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Making use of dynamic equations for the spin coordinates in superfluid He (valid in the hydrodynamic
regime), we study theoretically the nonlinear propagating solution, which describes the moving domain wall in

superfluid 'He-A and 'He-8. The dynamic spin susceptibility in the presence of the domain wall is also
considered.

I. INTRODUCTION

In spite of a large bulk of theoretical works' ' on
the spin waves in superfluid 'He, no experimental
work has been done on this subject. This may be
due to difficulties in creating the spin-wave mode
in superfluid 'He: first of all, the spin-wave dis-
persion has an energy gap excepting a special case
in B phase' (the wall-pinned configuration), and
secondly, in order to excite a propagating mode
a large momentum transfer to the spin system is
required. This appears to be difficult to achieve
by conventional technique (i.e. , by inhomogeneous
magnetic field). Very recently Wheatley and his
co-workers' have succeeded in observing a propa-
gating magnetic mode in the B phase of superfluid
'He. Although their result is rather preliminary,
it appears rather difficult to identify the observed
propagating mode with the spin wave predicted so
far, since first, the velocity of this mode is rather
small (i.e. , about I/10 of the spin-wave velocity)
and secondly, the velocity appears to depend in a
complicated way on the exciting magnetic field.
Recently Maki and Tsuneto~ and Maki and Ebisawa
(ME)' have pointed out that the dynamic equation
describing the spin coordinates in superfluid 'He
permits a class of nonlinear solutions, which are
known as solitons or kink solutions in the other
context. In the case of superfluid 'He, the soliton
describes generally a moving domain wall at the
boundary of two different textures (or the disgyra-
tion plane of the spin configurations of the conden-
sate), which can in principle be created experi-

mentally. In the simplest case (the longitudinal
perturbation in the@ phase) the equation describ-
ing the spin coordinates is identical to the sine-
Gordon equation. ' There is large amount of work
on this equation in existence in literature. There-
fore, in the A phase, relying heavily on the exist-
ing literature, we will consider a general soliton
problem, two colliding solitons, the scattering of
the spin waves from a soliton (or domain wall),
and the dynamic spin susceptibility in the presence
of a soliton. In the B phase, we will limit our-
selves to two distinct classes of solitons in the
Leggett configuration. The dynamic spin suscep-
tibility in the presence of a soliton (of the type I
and of the type II) is approximately constructed in
this case. It is shown that the presence of a soli-
ton can be detected by the resonance technique (or
equivalently by the ringing technique), since the
intensity of the resonance signal is reduced dras-
tically in the vicinity of the solitons.

II. SOLITONS IN THEA PHASE

In the A phase motion of the spin coordinates in
superfluid 'He is expressed in terms of two angles
p(r, t) and y(r, t), ' where p describes the angle be-
tween the d vector (i.e., the direction of the pair
spin) and the I vector (i.e. , the symmetry axis of
the orbital wave function of the condensate), which
is assumed in the z direction and y is the rotation
angle of the d vector around the l vector.

The Lagrangian describing the motion of the spin
coordinates is given by'

d x~ P +y —see,(-P sino. +ycoso. sinP) — C„—+3 gp 2 g 2

ez Bz

+C' + + + —Q~ sin"P

Here y„ is the static spin susceptibility in the A
phase, n is an additional parameter which is de-
termined by the initial condition, u, = yQ is the
Larmor frequency due to a static magnetic field H

along the x axis, and C„and C, are the spin-wave
velocities in the A phase parallel and perpendicu-
lar to the l vector. ' (In the A phase the condensate
is a simple product of the spin function and the or-
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d 0

dt
—(y —e, sinP cosn) —

C~~ 2 C~+yy 0,
BZ

~ ~ , a'p
p+ v,y cosa cosp —C,')

~Z

(2)

where

—C',(&g) + I)„' s inP c os P = 0,

Furthermore the local magnetization is given by'

M = —yoXN&

bital function and therefore the spin-wave velocity
depends only on the propagation direction but not
on the spin polarization of the spin wave. } In par-
ticular, in the vicinity of the transition tempera, —

ture we have C, =v 2C, while C, =C„at T =0 K.4

Finally the last term in Eq. (1) provides the dipo-
lar interaction energy and QA is the longitudinal
resonance frequency in the A phase. From Eq. (1),
the equation of motion is given by

y cosP =0,

—p sinn+y cosn sinp = &u, cosQ,

p cosn + y sinn sinp = 4~, sing,

where 4&@,(k. x) =y, dH(k x).. The above equation
yields

1p= ~, (6)

at t =0.
In order to solve Eq. (2) with the initial condition

(6), we assume that a pair of solitons with veloci-
ties v and —v (parallel to k) are created at f = 0
around the origin. As we will see later we cannot
create a single soliton by turning off any magnetic
field. In general the total magnetic energy impart-
ed to the system by turning off the magnetic field
is shared by spin waves and pairs of solitons with
the opposite helicity. However, after a finite lapse
of time, these solitons are well-separated spatial-
ly, so that they can be considered as a group of
noninteracting solitons. Therefore we will con-
sider first an isolated soliton.

with A. A single soliton

co„=—p sinn +y cosn sinp,

co, = p cosn+y sinn sinp,

e, =y cosp.

(4)

In the following we will consider the one-dimen-
sional solution of Eq. (2), where y and P depend
only on a single parameter s—= k x —k,t.

Then Eq. (2) reduces to

We will consider in the following a situation in
which a magnetic field, which lies in the x -y
plane &H(k x) = AH(k x)(cosQ, sing, 0), is suddenly
turned off at t =0. We assume here that the spatial
dependence of the magnetic field is one dimension-
al; dH depends only on (k x). This is because we
will study in the following only the one-dimensional
solitons. Fortunately, a stable two-dimensional or
three-dimensional soliton does not exist, at least
in the case of the longitudinal configuration' (i.e. ,
&H

I IH), and therefore it appears that only the one-
dimensional soliton has physical relevance among
more complicated solitons. In fact we can extend
the nonexistence theorem of two-dimensional soli-
tons for the sine-Gordon equation' to the more
complicated equation which governs the spin mo-
tion in the B phase. Physically this seems to re-
late to the fact that a domain wall (which is identi-
fied with a soliton in the case of superfluid 'He),
which closes on itself in the two-dimensional plane,
can be continuously shrunk to zero and therefore is
always unstable. Coming back to our problem, we
assume at t =0 the spin coordinates are at equilib-
rium under a magnetic field H+~H(k x), which
implies d and l are parallel along the z axis. Fur-
thermore, we' have at t =0

dy e, U . d„,+ g' (I,),1,s in/ —„(sinP) = 0,

, - »np cosp -&' .
& U.„.»n4 cosp

&
= o,ds ds

where

U=k, /Ik IC(n), C(n) = [C,', n', +C,'(n,'+n,'))' ',

n=k/Ik ~ I"
I

=& '(n)(1 —U') '~', $(n)=
A

(8)
Here C(n) is the spin-wave velocity with the

wave vector k and $(n) is the direction-dependent
coherence length in the present problem. The first
equation of Eq. (7) is easily integrated to give

dy co, U—+—' (,)„,sing sinl8=0,

since we assumed here P=dy/ds =0 for x=+~ (i.e. ,
at infinities y and P take the equilibrium values).
Substituting this into the second equation of Eq. (7)
we have

d2p (d 2 U
1 ——', sin'Q sinP cosP = 0. (10)

S A

This is integrated as



(dP/ds)' = p,
' sin'P,

U2
- 1/2

1 —— 281n f
A~ 1-U (12)

where we assumed the same boundary conditions
as before at infinities. Finally, Eq. (11) gives

tan-,' p(s) =e'"'.

The soliton with + in the exponent is called the
solution with the helicity + 1. The helicity mea-
sures the change in P(s) from s = —~ to +~. For
example, the solution with the + sign describes a
domain wall perpendicular to k, where on the left
side of thewallP =0(i.e. , I anddarepara. llel) while
on the other side P = s (i.e. , I and d are antiparallel).
This is schematically shown in Fig. 1. If we take
the minus sign in Eq. (13), the configurations in the
right and left side of the domain wall are reversed.
The helicity (N) introduces a new conserved quan-
tity in the present problem. If we impose an ini-
tial condition that d and E are parallel over all
space at f =0 (which corresponds to a monodomain
or the state with the helicity %=0), it is clear that
by turning off a localized magnetic field we can
create a new state with N=O. This is most easily
achieved by creating a pair of solitons with oppo-
site helicity (N =+ 1}. The present domain wall is
moving with a velocity UC(n) in the direction par-
allel to k (normal to the wall). The moving domain
wall accompanies a local magnetization M =y,X~+,
where &o has been defined in Eq. (4). Substituting
Eqs. (13) and (9) into Eq. (4) we have

U
2 A (I U2)1/2

p cosp + ~,12sin Q cosh p,8

x cosh '(ps), (14)

U sing
2 A (I U'2)1/2

& p ~— »„cosh '
I s cosh '

p.s,

&0, = —&o, 2 singe'"'cosh '(its}.

The domain wall (the disgyration plane) carries the
magnetization of the order of O„U. The character-
istic thickness of the domain wall is given by $(22)

/p, -0.1 mm. This enormously large (macroscopic)
coherence distance follows from the smallness of
the dipolar interaction energy. Since both Az and
C(n) vanish like (1 —T/T, )'/' as the temperature
approaches the transition temperature T„ the

pro. 1. Spatial variation of the/ vector in the

pres-

encee of a soI.iton (with helieity N = 1) in the A phase is
shown sehematieally. The / vector is taken to be up-
ward over all space.

characteristic length is almost independent of the
temperature but rather sensitive to n. The above
result is a simple generalization of ME, where the
consideration is limited to the case k

~ ~

Z. The en-
ergy associated with the soliton is calculated as in
ME,

~X+ d+ y +P +C(t
g

+

+C, —+ —+ —+

+ +g sin

= 2){„P'QAC (, 22) (I —U') '

whe~e 2t'=(k x)/I~ I. The above energy is the en-
ergy associated with the moving domain wall per
unit area. We note that &„has a velocity depen-
dence similar to a relativistic particle. This fol-
lows simply from the Lorentz invariance of the
original Lagrangian (1) when the light velocity is
replaced by C(n) the anisotropic spin-wave veloc-
ity. As is seen easily from Eq. (15), the surface
energy is of the order of }t„AAC -y„AA'$(n). We
note also that the excitation energy of a soliton vrith

k~ ~
I is smaller than that with k z I by a factor &2

in the vicinity of T„since C~ = &2 C 2 in this tem-
perature region.

B. Two-soliton problem

So far we limit ourselves to a single soliton.
However, two solitons are more relevant to the
turn-off experiment, since we can construct a
state with zero helicity by a pair of solitons with
opposite helicity. However, in this case the gen-
eral solution of Eq. (2) appears rather difficult and
we consider only the longitudinal case where 4H
is parallel to H (i.e., Q =0). In this case the mo-
tion of y and P are completely decoupled and P
obeys essentially the sine-Gordon equation;
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P Cil 2
—Cz+xP+ ~~ slIlp cosp = 0 (16) I.2

In this particular equation, the two-soliton prob-
lem has been solved by Perring and Skyrme. ' As-
suming that now the solitons are functions of k x
and t (we still limit to the one-dimensional soli-
tons), we can show Eq. (16) has a solution

[
g

p( t)] U y sinh(kot)
cosh(k x) '

where k, k„U, and C(n) have been already de-
fined in Eq. (8). In the limit of a large t, Eq. (17)
describes two out going solitons with the opposite
helicities and velocities v and —v(v =k,k/k );

tan[&p(x t)] U1( ek to kx -cloture x)-1 (18)

M„(x, t) = —y,X„P(x,t)

= —2y,x~U 'k, cosh(k, t) cosh(k x)/

[cosh'(k x)+ U ' sinh'(k, t)]

at t =0, Eq. (19) reduces to

M„(%, 0) = —2y,x„U 'k, cosh '(k x).

(19)

(20)

Furthermore, Eq. (17) yields P(x, 0) =0. Therefore
Eq. (17) is consistent with the initial condition at
t =0 [see Eq. (6)], if 4H(k x) is given by

aH = —y,-'Q„(l —U')-"' cosh-'(k x), (21)

which yields the maximum value of &H at k=0
[AH ~= ~y, ~

'Q„(l —U'} ' ']. The temporal varia-
tion of the magnetization given in Eq. (20) has been
calculated and plotted in Fig. 2. As expected the
magnetization has a sharp peak at x = 0 at t = O.

The peak first broadens and then splits into two

outgoing peaks as the time increases. Until now

we are concerned with general solutions of Eq. (2}.
In a turn-off experiment, where a local magnetic
field is turned off suddenly, it is very likely that
the total magnetic energy imparted to the system
is converted into spin waves (which are the collec-
tive mode with the helicity %=0) and solitons.
However, it appears rather difficult to establish
the production rate of these two modes. As to the
necessary conditionv for the soliton creation, we
may s tate that the total magnetic ener gy impar ted
to the system has to be greater than twice the en-
ergy given in Eq. (15) [e„,~4X„Q„C(n)]. How-

ever, this is not likely to be adequate, since Eq.

Furthermore, these out-going solitons have a
phase shift hr = — k

~

'lnU, due to the attractive in-
teraction between two solitons with the opposite he-
licity; the positions of the soliton at a time t af-
ter the creation are given by x =+ ~k

~

'[k,t —ln(U)].
The magnetization associated with the above so-

lution is given by

I.O

C' .8
X

~ 6

O-4 0 I

x/(

FIG. 2. Local magnetizations associated with a pair
of solitons are shown for time &(=—Dzt}=0, 0.998 and
1.98 for U= 0.1 after the creation of the solitons. Here
U =v/c(n} the velocity of the outgoing solitons normal-
ized by the spin-wave velocity, In the insert the trajec-
tories of one of the solitons (the peak position of the
magnetizations} are shown for various U's.

III. SOLITONS IN THE 8 PHASE

In the B phase, where the condensate is de-
scribed in terms of the Balian-Werthamer state,
the general discussion of the soliton is rather dif-
ficult. Therefore we will limit ourselves to the
longitudinal solitons in the Leggett configuration,
where we concentrated on the angle of rotation n
around the symmetry breaking axis v. The basic
equation describing the spin dynamic in this spe-
cial ca,se is derived from the Lagrangian''

d'r [n' —[C', (V,n )'+ C' (Sn/Sz)']

+ g Q~s(cosa +-,')'],
where X~ is the static susceptibility in the B phase,
n = 8 the angle of the rotation around the u vector,
which is parallel to the external magnetic field in
the Leggett configuration, and C and CII are the
perpendicular and the parallel component of the
spin-wave velocity to the & axis in the B phase
given by'

(21) seems to require a rather sharp field dis-
tribution to create a pair of solitons. Another pos-
sible condition will be that the rotation angle of the
d vector at; the center of the turn-off field exceeds
v. This is equivalent to say that A&a,

~

Q„ in the
present case. Although it is difficult to formulate
a precise condition for the soliton creation, we
believe that it is very likely that a pair of solitons
can be created, if both the above conditions are
met in the experiment.
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I 2X.(P,/P} Xs (23)

where
00 Q2

P3 /P vT Q / 2 g2)3/2
n 0 (4)n+

the superfluid density in the BCS superconductor,
m* is the effective mass of the quasiparticle.

Finally Q~ is the longitudinal resonance fre-
quency in the B phase. The equation of the motion
for ~ is given by

2

e —C~ g,'n~ —,e =~50~ cosa+-,' sinn. 24)
2 Bz

phase. The spatial variation of the angle n, for
these two types of solitons (domain walls) are
shown in Fig. 3. Since the second type of solitons
include the region of Q. with the larger dipolar in-
teraction energy, the second type of soliton has
the lar ger excitation energy. The surface energy
associated with two types of solitons are given by

1X ~ +C~ V~A + 2 dQ

+ —,",Q2s(coen + —,')2)

= 2[ 1+ (1/m15 )(o.,—Ir }]lt Q C (32)(l —U') '~'

(31)

As before we will consider the one-dimensional
solution of Eq. (24). We assume that the solution
is given by a =o(s), and s=k %- k2f. Then Eq.
(24} reduces to

Q =
33 (cosQ + 4 }slnQ,1

ds

where we took

fn f=Q, /C(s)(1 —U')'",
C(n)' = C,'(n,'+-,'n,') = C,'(1 —,'n,'), —

u, =Ufo f, n=k/fnf.

Equation (25) is integrated to yield

es' = 2(1+1/v 15 o.,)gsQsC(n)(1 —U') '~2, (32)

r espectivel. y.
The excitation energy for these solitons depend

on Qs and C(n) similarly to the one in the A phase
except changes in the numerical factor. Therefore
we can formulate in a similar way the problem
of the soliton excitation by turning off a local
magnetic field. The local magnetization due to
the moving solitons are given by

M, (x) =y,)ts-,'~15 QsU(l —U') '~2(coshs+-,') '

(33)

d =
i~ (cosB+4)

ds
(27) M, (X) =y,)t22315 QsU(1 —U') 'i2(COShS ——,) ',

Here we assumed that for s =+~, cosa =-4 and

dn/ds =0 (i.e., the system is at equilibrium at
infinities). Then Eq. (27) yields

(34)

—=+4/~(coso. + —,),dQ 1

ds
(28)

which can be integrated and we have

or

tan —= + ~+ coth —'s
2 3 2

tan —=~~& tanh-s .Q 1

2

(29)

(3o)

(a)

There are two types of solitons (or the domain
walls) in the B phase. %'e may introduce the two

types of the helicity numbers N, and N, . In the
first type of the domain wall [i.e. , Eq. (29)] a
changes from ao to 2n —ao from the left to the
right or vice versa, where o,2=cos '(- —,'). We may
assign to those solutions the helicity ~, =+ 1, re-
spectively. In the second type of the domain wall
[i.e. , Eq. (30)] o. changes from -n2 to + +2 from
the left to the right, for example, and we assign
the helicity N, =+1 for these two solutions. These
two helicities are separately conserved in the B

FIG. 3. Spatial variation of the rotation angle 0. of the
~ vector associated with two types of solitons in theB
phase are shown. In {a) and {b) the e variations asso-
ciated with the type-I soliton and the type-II soliton are
shown, respectively. Here G.'0= cos {-4).
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respectively, for the type-I and the type-II so-
litons.

We have also looked for a two-soliton solution
of Eq. (24) but we are so far unable to find an
analytical solution. It appears that the equation
in the A. phase is the only known simple case,
where a number of exact solutions are available.

IV. SCATTERING OF SPIN %AVES FROM THE DOMAIN

%ALL (A PHASE)

So far we have considered one-dimensional
moving solutions (i.e., the domain wall or the
disgyration plane) in both superfluid 'He-4 and
'He-B. As is mell known, the nonlinear equation
of the spin coordinates contains another class of
solutions, the spin waves describing a smaLL fluc-
tuation of the spin coordinate from the equilibrium
configuration. We will describe in this section
in some details the scattering of spin waves from
a static soliton in the A phase. This poses no
restriction in our formulation, since the scatter-
ing of spin waves from a moving soliton can be
easily obtained from a pseudo-Lorentz trans-
formation, where the velocity of the light has to
be replaced by the corresponding spin-wave vel-
ocity C(n). Furthermore, if we include in the
dynamic equation the effect of the normal. dis-
sipation of the soliton due to the spin-diffusion
term, the velocity of the soliton slows down ex-
ponentiaily in time' and after a while (say t&10 '
sec) the soliton stops completely somewhere in

the Liquid He. Then it stays there forever, unless
it is annihilated with another soliton with the op-
posite helicity, at the maLL of the container or by
simply raising the temperature above the tran-
sition temperature. Therefore the problem con-
sidered here has a practical significance, al-
though it may be very difficult to observe the pre-
dicted scattering phenomena experimentally at
the time of writing. Furthermore, the bound-
state solution and the scattering solutions thus
determined enable us to construct the dynamic
spin susceptibility in the presence of a soliton.
In fact me will show that the presence of soliton
decreases the intensity of the longitudinal. reso-
nance, which is measurable by the resonance
technique.

So far it appears that the complete eigenfunctions
associated the scattering of the spin wave from a
soliton (or the domain wall) are known only for the
sine-Gordon equation and therefore we limit our-
selves to the longitudinal situation in the A. phase.
We assume as in Sec. I, that a static field H, is
applied in the x direction. Furthermore, we as-
sume that all spin waves carry the magnetic mo-
ment along the x direction. In this situation me
can concentrate on the motion of P. The equilib-

]}-C~~~, P —C2 (&2 P)+0„'sinPcosP =0.
~Z

(36)

We will consider a small deviation of P from
P,(x). Putting P, = j3 —P,(x) and expanding in P„we
have

P, —C2~, P, +0'„cos'P,{x}P,=0,

where we neglected the y and z dependence of p„
which is redundant. Equation (37) has a set of
eigenfunctions, which satisfy

92
-&„f„(x)—C', , f„( ) x[V+( ) x0+'„]f„(x)=0, (3&)

V(x) =0'„[cos2P,(x) - 1]
= -2Q'„cosh '(x/E) .

It is known that Eq. (38) has one bound state"

f,(x) = (I/~2] ) cosh '(x/g) (40)

with ~~ =0 and a set of scattering states""

f,(x) =(2v) '~'( ~'(0„/(v)e""[$0+i tanh(x/g)]

(41)
with

&~ =0'„+C'k'(=—uP) .
In Fig. 4 the potential V(x) and the bound-state
wave function f,(x}are shown.

Equation (41) tells that the domain wall is trans-
parent to the spin waves; all spin waves, mhich
hit the domain mall, go through the domain wall. "
The bound state, on the other hand, describes a
small oscillation of the domain wall itself. So far
me limit ourselves to the problem in the 2 phase.
In, fact it appears that the situation is quite differ-
ent in the B phase (in the Leggett configuration).
In the presence of the domain wall the equilibrium
value of o is given by either o. =no'(z) or no'(z),
where n,' and ot", are given in Eqs. (29) and (30).
The scattering of the spin waves due to the domain
wall can be recast in terms of the eigenvalue

rium values of n, P, and y are given by e =
& m,

y =0, and P =P,(x}, where

p, (x}=2tan '(e*~'). (35)

Although we can consider the case in which the
domain wall has an arbitrary angle to the static
field without any further complication, me limit
ourselves to the case that Po(x) depends only on x
for simplicity. The above Po(x) implies that the
domain mall lies in the p-z plane with the origin at
x =O. The scattering of the spin waves from the
domain wall is treated by Eq. (2), where we put
Q =2&.
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I

-2

pIG. 4. Potential due to a static soliton (solid curve)
in theA phase, together with the bound-state wave func-
tion (broken curve) are shown.

t (

I
/

/
/

/
.4

problem;

where

V(z) = I' Q',-[ cso( 2n, )]+, co-'sn'J —,Q2a

I

-2
I

I 2

=-Qz]—'8'[cosh(z/g)+-, '] '+4[cosh(z/()+-, '] ']

V]](z) = ——,",Qz[cos(2n,») +-,' cosno»] —Q2»

=-Q2»1—", [cosh(z/() ——,'] '
—4[cosh(z/() ——,'] (42)

It can be easily shown Eq. (42) has a zero-energy
bound state

(x, =0), f,'"(z)~ cos[n,' ~ "(z)]+-,'.
More explicitly we have

FIG. 5. Potential. due to two types of solitons (solid
curves) in the B phase, together with the corresponding
bound-state wave functions broken curve) are shown.
In (a) and @) are shown the cases of the type I and the
type II, respectively.

V. LONGITUDINAL SPIN SUSCEPTIBILITY (IN THE A

PHASE)

Making use of the complete set of the eigen-
functions discussed in Sec. IV, me can determine
the longitudinal spin susceptibility in the 3 phase.
We imagine that an oscillatory magnetic field Fi (x)
is applied parallel to the static field EI, (along the
x axis, Sec. II); the motion of p is then given by

p —C, , p —Q„' sinpcosp= —i~,EI (x). (44)

respectively. The potential V, (z) and V»(z) to-
gether with the corresponding bound-state wave
functions f,'(z) and f,"(z) are shown in Fig. 5. We
note that in the case of the second type soliton in
the B phase the potential V»(z) has small shoulders
at bot edges.

However, me mere so far unable to determine the
scattering states. Furthermore making use of the
criterion formulated by Kay and Moses, "the do-
main wall in the B phase is no longer transparent;
the spin wave which collides with the domain wall
in the B phase is partially reflected.

On the other hand the longitudinal magnetization is
given by

(]f„(x)= —y, ](~[P-y~„(x)].
In the presence of a soliton (i.e. , the domain wall),
we linearize Eq. (44) in P, = P —P,(x) [where P, (x)
has been already given in Eq. (35)] and we have

P, —C', -+ P, + Q„' cos2P, (x)P, = —i»)y, .I (x).

(46)

Theabove equation is solved in terms of the elgen-
functions Eqs. (40) and (41) as
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p, (*)=—itrr, f g(*,*')ii.(*')&*', (47)

where

g(x, x') = ——,f, (x)f,(x') +, [ sink~ x —x'~(k' +$
' tanhx/$ tanhx'/$) + $ 'k cosk(x —x') ~tanhx/$ —tanhx'/$ ~],

(48)

and k=(l/G)((u' —0')'~'
In terms of the above Green's function g(x, x'), we can express the magnetization as

ir. (*)= rex„ f r:„(*,*')rr (*') &*', (49)

where

G„(x,x') = 5 (x —x') + &() 'g(x, x') (5o)sI'A, 1 2 x x'
I I X X

f((x)f(,(x')+—t 'tanh —tanh —sink~x —x'~+$ 'k tanh ——tanh —cosk~x —x'~ . (51)irA —co " ~ 2k

Here we made use of a relation"

'(*-*')=f(*)f(*')' f "if:(*)f("').
G,"(z,z')= q(

' f~(z}f~(z'),
B

(55}

In the first term of Eq. (47}, the lifetime of the
zero-energy mode has been included (see Appen-
dix). The lifetime arises from the spin-diffusion
term'; r„can be expressed in terms of the spin-
diffusion constant D in the A phase as

()0
8 2

I'„=D dx (x) = 'D—
ax (52)

The first term in Eq. (51) gives rise to a central
peak in the resonance experiment at ~ =0. While
the second term gives rise to the possible excita-
tion of the spin wave with the wave vector k due to
the oscillatory field in the presence of the soliton.
We note that the existence of the domain wall and
the central peak associated with the oscillation of
the domain wall was discussed recently in the
case of the Ginzburg- Landau field theor y of Krum-
hansl and Schrieffer. " When H (x) is almost
homogeneous, the contribution from the second
term in Eq. (51}vanishes identically; this implies
that if the soliton sits in the middle of the cavity,
the longitudinal resonance at ~ =QA disappears
completely. In general the existence of the soliton
in the cavity appears to reduce the signal intensity
enormously.

We can carry over formally the present result
to the longitudinal resonance in the B phase. How-

ever, since we can not solve the scattering prob-
lem in the B phase, we have no simple expression
for the contribution from the continuum. If we
limit to the bound state, we have the contribution
to Gs(z, z) as

where now y, (z, z) (see Sec. III) is given by

X..(z, z) =XsGs"'(z, z)

for the type-I soliton and the type-II soliton, re-
spectively. The lifetimes of the central peaks are
given by

r,' =D, ' dz

and

1 11 +16/)/15 (n, —v)
30 1+(I/))15)(no —v}

(54)

r"-D

1 11 +16/~15 n,
30 I + (I/~15 )n

respectively, where DB is the spin-diffusion con-
stant in the B phase. We note that I B appears
elsewhere' as the characteristic damping constant
for the type-I soliton. Although we cannot con-
struct the contribution from the continuum to GB",
we believe that the contribution disappears when
H (z) is homogeneous and the soliton (or the do-
main wall) lies in the middle of the cavity. There-
fore we expect a large reduction of the resonance
signal at ~ =QB in the presence of solitons.
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VI. CONCLUDING REMARKS

%'e have studied the one-dimensional stationary
solutions of the nonlinear equation governing the
spin dynamics in superfluid 'He. %e find that the
stationary solution represents the domain wall be-
tvreen two energetically degenerate textures in
superfluid 'He. The moving domain walls or soli-
tons can be created by turning off a local magnetic
field, if the field is strong enough [hH, „=(1. /yo)Q„
and (I/y, )Qs for the A phase and the B phase, re-
spectively]. We studied also the scattering of the
spin waves by the domain wall. It is shown that the
domain wall in the A phase is transparent, while
the domain w'all in the B phase partially reflects
the spin waves. Furthermore, the existence of
the domain vrall reduces significantly the normal
longitudinal resonance at u =Q„(or Qz) in the A
phase (or in the B phase) and gives rise to a cen-
tral peak in the resonance at (d =0, associated
with the oscillation of the domain vrall itself in
the presence of the oscillatory field.
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+[V(x) +Qg f„(x)=0, (A2)

vrhere w is the oscillation frequency. %'e can treat
the effect of the spin-diffusion term by pertux ba-
tion. For the bound state, substituting in (A2)
f„(x)= f,(x), we have

multiplying (A3) by f~(x) and taking the integral
over x, me have,

&, = -i(uD, f,(x) ', dxsf, (x)
Bx2

(A4)

where I'„has been given in the text. Therefore in
the presence of the relaxation, the double pole in
&u in Eq. (48) is replaced by

1

(d X~ —(d (d (i I& —(d)

which yields the first term in Eq, (51).
Within the same approximation we can calculate

the effect of the spin-diffusion term to ~„of the
scattering states in Eq. (41)

APPENDIX: EFFECT OF THE SPIN-DIFFUSION TERM ON

THE SPIN SUSCEPTIBILITY

We will study hei e tile effect of the spin-diffu-
sion term on the susceptibility based on a phe-
nomenologic al model. 7

A. A phase

In the presence of the spin-diffusion term Eq.
(44) in the text is modified by

, p-D» +„Qi sp ncops= i~ &y-(x),

ff, ['dx.

(A8)

Although 1ll this case the damping due to the in-
trinsic spin relaxation is as important (since now

Qg).

B. 8 phase

In the B phase Eq. (42) in the presence of the
spin-dlffuslon term ls slmllarly modlf led;

(Al)

where D~ is the spin-diffusion constant. %'e have
neglected here the damping due to the intrinsic
spin relaxation'4 in the present situation since this
term gives smaller correction to the zero-fre-
quency mode by a factor &u/Q„, where &u is the fre-
quency of the oscillatory field. After linearizing
in P, = P- Po, we have an eigenequation in analogy
to Eq. (38),

+[V„,(z)+Q', ]f„(z)=0. (SI)

For the bound state, within the similar approxi-
mation as before we have

sf I,II 2
X"'=i&uD ' (z) (dz),

where the bound-state wave function has to be
normalized [t.e. , f [fI,"(z)]'dz =I].
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