions® of the model
are available for d=2, but Monte Carlo calcula-
tions for the d=2 square latticeby Aroraand Lan-
dau,? and exact series expansions for the d=3 fcc
lattice by Saul, Wortis, and Stauffer® confirm the
gross features of the mean-field phase diagram?
shown in Fig. 1. For H=0 there is a tricritical
point at the junctionofa line of first-order and a
line of second-order transitions. At A/qJ=% (g
is the number of nearest neighbors), the first-
order transition temperature goes to zero (an
exact result). The tricritical exponents for d=3
found in Ref. 5 are consistent with the mean-field
exponents predicted for d=3 by Riedel and Weg -
ner® using renormalization-group (RG) arguments.
Monte Carlo calculations® and € expansions about
d=3 by Stephen and McCauley’ and by Chang, Tut-
hill, and Stanley® give information about the d=2
tricritical exponents.

In recent years block-spin RG transformations
have been applied to the spin-3 Ising model with
considerable success.®”!* These transformations
not only yield excellent values for the critical ex-
ponents but also permit one to calculate thermo-
dynamic functions with surprising accuracy. This
paper describes the application of a block-spin
transformation similar to Kadanoff’s spin-% lower-
bound transformation'? to the Blume-Capel model.'*
Kadanoff’s spin-3 transformation, which is based
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on a variational principle, has the advantages that
it is quite simple, is not restricted to a particular
dimension, and is extremely successful in pre-
dicting critical exponents. That the Blume-Capel
model exhibits tricritical and first-order as well
as second-order transitions makes it an especially
interesting system to examine with block-spin RG
methods.

The RG approach to phase transitions has largely
been concerned with second- rather than first-
order transitions. In calculations based on the €
expansion, the absence of a stable fixed point has
been interpreted as evidence for a first-order
transition.!® Recently Nienhuis and Nauenberg?'®
have introduced the concept of a discontinuity fixed
point associated with first-order phase transitions
and have analyzed tricritical and first-order
transitions in a d =2 spin-3 Ising metamagnet using
a block-spin transformation.

Both the d=2 and the d=3 bcc lattices were con-
sidered in the calculations to be described. Before
proceeding to a detailed discussion the main re-
sults will be briefly summarized.

For d=2 one obtains a phase diagram (Fig. 1)
with lines of first- and second-order transitions
and a tricritical point, all in surprisingly good
agreement with the Monte Carlo calculations of
Ref. 4. The three types of transitions are associa-
ted with three different fixed points. The dis-
continuity fixed point onto which the first-order
line is mapped has two relevant eigenoperators
corresponding to the discontinuities in (o) and
(0%). Both eigenvalues equal the expected'® value
2¢

For d=2, 3, the critical exponents of the line
of second-order transitions (Table III) are in good
agreement with known results and best estimates.
The d =2 tricritical exponents (Table IV) 2 —a,
and ¢, are consistent with Monte Carlo results*
and the € expansion,”® but 5, is too large. For
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d=3 there are no values of the three variational
parameters p in the renormalization transforma-
tion which maximize the free energy of the tri-
critical fixed -point Hamiltonian within its domain
of existence. In the domain the value of 5, is con-
siderably larger than the expected value, as in
the case d=2.

The reason that the first- and second-order lines
shown in Fig. 1 do not intersect is that they were
calculated with different values of the variational
parameters p. Each fixed point has quite differ-
ent optimal values of . If P is optimized for the
tricritical fixed point, a distorted fixed-point
topology near the second-order fixed point re -
sults, and vice-versa. In order to calculate cross-
over behavior, it is necessary to interpolate in
p. This is a practical difficulty with the present
approach.

J

RENORMALIZATION TRANSFORMATION

The central ingredient in the RG approach is a
transformation for converting a Hamiltonian with
spin variables ¢ and interaction constants K into
a Hamiltonian with new spin variables p and new
coupling constants K’. The mapping increases
the lattice constant of the system but leaves the
partition function unchanged. In the present cal-
culation, Hamiltonian operators are considered
which may be written in the form —3¢/ksT =27 h.
In the case d=2, the sum extends over all squares
of a square lattice, and h depends on ¢g=4 spin
variables. In the case d=3, the sum extends over
all cubes of a simple-cubic lattice, and » depends
on g =8 spin variables. The generalization of
Kadanoff’s spin-3 transformation'? used in this
paper has the form
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where p and o are spin-1 variables. The trans-
formation yields a lower bound to the exact free
energy. D= (p,, ., ps) are variational parameters
adjusted to optimize the calculation.”

As discussed in Ref. 19, difficulties arising from
an extra relevant variable are sometimes encoun-
tered if Kadanoff’s transformation is used outside
the invariant subspace of Hamiltonians in which
h(o,+-+0,) is completely symmetric in the g-spin
variables. To avoid such difficulties, an exact
decimation transformation'''!? is performed on the
initial Hamiltonian to enter the symmetric sub-
space. In the d=2 square-lattice calculation the
decimation eliminates every other spin, leaving
a square lattice with a lattice constant increased
by a factor v2. In the d=3 bcc calculation the
decimation eliminates all of the spins on one of
the two simple-cubic sublattices, leaving a sim-
ple-cubic lattice with the same lattice constant as
the original bcc lattice. After the decimation
is performed,

h(o,*++0,)=In{2 cosh[(J/kgT) (0, +* * + +0,)]
X exp(—A/kgT)+ 1}
_(q-lA/kBT)(Ozl.}.. . '+O§). (3)

Here 7 and o represent the decimated and sur-
viving spins, respectively.
With the substitution

(O, + 20 =D KoSu(0, -+ 0,), @)

r

where the S, are a complete set of spin operators
symmetric in the ¢ spin-1 variables, Eq. (2) may
be reduced to a set of algebraic transformations
involving the coupling constants

K\=R{* (K ,K,,...). (5)

For d=2 there are nine operators with even-spin
symmetry and six with odd-spin symmetry. They
are shown in Table I. For d=3 there are 25 even
and 20 odd operators. The fixed points K*(p) of
Eq. (5) determine the critical behavior of the sys-
tem. The optimum value of D for a given fixed
point is taken to be the value maximizing the free
energy of the fixed -point Hamiltonian,!?:!°

RESULTS

The lower-bound transformation with initial
decimation maps the lines of first- and second-
order transitions and the tricritical point in the
H =0 phase diagram onto three different fixed
points. The second-order fixed point has one rele-
vant eigenoperator with even spin symmetry, and
the tricritical point has two.® The discontinuity
fixed point!®'2° agsociated with the line of first-
order transitions has one relevant eigenoperator
with odd-spin symmetry and one with even sym-
metry, both with eigenvalue 2¢ corresponding to
the discontinuities in (o) and {o?)

For d=2 the three fixed points are listed in
Table II. §®* and §*>* maximize the free energy
of the second-order and tricritical fixed-point
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FIG. 1. Phase diagram for the d =2 square-lattice
Blume-Capel model with zero magnetic field. The solid
lines are lines of second-order transitions, and the
dashed lines are lines of first-order transitions. The
triangles denote tricritical points. The square labeled
“series” denotes the value estimated from high-temper-
ature series.?’?! The upper curve shows the phase dia-
gram obtained in mean-field theory.? p®™* denotes the
line of second-order transitions obtained from the RG
calculation with p=p®™*. p%* denotes the tricritical
point and the line of first-order transitions obtained
from the RG calculations with p=p%’*. The solid and
empty circles represent Monte Carlo results for the
second- and first-order transitions, respectively, ob-
tained for a 40 X40 lattice (Ref. 4). The Monte Carlo
tricritical points for both a 100 X100 and a 40 X40 lattice
are shown.

Hamiltonians, respectively. The discontinuity
fixed point is shown for p=p‘*’*. Its relevant even
and odd eigenvalues are A\{=3.94 and A{=3.97. As
D moves toward the value maximizing the free en-
ergy of the discontinuity fixed-point Hamiltonian,
the fixed point wanders towards infinity in the
space of coupling constants, and the two relevant
eigenvectors rapidly approach 2%. As p passes
through (2.673, —3.050, 0.5061), both eigenvalues
equal 3.99998. The next largest even and odd
eigenvalues both have the value 0.047. A similar
behavior is found for d=3, with both relevant
eigenvalues approaching 8.

The tricritical entries for K5* and K5* in Table
II indicate that the two-spin and crystal-field cou-

TABLE I. Nine operators with even-spin symmetry
and the six operators with odd-spin symmetry consid-
ered in the d=2 calculation. Only the first term of each
operator is shown. The others are obtained by sym-
metrizing the first term in the four-spin variables, if
it is not already symmetric.

Sle=1 SIO=01+...

323:0-10'2+... SZD=010203+”'

Sse=‘7%+"' P =0{09+

Sf =010,0304 §¢ =ofojog s
SE=0l0,05+ - S¢=030,0504+
56e=0%0%+... Sso=ofo§t?§04+-"

Sf=0%0%0}+---
S¢=cloloso+ e
2 2
102

¢ =0

%]

plings are strong and opposing. The corresponding
entries for the second-order transition are weak
and cooperative. Because of the strong competing
interactions one expects simple block-spin trans-
formations to describe tricritical transitions less
successfully than ordinary second-order transi-
tions. This may be the origin of a problem en-
countered in the d=3 tricritical calculation. For
d=3 there is no p‘’* maximizing the free energy
of the tricritical fixed -point Hamiltonian within
its domain of existence in p space. For d=3,
p®*=(0.9026, —0.2711, —0.021 89).

Note that p®* and p‘¥* in Table II are quite dif-
ferent. With the value p‘®* in Eq. (5) there is no
tricritical and no discontinuity fixed point. “Pair
production” of the two fixed points occurs? at a
value of p, more negative than p{®’*. With the
value p‘?* in Eq. (5) there are spurious fixed
points far from the tricritical and discontinuity
fixed points. The optimum variational parameters
depend rather sensitively on the particular fixed
point in which one is interested. The parameters
can be adjusted to give a locally but not a globally
accurate picture of the fixed-point topology.

The calculated d =2 phase diagram is shown in
Fig. 1. The RG lines of first- and second-order
transitions do not intersect at the tricritical point
since they were computed with p‘*>* and p®*,
respectively. To compute lines which intersect,
one needs to interpolate in p. Each time the lower-
bound transformation is applied, one should change
D to a value appropriate to the changing location
of the point in the space of Hamiltonians one is
tracking.?® This rather involved procedure repre-
sents a practical difficulty with the present ap-
proach. The intersection of the critical line in
Fig. 1 with the kzT/qJ axis, which gives the cri-
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TABLE II. Fixed points associated with the second-order, tricritical, and first-order
transitions for d=2. p®* and p *>* maximize the free energy of the second-order and tricrit-
ical fixed-point Hamiltonians, respectively. p®*=(1.095,-0.2165, —0.05118), p ¢)* = (2.983,

-1.395,-0.07295).

Second order, p®)*

Tricritical, p(®*

Discontinuity, p(9*

K§* 0.2313

K$* 0.1488

K§* —0.03595
Kg* —0.03544
Kg* —0.026 28
K$* 0.01516
K§* 0.01384
K§* —0.011 90

0.3962 0.2818
—0.7423 —-1.255
-0.01171 0.2614

0.024 65 0.3325

0.08528 0.1988
-0.018 74 —0.029 32
—-0.005926 —0.3003
—0.020 65 —0.1841

tical temperature of the spin-1 Ising model, is at
J/kpT,=0.608, as compared with the high-tem-
perature series estimate®'2* of 0.592. For d=3
the corresponding values® are 0.235 and 0.225.
The coordinates of the RG tricritical point in Fig.
1, 0.493,0.145 are in fair agreement with the Mon-
te Carlo values®* of 0.485,0.169 for a 40 X 40 lat-
tice, and 0.474 +0.003,0.1925+ 0.0025 for a 100
X 100 lattice. The RG line of first-order transi-
tion goes to T=0 at A/qJ =%, as it should.

For the line of second-order transitions, the
relevant eigenvalues and the critical exponents
2 —a=1n2?/Im\¢, and 6=1n1?/In(2?/x?) are shown
in Table III. They agree impressively with the
known values and best estimates.'? An improve-
ment in the calculated free energy does not guaran-
tee improvement in the critical exponents. If p,
and p, are set equal to zero in Eq. (2), the result-
ing one-parameter transformation naturally gives
a poorer fit to the free energy. However, better
values 2 -a=2.009 and 6=15.34 are obtained for
the d=2 critical exponents, p{*>*=0.9173.

The d=2 tricritical exponents are compared with
Monte Carlo results* and the € expansion™® in
Table IV. The crossover® exponent ¢, was com-

puted using ¢,=1nx¢/Imx%. B,=(1-a,)/d, The
most noticeable differences in the RG and Monte
Carlo exponents are for 5,, B8;, and 8,. The dis-
crepancies in 6, and 8, result from an 8% dis-
crepancy in A{. Since a, is nearly 1, the disagree-
ment in 8, could stem from a much smaller rela-
tive discrepancy in a,. The € expansion should be
interpreted cautiously because of the large € con-
tribution to 6, and the cancellation in B, for e€=1.
To first order in € with e=1, the € expansion gives
the sign of B, incorrectly. As mentioned earlier,
no p‘®* apparently exists for d=3. However,
everywhere I looked in the domain of existence of
the tricritical point in p-space, 5, waslarger than
the expected value (the classical value §,=5), as
in the case d=2.

CONCLUDING REMARKS

In conclusion, I briefly compare the present
approach with that of Nienhuis and Nauenberg, who
have studied first-order, second-order, and tri-
critical transitions ina d=2 spin-% Ising meta-
magnet using a block-spin transformation of the
type introduced by Niemeyer and van Leeuwen®

TABLE III. Eigenvalues and critical exponents associated with the line of second-order

transitions, computed for p=p®*.

There are two relevant eigenvectors with odd-spin sym-

metry. For d=2, A§=1.958, A$=0.9791, A9=3.688, A3=1.125; for d=3, A{=3.011, A%

=0.6500, A9=5.592, A%=1.500.

Dimension Exponent This calculation Exact value/best estimate (Ref. 12)
2 2—-a=dv 2.063 2
[ 16.05 15
3 2—-a=dv 1.887 1.9210.04
[ 4.805 5.0 20.2
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TABLE IV. Tricritical eigenvalues and exponents, computed for p= 'p’(‘)*. There are two
relevant eigenvectors with even-spin symmetry and two with odd-spin symmetry. d=2
and € =3—d. A9=3.474, 2§=1.739; A9=3.804, 1%=2.153.

Exponent This calculation Monte Carlo (Ref. 4) € expansion (Refs. 7 and 8)
- 3 1 32
2-a, =dy, 1.113 3 _Jergref=t.02
5, 26.59 10.8 +0.7 5+4e+93le?=13.0
b, 0.4445 F+e=0.6+ 0
1 1 9 2
By 0.040 36 0.09+0.02 t—der gyt =0.00450
vy 1.033 1.0 £0.3 1+3et=1.02
v same 11 204 same
Bu 0.2550 0.6520.10 1-Se=-0.2+ 06}

and refined by van Leeuwen.?® Their transforma-
tion, which contains no adjustable parameters®
and is set up for four cells of five spins each,
exhibits all the fixed points associated with the
different transitions.

Kadanoff’s transformation has the advantage of
extreme simplicity. Only 2¢ spins are involved.
The variational property permits the transforma-
tion to make the best of the small fundamental
cluster, but the variational parameters must be
appropriately adjusted for the particular region
in the space of Hamiltonians in which one is in-
terested. The adjustment produces a locally but
not globally accurate picture of the fixed-point
topology. To compute crossover behavior between
distant fixed points, one must interpolate in the
variational parameters. The transformation of
Nienhuis and Nauenberg does not have this par-
ticular problem, but their transformation is very
difficult to extend to d=3 or spin 1 for clusters
large enough to give reliable quantitative results.

Nole added in proof. H. J. F. Knops has pointed

out to me that in the subspace of variational pa-
rameters p=p,(1, -2, 3), configurations with all
spins 1, with all spins 0, and with all spins -1 are
treated on an equal footing, which is desirable in
considering tricritical behavior. Preliminary cal-
culations for d=2 indicate the existence of critical,
tricritical, and discontinuity fixed points in the
subspace. The values of py for the critical and
tricritical fixed points differ by only a few percent.
On maximizing with respect to all three variational
parameters, the critical exponents improve. The
tricritical fixed point becomes equal to the one re-
ported in this paper. The critical fixed point is
different and becomes identical with Kadanoff’s
spin-3 fixed point. The details will be published.
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