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Mode-mode coupling equations have been solved for the decay rates of the hydrodynamic spin fluctuations in
the vicinity of the critical point in Euo. Dipolar efFects are included. %'ith no adjustable parameters
calculated values of the spin-e'ave linevridth and the paramagnetic spin difFusion constant are in reasonable
agreement rvith available experimental data for ~1 —T/T,

~

~ 0.05.

XII (q) =(2 J& ) '/(& +q )

x (q) =x.,(q)+x„(q) =2so/~(q),

(3)

(4)

where J'(=J +J ) is the total exchange integral,
8 is the spin, cr is the I educed magnetization, u
is the lattice constant, x, is the inverse correla-
tion length, and &u(q) is the spin-wave frequency.
Several points should be mentioned in connection
with Eqs. (1)-(4). First, we have postulated a
central peak in X~~ (q, ~). Although there is as yet
no experimental evidence for such a peak in Euo

Over the past few years a series of measure-
ments probing the critical. behavior of the proto-
type Heisenberg ferromagnet Euo have been car-
ried out using neutron-scattering techniques. ' ~

Recently, data have been obtained which yield
values for the spin-wave linewidths in the hydro-
dynamic region below T„' and the spin diffusion
constant in the paramagnetic phase. The purpose
of this paper is to report the results of theoretical
calculations of both of these quantities which are
in substantial. agreement with experiment. The
calculations, which have been carried out self-
consistently in the lowest.-order mode-coupling
formalism, "make full use of the experimental
results for the static parameters and the spin-
wave frequency and hence contain no adjustable
parameters. %e include the effects of the dipolar
interaction in an approximation which is appropxi-
ate some distance from the critical point, but
breaks down very close to T, where there is
crossover from quasi-isotropic to dipolar be-
havior in the dynamics as well as in the statics. '

%'e begin with the calculation for the ordered
phase. The dynamic transverse and longitudinal
susceptibilities are postulated to have the hydro-
dynamic form

xi' (q, ~) = ~xi' (q)1'(q)/[ ~'+ I'(q)'], (1)

x. (q, ~) = ~x (q)A(q)/f[~ —~(q)l'+A(q)9. (2)

In these equations, XN (q) and Xi(q), the static
susceptibilities per spin in units of g'p, ~, are
approximated by

we argue it would be hard to detect [because of
the magnitude of X~~ (q) relative to X~(q)] in the
region where the theory is expected to be ap-
plicable (q/x, &I, T(68K). Second, the func-
tional form for x., (q, ~) is consistent with the
spin-wave peak dominating the spectral weight,
as expected in the hydrodynamic regime. Third,
the I orentsian form for x~~ (q) has been used in
Ref. 2 in a fit to the data at finite q. It should
be noted that the form assumed for gl~ is not ap-
propriate for a strictly isotropic system since
it remains finite in the q-0 limit, whereas a
divergence -1/q is expected. ' However, ex-
periments on the weakly anisotropic antiferro-
magnet MnF, (where the comparison is with the
longitudinal staggered susceptibility)' as well as
on EuO suggest that Eq. (3) is a reasonable ap-
proximation even when the anisotropy is small.
Fourth, the functional form for X~(q) js consistent
with the hydrodynamic expression for the spin-
wave frequency (u(q) = 2So/X (q). '0

The essential approximation in the treatment
of the dipolar interaction below T, is the neglect
of the nonsecular terms (i.e., those which do not
commute with the longitudinal component of the
total spin). In the mode coupling approach such
an approximation is justified as long as the spin-
wave modes do not overlap the central mode. In
this approximation we have

e(q) = 5)q 2+ 2wg'pe So(q 2+ q'„)/q 'v,

where v is the volume per spin. The value as-
sumed for the spin-wave dispersion constant
2 (= 2 JSoa'), is in agreement with the experiment-
al data in EuG. ' Even at low temperatures, Eq.
(5) is incorrect in the long-wavelength limit. We
can compensate for this by multiplying the cal.-
culated values of the spin-wave linewidths by the
ratio of the exact to approximate [ i.e., Eg. (5)]
hal nlonlc spin-wave frequenciesy as suggested
by detailed balancing symmetry. "

In the mode coupling analysis we make several.
approximations which by now are more or less
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standard". (a) a random-Phase-aPProxlmatlon
decoupling of the static four spin functions; (b)
exponential time dependence of the two spin func-
tions; (c) we have neglected the real part of the
spin wave self-energy, which contributes a smal. l
frequency shift; (d) the upper limits in the in-
tegrals over wave vector are chosen sufficiently
large so as to have a negligible effect on the so-

lutions. In addition, in the evaluation of the terms
associated with the dipolar interaction we replace
combinations of components of the Fourier trans-
form of the dipolar tensor by their equivalent
angular averages.

In terms of the scaled variables x = q/((„y = k/z„
I' = I'/S»'„A =A/X)]('„and (v = (v/l)»', the mode
coupling equations take the form

r(„) ((,~) 'd)(()'* —( -))']*] ())+ (I*-yi)] ((A())+]((I -)I)]' ~ [ ())- (I -v])]'] ',
(0'+y')[0'+(» - y)']

2 ~ 22+ 9y&
A(*)=n((' ~ *') &) . . '-', (A()) ~ f'(I -v])](()(()1+)'( -y)]*+( (~l- ()ll'] '), C'I)

with

o. = k~ T, ](,a/64»'ZS'o'.

Since x, varies with temperature approximately
as o' the parameter e is at most weakly temper-
ature dependent. In the case of EuO we obtain
a=0.023. Also, we have

y =(2»g']],~s/3vZ)')"/](, a.
For modes q «K„Q is a measure of the import-
ance of the dipolar inter action relative to the iso-
tropic exchange inter action.

Since the secular part of the dipolar interaction
does not commute with the transverse components
of the total spin we take the solutions to the mode
coupling equations to be of the form 0.2 OA 0.6 0.8 I.O

I

Our calculated values of y, A.„]].„A are shown
as functions of Q in Fig. 1 for the range 0 «Q«2.
It should be noted that ~, and ~, vanish in the
(I) =0 limit whereas A, and y remain finite. Thus
our results are consistent with dynamic sealing
for a purely isotropic system with a dynamic
exponent z = ~." As Q increases beyond 1 the
approximate treatment of the dipolar interaction
begins to break down, and the theory becomes
qualitatively incorr ect.

In Figs. 2 and 3 we have compared the pre-
dictions of the theory against the measured values

I'(q) = n»', y(q/~, )',

A(q) = S»', [ X, + A. ,(q/](, )'+ A.,(q/z, )'].
(10)
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for comparison.

FIG. 2. Angular average of the spin wave linewidth

A(q) vs q for 1-T+, =0.05. The solid curve is with
the dipolar interaction, « the broken curve is for the iso-
tropic magnet (Q =0). The upper scale shows values of
the ratio q/t&&. The data are from Ref. 3. The curves
here and in Figs. 3 and 5 were calculated with J =0.0626
meV, &&a =3.28)T/T, —1) ' (T &T,), and v&a =7.87
x)1—T/T ) (T &T ).
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are calculated with Q =O. The data which have
been limited to the region of quantitative applica-
bility of the theory, q/x, &I, /&1, are seen to
be in rather good agreement with the theory.

The analysis of the spin dynamics above T,
proceeds in a similar fashion. However in this
case it is necessax'y to include both the seculax'
and the nonsecul, ar parts of the dipolar interac-
tion. '3 The functional form for the dynamic sus-
ceptibility is identical to Eq. (1). The static
susceptibility g(q) is taken to be (I/2 Js')/(x', + q')
with the appropriate experimental correlation
length. The coefficient (1/2 Ja') here and in Eq.
(2) is chosen so that at T, , g~~ (q) =-,'y~(q) = X(q)
in the absence of anisotropy. The mode-coupling
equation becomes

I I I

58 60 62 64
I

68
I"(x) = P(1+x~)

T(K}
FIG. 3. Angular average of the spin-wave linewidth

A(q) vs T for @=0.2 A, '. The solid curve is with the
dipolar interaction; the broken curve is for the isotropic
magnet. The upper scale shows the corresponding values
of p . The data are from Ref. 3.

of the spin wave linewidths, both as a function
of wave vector at fixed temperature (Fig. 2) and
as a function of temperature at fixed wave vectox
(Fig. 2). The results with the dipolar interaction
ax'e shown as sol. id curves. The broken cux'ves

PARAMAGNETtC PHASE %|TH DtPOLAR

0.5- I NTERACTlONS

[y' —(x —y)']'+ 6@'
(I+y')[I+(x- f)'] [~(y)+ ~(lx- fl)] '

(12)

where x =q/x„y = k/x„ I' = I'/J(x, s)'~', p = ks I", /
16m 4, and Q is defined by Eq. (9). Equation (12)
has been solved with the ansats f'(x) =A.,'+A', x'.
The results obtained for Ao, which is proportiona1,
to the zero-field spin-spin relaxation rate, and
~', , the scaled spin diffusion constant, are shown
in Fig. 4. The parameter ~0 vanishes as Q,
whereas ~', remains finite in the limit as Q ap-
proaches zero. Our results are thus consistent
with dynamic scaling with s = —, for the isotropic
system and a spin-spin relaxation rate which
varies as K, '~' for small Q."

Numerical values for the paxamagnetic spin
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I.O .67 A4 .50 .25
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FIG. 4. A, o' and &&' vs Q. The curves were calculated
with P =0.023. Curves corresponding to other values of
P (e.g. , P =0.192 in EuO) can be obtained by multiplying
A. &' and X&' by the ratio (P/0. 023)'~2.

FIG. 5. Log-log plot of the paramagnetic spin diffusion
constant D vs T/T, —1. The solid curve is with the di-
polar interaction; the broken curve is for the isotropic
magnet. The upper scale shows the corresponding values
of Q. The data are from Ref. 4.
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diffusion constant D are shown in Fig. 5 along
with the predictions of the isotropic theory""
which seem to be in slightly (but probably not
significantly) better agreement with the data. As
with the analysis below T, the theory breaks down

for P [defined by Eq. (9)] &1. Because of the dif-
ference in the magnitudes of tc„below T, ,
equals 1 when 1 —T/T, =0.015, whereas above
T, , Q equals 1 at T/T, —1 =0.06. It is worth
pointing out that above T, the condition Q =1 is
equivalent to g'ps2)t'(0) =3/4v, which is approxi-
mately the same as the boundary between iso-
tropic and dipolar dynamics inferred in Ref. V.

We have also investigated the critical dynamics
at T, . In this case the dipolar interaction modi-
fies the wave-vector dependence of I'(q). We find
the leading corrections to be of the form

I'(q) =A q 'i'[ I +a, (q, /q)'+ O((q, /q)')], (13)

where A is a parameter characteristic of the iso-
tropic system, q, =(2''y. s2/3v Ja')'i', and a, is
a dimensionless constant. The value for A given

by mode coupling theory" exceeds the experi-
mental value by about 60%.' However, the theory
does predict a value for a, which is in better
agreement with experiment, where the data can
be adequately fit with a, =1.~

We believe our calculations establish that mode-

coupling theory provides a reasonably quantitative
description of the critical. dynamics of a cubic
ferromagnet with both exchange and dipolar inter-
actions. There is one possible exception to this
in the characterization of the l.ongitudinal dy-
namics in the order ed phase. Assuming diffus ive
behavior for the longitudinal mode the theory,
where applicable, predicts I'(q)/~(q) &0.04. As
was mentioned a longitudinal mode of any form
has not yet been detected in EuO or in Fe." How-
ever, a central peak below T, has been reported
for the cubic ferromagnet CoS„a system which
appears to be intermediate between EuO and Fe
in the relative importance of the dipolar inter-
action. " The theory outlined in this paper can
be applied to these other systems provided the
susceptibilities have the form displayed in Eqs.
(1)-(4). To obtain quantitative estimates for the
relaxation rates information must be available
about the spin wave dispersion, the saturation
magnetization, and the inverse correlation
l.engths. '~
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