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This paper proposes an approach to the study of critical phenomena in quantum-mechanical systems at zero
or low temperatures, where classical free-energy functionals of the Landau-Ginzburg-wilson sort are not
valid. The functional integral transformations first proposed by Stratonovich and Hubbard allow one to
construct a quantum-mechanical generalization of the Landau-Ginzburg-%ilson functional in which the order-
parameter field depends on {imaginary) time as well as space. Since the time variable lies in the finite interval
[0,—iP], where P is the inverse temperature, the resulting description of a d-dimensional system shares
some features with that of a (d + 1)-dimensional classical system which has finite extent in one dimension.
However, the analogy is not complete, in general, since time and space do not necessarily enter the
generalized free-energy functional in the same way. The %'ilson renormalization group is used here to
investigate the critical behavior of several systems for which these generalized functionals can be constructed
simply. Of these, the itinerant ferromagnet is studied in greater detail. The principal results of this
investigation are (i) at zero temperature, in situations where the ordering is brought about by changing a
coupling constant, the dimensionality which separates classical from nonclassical critical-exponent behavior is
not 4, as is usually the case in classical statistics, but 4 —z dimensions, where z depends on the way the
frequency enters the generahzed free-energy functional. %hen it does so in the same way that the wave vector
does, as happens in the case of interacting magnetic excitons, the effective dimensionality is simply increased
by 1; z = 1. It need not appear in this fashion, however, and in the examples of itinerant antiferromagnetism
and clean and dirty itinerant ferromagnetism, one finds z = 2, 3, and 4, respectively. {ii) At finite
temperatures, one finds that a classical statistical-mechanical description holds (and nonclassical exponents, for
d ( 4) very close to the critical value of the coupling U„when ( U—U, )/ Uc«(T/ U,)'". z/2 is therefore the
quantum-to-classical crossover exponent.

I. INTRODUCTION

The spectacularly successful analysis of critical
phenomena in a wide variety of systems using
Wilson's renormalization-group ideas' has hither-
to been limited to classical statistical-mechanical
models. Such a description is appropriate when-
ever the critical temperature is finite, provided
one is close enough to the instability. Then, when
all fluctuation modes have characteristic energies
«kT„classical statistics are appropriate. How-

ever, one can also think about a phase transition
in a zero-temperature system which occurs when,
say, a coupling constant reaches a certain thresh-
old. In this case, none of the fluctuation modes
have thermal energies, and their statistics will
be highly nonclassical. By the same token, in the
same system at a finite but low temperature, one
should expect quantum effects to be dominant ex-
cept in a narrow range of coupling strengths near
the critical value. (By iow temperature, I mean
4T much less than characteristic microscopic
energies, such as the Fermi energy, bandwidth,
Coulomb or exchange energies, etc.)

In addition to quantum effects at low or zero
temperature in the equilibrium correlation func-
tions and static-response coefficients, we should

expect quite different dynamical properties. In
the classical case, one can study dynamical criti-
cal phenomena using time-dependent I.andau-Qinz-
burg equations or generalizations thereof. ' These
equations contain as parameters transport coeffi-
cients whose existence depends on the presence
of collisions to maintain local thermal equilibrium.
In a zero-temperature problem, by contrast,
there are no collisions, and consequently no trans-
port coefficients and no time-dependent I andau-
Ginzburg equations. Similarly, at low T, the dy-
namics mill be effectively collisionless except
very close to the critical coupling.

One feature of the classical problem is the
separability of the statics and the dynamics —the
former may be solved independently of the latter.
%e shall see here that this, too, breaks down in
systems where quantum mechanics is important.
Statistics and dynamics are then inextricably con-
nected, and one has to solve for both equilibrium
and nonequilibrium properties together in the
same formalism, rather than doing the dynamics
afterwards. This complication is offset, however,
by the fact that the formalism we shall use makes
this unified approach the straightforward and na-
tural one.

Our principal formal tool for setting up this
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class of problems is the functional-integral trans-
formation of Stratonovich and Hubbard. ' It allows
one to construct an exact quantum generalization
of the Landau-Ginzburg-Wilson (LGW) free-energy
functional used in classical problems. The pre-
cise form of this functional will depend on the
character of the dynamics of the system in ques-
tion, but all quantum functionals share the feature
that the order-parameter field depends on time
as well as space. The time variable is, as one
might expect in a quantum-statistical problem,
imaginary and in the interval [0, —i P] (P = I/hT).
The Fourier transform of the order parameter
(in terms of which it is usually simpler to write
the functional) therefore is a function of frequency
as well as wave vector, and the frequencies which
occur are the (Bose) Matsubara frequencies i&a„

=2win/p. Section III is devoted to a discussion of
the derivation of this functional for the problem of
interacting paramagnons in itinerant ferromagne-
tism.

With this as a starting point, in Sec. III we apply
the renormalization group and study the evolution
of the parameters in the functional as high wave
numbers and high frequencies are scaled out of
the problem. We show that the quantum I GW func-
tional has a stable Gaussian fixed point under the
renormalization group at zero temperature for
d ~ 1. The T=O critical exponents are thus mean-
field-like. We then examine the instability of this
fixed point at TcO and calculate the crossover ex-
ponent which characterizes the eventual switch to
a non-Gaussian fixed point and non-mean-field ex-
ponents. In Sec. IV we discuss the utility of ap-
proximate solutions of the renormalization-group
equations as a substitute for more conventional
perturbation-theoretical techniques in problems
like this, and examine the effect of the hitherto
ignored higher-order terms in the generalized
free-energy functional on such solutions. In Sec.
V we introduce and apply the renormalization
group to several other models in which quantum
effects can be important —itinex ant antiferromag-
netism, interacting magnetic excitons, and the
paramagnon problem in the presence of impuri-
ties. Finally, Sec. VI is devoted to a somewhat
different version of the quantum renormalization
group in which all frequency components of the
order parameter q (q, &u) with same q are scaled
out of the problem together at each stage of the
renormalization-group operation. This procedure
is different from that mentioned above, where one
scales out high u and high q together, in that time
and space are no longer treated on the same foot-
ing. The results are the same, however, and this
formulation does have the advantage that it, in prin-
ciple, allows one to follow the crossover from

quantum to classical scaling continuously.
An abbreviated account of part of this work was

presented earlier. '

II. GENERALIZED LGW FUNCTIONAL FOR INTERACTING
PARAMAGNONS

The application of the Stratonovich-Hubbard
transformation to itinerant ferromagnetism has
been discussed extensively in the literature. ' '
Here we only outline the steps involved in gener-
ating the free-energy functional. We start with a
Hubbard interaction Hamiltonian, written in terms
of charge- and spin-density variables:

=
4 Q (n;)+n;))' —

4 Q (n, (-n;))'. (2.l)

8 ~H =e 8 OTexP — de' 7 (2.2)

The Stratonovich-Hubbard transformation applies
the identity

(2.3)

to (2.2) for each imaginary time r between 0 and

p and for every site in the lattice, with the result
that

=Z, 54 exP —— dT O'; T)

exP dT 0~i T Ilia T
0 0

(2.4)

Here V, (7) = (—,
' U)'~'0;(v') is a time-dependent mag-

netic field acting on site i at "time" T, and Zo is
the partition function of the noninteracting sys-
tem. [In addition to V, there should be another
field in the exponential inside the expectation val-
ue in (2.4), coupled to the charge density. We
ignore it here, since we want to concentrate on
the spin fluctuations and expect that charge-den-
sity fluctuations will be relatively unimportant. ]
The expectation value in (2.4) can be expressed
in terms of the electron Green's functions of the
noninter acting system,

Statlstlcal mechanics requires knowledge of matrix
elements of the operator
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1 ~ exp[i k ~ (R, —Rl) —iE„v]

(2.5)

8
Z =Z, 54 exp —— d7

0

+ PTri (i-vv G)), (2.»

where the matrix V has elements V;,.(v, 1')
= V;(V)5115(V—1') .

The exponential in Eq. (2.6) is then a formally
exact free-energy functional 4[4] in which 4;(v)
[or, in a continuum limit, 4 (x, v)] is the order-
parameter field. To do much with lt, lt 18 gen-
erally advantageous to expand it in a power series
in 4, leading to an expression of the general form

2 j.
@[q']=

2 g U, (q, ~)l@(q, ~)l'+ 4~ g 1.(q, ~„q,~„q,~„q,~.) @(q„~,)q(q„~,)q(q„~,)&(q., ~.)
12 tl} 0& td&

q Q ~, +»»»

haft fft

~~1 .. . g U. (a,~„.. . , e. .)ll»(q„~;) n I;q,
qI ~ Q).

f k=1 4 =j. i =1

C16Rl.ly the form ls RnRlogous to thRt discQssed
by Wilson fox' clRsslcRl statistics. The effect of

Qantum InechRnlcs cRn be tx'aced to the noncom-
mutativity of Ii, and H', which forced us to write
e 8" in the interaction representation (2.2), re-
quiring the functional averaging identity (2.2) to
be applied for each time 7. This makes the ordex
paxameter time dependent, mith the consequence
that (Matsubara) frequencies appear in (2."l) on

the same footing as wave vectors. It is as if an-
othex dimension were added to the system, but,
except at zero tempex atux e, the extent of the sys-
tem in the extra dimension is finite. VV6 shall ex-
amine the effects of the consequent finite spacing
between Matsubara frequencies at the end of Sec.
HI.

The coefficients v in (2.7) (irreducible bare-
m-point vertices in a diagrammatic perturbatlon-
theol'8'tlc developlllen't) call ill pl'lllclple be eval-
uated in terms of the band propagators (2.5); v

is just proportional to a loop of m electron propa-
gators, with foux -momentum transfers
q„&„.. . , q, u between px opagator lines. ' The
quadratic coefficient v„which we will mant to ex-
Rmlne hex"6, hR8 Rn extrR term of unity becRQ86
of the Gaussian weight factor in the functional in-
tegx al,

g, (q, ~) = ——g G(k, iE„}G(h+q, iE„+~}

&u+q

~a+a+
(2.9)

Imp((o+ i5) =Im
1 —UX.(q, ~)

(2/w) vrqN(E ~)(u
~'+ (&2/v)~~[1 —UN(E, }+-', (q/2n„}])'

(2.11}

for frequencies where most of the spectral meight
lies, since Imx 18 slzRble mostly neRx' R fx'equency

&o, = {2/v)uzq[l —UN(Er} + -,'(q/211')']«erq .

and smaD &o/qvr, it has the expan-
sion

y, (q, i+ ) =N(Er)[l ——,'(q/2k~)'

—3 11(l ~ I/q&~)+ 1. {2.10)

As long as me are near the ferx omagnetic instabil-
ity UN(Er) =1, this long-wavelength, low-frequen-
cy form of yo gives a good representation of the
parRmRgnon p1'opRgRtox' ol its spectrRl weight
function

v, (q, ro) =1-Ug, (q, &o), (2.8}

where yo is the function evaluated by I.indhard for
a free-electron model,

The higher-order loops v, m ~ 4, Rre compli-
cRted functions Gf the Q- Rnd QP. but they shRre
mith v, the fact that they vax y with any q on a
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scale of 2k„and with u on a scale of E~. Put
physically, the force between paramagnons has
a range = (2Pz) ' in space and a retardation =1/Ez
in time. When all of the q; and m; vanish, v is
simply proportional to the (m-2)nd derivative of
the band density of states at E~.'

In this section we will see an approximation to
the full functional in which we use the expansion
{2.10) in v„ ignore all q and &u dependence on v„
and discard higher-order vertices completely.
The finite range and retardation effects will be
simulated by cutting off all q sums at =2k~ and
all & sums at =E~. Choosing units appropriate-
ly, we can write our approximate functional as

@[q]=
2 g ~.+q'+ —Iq(q, ~)l'

so = 1 —UH{E~),

so=+pU Iq (Ey)

(2.14a}

(2.14b)

This 4 is of almost the same form as the classi-
cal LGW functional, except for the presence of
the frequency-dependent term in v„which con-
tains the essential information about the dynam-
ics. It tells us that the decay mechanism for the
paramagnon excitations is Landau damping —the
lifetime of a free particle-hole pair of total mo-
mentum q is (v~) ', and the correlations enhance
this lifetime (for small q) by afactor [1 —UN(E„)] ',
as reflected in (2.11). This is why &u enters (2.13}
in the form [+[/q. If the dynamics were different,
this term would have a different form. We shall
examine examples with different dynamics in Sec.
V.

Our functional (2.13) therefore describes a set
of interacting, weakly-Landau-damped excita-
tions. Terms of higher order in 4, as well as
higher-order expansions of the coefficients in-
cluded here in powers of q and ap, contain no
essential new physics and in fact are "irrelevant"'
to the zero-temperature critical behavior in the
sense described by Wilson. '

It is also possible to write the generalized LGW
functional in a form which preserves the rotation-
al invariance of the original Hamiltonian by using
a vector paramagnon field S in place of 4. We
shall not dwell at length on the formal derivation
of this functional, since this aspect of the prob-
lem has been discussed elsewhere. e " Our em-

+ ' Q q(q„(u, )q(q„(u, )4(q„(u, )
OthPi

&&q'(-q -q -q -~ -~ -~ )

(2.13)

where, ln terms of microscopic parameters

phasis is on the form of the coefficients to order
8' and their physical implications.

The starting point lies in expressing the inter-
action Hamiltonian as

H'=2U Q (n;)+n()) ——', U Q S( ~ S( (2.15)

instead of (2.1), which only has S,'S'; terms. Then
the application of the identity (2.3) leads to an ex-
pression for the partition function [cf. (2.6}]

z =z, 5Sexp —— dTS'; 7 + Trln & —VG
0

(2.16)

2 g [1--UX.(q, ~)]IS.(q, ~)l'

and the fourth-order term looks like

&&~ 3
C] ~td ~

apy6

x S (q, ~, ) S~(q, ~, ) S„(q.~.) S~(q,~,)

xQ q) (2.19)

where v, ay is proportional to the v4 which ap-
peared in the scalar description [Eg. (2.7)],

v, ~& =-,'(-', )'v, Tr(o"oBo&o ) . (2.20)

The important point is that the dependence of
the quadratic and quartic coefficients on wave-
vector and frequency arguments is the same as
in the scalar case, and the dependence on the
polarization labels follows simply from the Pauli
spin algebra. So in order that four-paramagnon
modes have nonvanishing interactions, the Pauli
matrices corresponding to their polarizations
must multiply to give the unit matrix. One way
to do this is to have n = P and y= 5; this part of
the interaction is then of the form (S ~ S)(S S), as
occurs in the usual LGW functional for a vector
field. But one can also have e =y, P= 5 or e = 5,

in which V and G are matrices in spin space as
well as in space-time indices, and the Tr indi. -
cates a trace over both spin and space-time in-
dices. Explicitly, Q' is the spin diagonal with
elements (2.5), and

{i,~, m~ v) j, v', m')

=(—,'U)'~'6;q6(v' —7') S;(7) ~ (m[o ~m') . (2.17)

When the Tr ln in (2.16) is expanded in powers
of V, the quadratic term of the exponent becomes



P = y, leading to a part of v, s& proportional to
5 q5&&-5 5&z=e 8&e z„. This means there is
also a part of the 8' interaction of the form
(SxS) ~ (S xS). This term vanishes if all frequen-
cy and wave-vector dependence of v4 is ignored,
since we could then write its contribution to 4 as
something proportional to

u, Q f dv[s;( )xs;(v)]*=0. (2.21)

Nonlocal or retarded terms must therefore be Ie-
tained in order to see any effects of these parts
of the interaction. Such terms, however, are be-
yond the scope of the present discussion, in which
nonlocal effects in v, are irrelevant to the pheno-
mena of interest. Accordingly, our vector para-
magnon LG% functional is

4[S]=—P r, +q'+ —)S„(q,&u)P

+ 4~ g S (q, ~, ) S (q, ~2) Ss(q3~&)4' a 1 1 c 2 2

III. RKNORMAI. IZATION -GROUP TRANSFORMATION

Beal-Monad was the first to apply the renormali-
sation group to the quantum functional (2.13)."
She noted that the time acted like an extra dimen-
sion, and asserted that the critical behavior would
be just the same as that of a (4+1)-dimensional
system. This is not true, however. The frequen-
cy enters (2.13) in the form of a term in 4 pro-
portional to [ ra[/q, which is quite different from
the way the wave vector occurs. This anisotropy
partially destroys the analogy between the present
problem and a (0+1)-dimensional classical I GW
problem, and renders her conclusion invalid. %e
will see here that it is necessary to generalize
the %'ilson scaling procedure somewhat to deal
with the anisotropic coupling.

The general idea of the renormalization opera-
tion is the same as Wilson's. There are three
steps: (a) Terms in 4 which have the wave vec-
tors or frequencies of some of the 4 fields in an

x Ss( 6 q2 q3~ &i ~2 &s)

(2.22)

The parameters xo and uo differ from their scalar
problem counterparts [as in (2.18) and (2.20}],
but this point will not be important here.

There is nothing really new in this section. l
have simply collected from various sources the
points relevant to establishing the basis of the
model functional. The purpose of doing so was
purely pedagogical.

"outer shell" are eliminated from the functional
integral by carrying out the integration over these
4(q, e), while holding fixed the 4'(q, &u) with small-
er q or ~. (b) The variables q and e, which in
the remaining functional integral run up only to
a cutoff less than the original one, are rescaled,
so that they once again take on the range of val-
ues they had in the original problem, before step
(a}. (c) The fields 4 are rescaled, so that in
terms of the new fields and the rescaled q and +,
the terms with q' and [ ~)/q in the quadratic part
of 4 look just like those in the original functional.
That is, the coefficients of q' and ( &o[/q in (2.13)
must remain at unity under the group transforma-
tion. The only difference will turn out to be that
in step (b), q and &u must be rescaled differently,
as a consequence of the anisotropy of the function-
al in the "extra dimension. "

To see why this happens„ let us try doing the
scaling isotropically. %e use, as we will through-
out this paper, a scaling procedure in which only
an infinitesimally thin shell of 4 's is removed at
each stage of the renormalization procedure. "

Suppose that in step (a) we have removed 4's
with e '&q&1 and e '«)~[&1, with I infinitesi-
mal. This will affect the quadratic term of (2.12)
in two ways: (i) r, will be changed to a new value
ro (the change is of order I ), and (ii) the sums on
q and &u now have q and

~ u&[ less than e '. lt is
easier to keep track of the manipulations we make
if we write the sums as integrals, so the quadrat-
ic term (call it C, originally) now looks like

Rescaling q and &u (step b) by letting

Q' =pe, M = 4)8

(3.1)

(3.2)

we can write 4,' as

'vo+g 8 + I kg 8, 4P e.g

(3.3)

Step (c) would then have us define a @'(q', a&'), pro-
portional to 4 (q'e ', sp'e ') with the coefficient of
proportionality chosen so that the coefficients of
q" and

~ v[/q are both unity. But this cannot be
dome, since the two terms in (3.3) have different
coefficients (e t"""and e ~"'", respectively},
so any redefinition of 4, which multiplies both
terms, cannot make both coefficients unity. One
way to proceed would be to settle for keeping one
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number and frequency. This is pictured schemat-
ically in Fig. 1. Then instead of (3.3) we have

l dc
(d+ g) g

Ie»e}
~l +q/2e 2 + jy q

) g 2
~

(3.5)

It is apparent that if we choose z =3, the coeffi-
cient of

I
4»}'Ijq' inside the large parentheses will be

e ", the same as the coefficient of q". Then a re-
scaling of 4 can make the total coefficient of both
of them unity. One demands

Iq"(q', ~')I'=z """8 "l@(q'z ' ~'z ")I'

FIG. 1. Scaling procedure (3.4) in@ and ~ Space.
»1»»(q» ~ )e»-(4+4+2}}/2@(q ~}

of the coefficients, say that of q", fixed, and
letting the other one vary as dictated by that trans-
formation. Here me shall get around the difficulty
in a different way, however.

Instead of (3.2), we choose a more general scal-
ing,

g'=pe, v =me

that is, me scale down at different rates in wave

and we see that under the infinitesimal generator
of the renormalization group, r, -r(l) =roe2} This.
is the same behavior found for a classical function-
al. Under this transformation, however, the quart-
ic term mill become

e } 4 4fd e-e& 4

C'4=-'(&)'eet ]$ 2 )'d J II 2
'q(qg, ~,)q(q„~, )+(q, ~,)@(-q, -q, -q„—~, -~, —~,)O, g 0

=exp[- z(d+z)f +4(d+z+2)l] 4 uo({IN)'

Xq' (qe» &e)q' (qe» 4»}e)@ ( q( q2 qs» 4L}( ~z &e)» (3.8)

where

u le&5
0 (3.9)

z =4 —(d+z) . (3.10)

As in the classical case, integrating out the 4's
with q's in the shell will lead to auo different from
uo by something of order uo. Hence for small u
the change inu from rescaling, which is linear

where u,' is different from u, because of the elim-
ination of the shell variables. Hence u must trans-
form according to

u -u(l) =u'e~'-"""
0 0

in u, will be dominant. We will have

so that the Gaussian fixed point, withu=o, mill
be stable if ~ is negative, that is, if d&4-z. One
way of putting this is to say that the effective di-
mensionality is increased by z. In the present ex-
ample, then, where z=3, we should expect a
stable Gaussian fixed point and Landau exponents
for d & 1. This result is the central point of this
paper.

One should be careful to note, however, that
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our model functional was derived from the analytic
features of a three-dimensional electron gas. Ac-
tually, one- and two-dimensional electron gases
do not have I indhard functions which behave like
(2.10}. In two dimensions the coefficient of q' van-
ishes, '~ while in one dimension y0 has its maximum
at q =2k~, not q = 0, indicating that the dominant
fluctuations are nearly ant)ferromagnetic para-
magnons. It is nevertheless interesting to think
about the model (2.13) in arbitrary dimensionality
anyway.

In order to complete the derivation of the renor-
malization-group equations for this problem, it is
now necessary only to do the integration out of the
outer-shell fields %(q, (e), with e '&q&1 and e *'

&l())l&1. (We continue to write the dynamical ex-
ponent as z even though we know it to be 3 in this
problem because other problems will have other
values of e, but will be otherwise very similar. )
Consider the quartic term in the functional. The
important terms to consider (to lowest order in

s) are those with two q; or ()), in the outer shell,
and where these four-momenta are equal and op-
posite. (This is because they are positive defin-
ite. ) Since there are —,(4x3) =6 wa, ys to pick this
p

' fC', 't

e, = )
' g" lie(q. . .)((g q,) ()(g,)

+ 2~ Q "Iq'(q, (e)l' Q'lq'(q, ~)l',

(3.12)
%'here a prime on a sum lndlcates summing on q 8
and u's in the shell and a double prime indicates
summing on q's and ~'s not in the shell. Errors
we make in this approximation will first appear
in terms of order 4' in the new functional" and
are therefore irrelevant here.

The part of the functional integration over the
shell variables is now a product of independent
Gaussian integrals

exp —— r +q'+ —+ ' g "lq(q' &g')l2 le(q ~)l2

r, +)'+ —+ ' g" Ie(), s)I*) . ().())
q PÃ

Z= M exp -2 " r0+q + —4 q N -4 4 q& e& 5 q; 5 ru;
1 „,j(d[, 1 ~u

Ql t=&

I'(n, ~)"+, + ' P"(4(q, w)('}
qt~ I

q' pÃ
(3.14)

The expansion of the ln to fourth order in 4 then
gives a change in ~0,

r(') =to+ Q' ro+q~+, (3.15)»0
0 0 0 py 0

and a change inu„

so u() = Qo — $0+q + '~ (3 16)

tl g~ (1, dg
+

2
( q' 'dq ", . (3.17)

7T gg ~E 2v)'

This first term is the integration along the hori-
zontal strip (l~l=l, 0&q&1}and the second is the
integration along the vertical strip (q = 1, 0&

l e l
& 1).

((0), is the solid angle in d dimensions. ) Then (m= 1, 2)

In a model with a wave-vector cutoff at 2k' (=1)
and a frequency cutoff at E„(=1)the (primed}
sums of q and (e in (3.15) and (3.16) are over an
1-shaped region of space„as shown in Fig. 1.
We have

2*() ( f, ,(, )

+ '„, d&o(r, +I+(e) ". (3.16)20~1
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Thus using {3.18) in (3.15) and (3.16), and com-
bining this information with what we discussed
earlier about the changes of r and u from rescal-
ing, leads to the renormalization-group equations

2E

dr r+2—= 2r +SCdu ln +8
dl " r+1

x dx
x'+rx+1

(3.19)

q'+i&pi/q&1. (3.21)

The region of modes in q and ~ space included in
this model is shown graphically in Fig. 2. The ~
cutoff is q dependent,

~,(q) =q-q'. (3.22)

The outer shell now becomes a strip along the
curve co,{q) defined hy

e "&q'+i ~i/q-I (3.23)

'=-z E.21C
d (3.24)

Evex ywhere along the strip, by the texms of this
model, r, +q'+[upi/q =r, +1, so we get the simpler
renormalization-group equations

(3.25)

du 9&du2
dl (1+r}2' (3.26)

which have a form identical to those obtained in

dQ 2 1 x"' dx
Q —9CdR +8

dl " (r+1)(r+2), (x' +rx +I)'

(3.20)

where C, =20~/(2v}+'. In each equation, the first
term comes from the rescaling and the second
term from the elimination of the outer shell. With-
in each second term, the first contxibution is from
the integration along the horizontal strip.

The fact that (3.19) and (3.20) look somewhat
messier than their counterparts in the elassieal
problem is just a consequence of the way we chose
the eutoffs in our problem —the q cutoff and ~ cut-
off were independent of each other, so the integra-
tion over the shell variables was along two dis-
tinct strips. We could alternatively make a model
with different cutoffs that simplify the algebra.
One simple choice is to choose a q- and co-depen-
dent cutoff which excludes all 4(q, e}for which

FIG. 2. Region of (q, m) space contained in the model
defined by (3.21) and (3.22). The hatched region is
scaled out at each step.

the classical LGW problem, except that e (and K,}
are different. In fact, the seemingly arbitrary
cutoff (3.20) is not as contrived as it sounds, since
we know that for small q, the microscopic random-
phase-approximation (RPA) spectral weight func-
tion cuts off abruptly at' »qv~, although the Lor-
entzian spin-fluctuation model (2.11) does not.
This cutoff enables the full RPA g to satisfy the
f-sum rule We can t.hen think of the model with
the odd-cutoff rule (3.21) or (3.22} as enforcing
an f -sum-x ule constraint for small q. This may
be irrelevant to critical behavior, but it is cer-
tainly no more artificial than the original cutoff
procedure.

%'e next summarize the consequences of the re-
normalization-group equations (3.19) and (3.20) or
(3.25) and (3.26). As we mentioned earlier, for
d+z&4, i.e., d&1, & is negative andg is irrele-
vant, since u(l) dies exponentially with l. The
critical properties of the model are therefore
Landau=like, and RPA theory is qualitatively
correct. " For d&1(admittedly a case of only
formal relevance) the group equations are correct
to first order in e, and corrections to Landau ex-
ponents may be calculated from them in the usual
way, to oxder e. At d=1, u is marginal, and one
obtains logarithmic corrections to power-law
critical behavior. That this is true follows trivial-
ly in the case of Eqs. (3.25) and (3.26) (the case of
the odd cutoff) because their form is just that
studied by Fisher ~ a/. " It is not quite so obvious
in the other cutoff model, but I prove it in the ap-
pendix.
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The results of this section are not dependent on
the scalar-field description of the interacting para-
magnons. Because the vector-field functional of
Eq. (2.22) differs from the scalar version (2.13)
only in the number of spin components, it is
straightforward to generalize all of the preceding
arguments, in direct analogy to the Wilson theory
for a vector field. The only difference is that the
factor 3 in Eq. (3.19) or (3.25) becomes n+2 = 5,
and the factor 9 in (3.20) or (3.26) becomes n +8
=ll. These changes, of course, do not alter the
value of e or influence the relevance or irrele-
vance of the parameters r or u.

Although in this paper we shall not try to do any
better than first order in ~, it is worth remark-
ing that in generating renormalization-group equa-
tions which are correct to order e', one finds cor-
rections to the coefficient of q' in C, (which leads
to a nonzero q), but no corrections to the ( ~l/q
term. Consequently, z = 3 —q.

We conclude this section by looking at this prob-
lem at finite temperature. The Matsubara frequen-
cies then no longer form a continuum, but are
spaced by 2mT. This is of little consequence in-
itially if 7 is much less than the ox iginal frequen-
cy cutoff (=E~), but as we remove high frequencies
from the problem, me eventually reach a point
where only a fem Matsubara frequencies remain,
and me can no longer approximate them very well
by a continuum. Finally, only the & =0 terms will
remain in the functional, and we mill arrive at the
classical LGW problem. Beyond this point, the
renormalization-group equations mill be of Wilson
form, with e =4 —d, and close enough to the criti-
cal coupling r, the exponents will be nonclassical.
Qn the otheI hand, if T is very lorn, this true criti-
cal region mill be very narrow. The problem ean
be phrased in terms of the standard crossover
language, "where the temperature is the symme-
try-breaking parameter.

Actually, one encounters precisely the same
sort of situation in a finite classical system,
where the wave vectors q also have a finite spac-
ing 2w/f. between them (L is the linear size of the
system). The scaling naturally breaks down when
the size of the Kadanoff cell exceeds that of the
system. Qur problem here is analogous to that of
a (1+1)-dimensional system which is finite (length
P) in the extra dimension. Our crossover is ana-
logous to that which occurs between (2+1)-dimen-
sional and d-dimensional critical behavior when
the correlation length exceeds the length of the
system in the finite dimension.

To make this idea more quantitative, note that
when the scaling parameter in the renormaliza-
tion group equations has value /, frequencies be-
tween E~e " and E~ have been removed from the

problem. {We write the original frequency cutoff
E~ explicitly in this section. ) Thus the quantum
scaling stops, roughly, when just one finite Mat-
subara frequency remains. That is, l = /, where

The maximum wave vector left in the problem is
then

q, = k~e ' = k~(2v T/Er)'~* . (3.27)

For q &q, and + & T, then, the fluctuations of
4(q, ~) are governed by the quantum renormaliza-
tion-group equations derived above. In three di-
mensions, our analysis shoms that RPA theories
mill be qualitatively valid. Qne may to think of q,
is as the inverse of the length over which one has
to average microscopic quantities in order to be
able to treat them as classical thermodynamic
variables.

In the remaining corner of q, u space, fluctua-
tions will be classical in nature. Figure 3 shows
the classical and quantum regions of q, ~ space
at a particular T«E~. It is not obvious from this
discussion hom to deal with the dynamics when all
of the flnlte MRtsubRrR frequencies have c4sap-
peared. This is because I have been too cavalier
in treating the cu's as a continuum until all but the
very last one mas gone. We mill see hom to do
better than this in Sec. VII.

The crossover phenomenon is most simply dis-
cussed as follows (we talk only about the case
mhere ~ &0 before the crossover): For 1 « l & l,
'V gl OWS RS

r(l) =F,e" (3.28)

(F, differs from r, because of the effects of some
transient texms in the solutions of the renormal-
ization-group equations). When r(l) gets to unity,
me stop the scaling, since we have scaled the
problem into one with a small [O(1)] correlation
length, which ean be treated by perturbation the-
ory. Thus if r(l) gets to unity before l gets to l,
the transition to the classical I.GW functional and
the Wilson renormalization-gxoup equations never
gets a chance to happen. The critical exponents
mill deffer from their Landau values, then, only
if r(l) &1, i.e.,

F,& (2mT/E„)2~' . (3.29)

In the usual terminology, "
&@ is the crossover ex-

ponerit.
Figure 4 illustrates the consequences of this

effect. At each T, we assume we have a different
critical Hubbard coupling strength U, (T); the sys-
tem is ferromagnetic for U& U,(T). Stoner theory
predicts U, (T) =U, (0)+nT', or T,(U) ™[U—U, (0)l
As we approach the transition line at fixed T,
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FIG. 3. Regions of the (q, ~) plane where correlation
functions are dominated by classical. (hatched) and quan-
tum (unhatched) effects.

varying U, i, ~[U -U, (T}]/U,(T). From (3.2&) the

crossover occurs when', = (T/Er)'~', so exponents

are effectively Landau-like outside and %'ilson-like
inside the region between the dotted lines in Fig. 4.

Since z &1, the temperature region in which,
for a given U, the classical LGW functional be-
comes relevant has a width at least of the order
of T, itself. The quantum-to-classical crossover
is therefore more easily observed by sitting at a
fixed lorn T and varying U by alloying ox pressuxe.
Note also that just below U, (0), one may be able
to pass from a quantum region to a classical one
and back to a quantum one as T is varied.

Another observation worth making is that in the

case of fixed U =U, (0), where T, =0, as one varies
T domn to zero, one approaches the instability
mithin a classical region. Therefore non-I andau
(Wilson) critical exponents should characterize
this transition. This result depends on the fact
that z & 1, so that the paramagnetic crossover
boundary in Fig. 4 moves initially toward the left
as T increases from zero.

Qne may also note that the quantum renormaliza-
tion-group pxoceduxe for / & / provides a may of
explicitly deriving the LG% functional microscop-
ically. Qne mill usually mant to transform back to
the original scale, letting the fact that the momen-
tum cutoff in this functional is generally much
smaller than the microscopic charactexistic in-
verse length, q, «Az, appear explicitly.

Finally, the description of the quantum-classical
crossover is independent of the number of compo-
nents n of the order parameter (for physically rel-
evant dimensionalities). This is because the quan-

FIG. 4. Crossover diagram showing whether long-
wavelength low-frequency critical properties are deter-
mined by classical or quantum renormalization groups,
as a function of temperature 7' and coupling constant V,
for itinerant ferromagnetic models (2.13) or (2.22).

turn problem has e &0 mith e independent of n, and
the determination of the crossover value of l re-
quires only asking when the renormalization-group
equations in the quantum region break down. (In-
side the classical region, critical indices will de-
pend on n, but that is not our concern here. )

IV. APPROXIMATE SOLUTIONS OF THE

RENORMALIZATION -GROUP EQUATIONS

In Sec. III, we looked at the properties of the
renormalization group we had derived insofar as
they bore on the critical properties of the model.
Here me shorn how me can make approximate solu-
tions of these equations to give more qualitative
information about the natuxe of the corx elation
functions. The form of these solutions is similar,
but not identical to that obtained by simple pertur-
bation theory in U. We start with the model (2.13)
and its associated renox malization-group equations
(3.25) and (3.26). As explained in Ref. 7, this mod-
el affords a credible description of weak itinerant
ferromagnetism and strong paramagnetism when
the band density of states is not too rapidly vary-
ing near E~. Equivalently, one must have uo
(2.14b} fairly small. (If the density of states is
rapidly varying, one must keep higher-order
terms than@o4 .)

We deal with the physically relevant case of
e(= —2}& 0, so the Gaussian fixed point is staMe.
Qur approximation procedure is to linearize the
general renormalization-group equations around
this fixed point and solve the subject to the initial
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conditions r(0) =r„u(0) = u, . We are therefore
ignoring the effects of 4' and higher-order terms
which are generated n the exact renormalized
LGW functional as transient terms but die out
(faster than r and u) for large I. The only kinds
of terms we include are those which are present
in the original functional. For u, small, we ean
ignore the second term in the equation for du/dl,
giving

—2'v = 3gg up+dl (4 2)

The solution is standard:

r(I) = [r,+ 3Kdu, /(2 +
I
e I )]e"

—[3ffdu0/(2+ I
e I

)]e-~'~' . (4.3)

To apply this to the zero-temperature problem,
we scale (that is, carry out the renormalization-
group transformations) (4.1) and (4.3) until r(I) = l.
Beyond this point, the problem is one whose
Kadanoff cell size exceeds the correlation length,
so it can be dealt with in perturbation theory.
We have r(l) = 1 when

1 -1
l= l, =

& ln ~.+)((, ./2 ~
( ()

provided this I, » I [that is, r0+3Kdu0/(2+ I
e

I )« I]. At this I the correlation length is the Kad-
anoff cell size, that is, the factor by which dis-
tances have been scaled, which is e'. Thus

j =(r0+3ffdu0/2+
I eI) "'=r,"'. (4 6)

This just tells us that the effect of the anharmo-
nicity is to shift the instability point from xp=0
to rp 0 Such a result could be obtained straight-
forwardly by perturbation theory in up, but it is
enlightening to see how it emerges from the lin-
earized renormalization-group analysis.

We can also ask about the finite-temperature
problem and the form of the LGW functional after
the quantum-to-classical crossover. The cross-
over occurs when e "=T/Er, i.e., at I equal to

1 =a 'In(Er/T)»1. (4.6)

Thus the Landau-Ginzburg parameters at this
point are

r(l) = r0(E„/T)'/',

u(i) =u, (T/E )I eI/z.
(4.7)

(4 6)

When this problem is expressed back in the scale

(4.1)

In (3.25) for dr/dl, we ignore the r in the denomi-
nator of the second term since corrections to this
would be O(ru). We therefore have to solve

of the original one, we simply have a problem
with xcff =Fpy ueff =ups and a cutoff at g~=
kr(T/Er)'/' A. nother way to express this result
is to say that perturbation theory is sufficient to
calculate the change in effective Landau-Ginzburg
parameters which comes from scaling the finite
Matsubara frequencies out of the problem (pro-
vided the quantum region e is negative). The
situation would be more complicated (and more
interesting) if the Gaussian fixed point were not
stable for /& /. A hint of what can happen then
can be seen in the c =0 case discussed in the
Appendix.

It is not difficult to generalize this discussion
to a generalized LGW functional with local eou-
plings of all (even) orders in 4(, such as appear
in (2.7), rather than just a 4' term. We then
need an infinite set of renormalization-group
equations, rather than just two of them. To de-
rive them, we follow the same argument we used
in Sec. III. The nth-order anharmonic term in 4
has the form

(n)
uo

(PI)t}2~ /2

n!

xT Ql (I', ol )5(Q l ) 5(gtd().
i=1 i=s

(4.10)

(The first exponential factor comes from the n

fields rescaled, the second from the rescaling of
the variables of integration. ) Thus the rescaling
gives a contribution to

(4.11)

where

e„=n —(d+a)( ,'n 1). —- (4.12)

The fact that all e„are negative for n + 4 means
that the Gaussian fixed point u(") = 0 is at least
metastable. We shall not consider the possibility
of a different true stable fixed point.

We turn then to the elimination of the shell fields
)ll (q, (0) with e ' & q & 1 and e "& 0) & 1. In each
term (4.9}we separate out the terms with factors
q (q, 0)))1((-q, -0)), with q and &0 in the outer shell.
As in previous discussion, the "paired" terms

„gild(q, , ,)l(I l,.) l(I w,.). (4.9)
(fj~j i=l i=1 i=1

Under the resealing of wave vectors, frequencies,
and fields (3.4) and (3.6}, this becomes

(n)
0 (t)I)/)I Il/2( (d+2+2)(/2)ll( -(d+d)l)(ll 2)

n. 8 e
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like this are important because they are positive
definite, so they dominate those in which only
one 4' has its (q, ap) in the shell as well as those
with two 4's with arguments in the shell but not
equal and opposite. The fact that the shell is thin,
on the other hand, permits us to ignore any terms
with more than two 4's with arguments in the
shell; if l is the thickness of the shell, they con-
txibute only to order l'. Furthermore, there are
—,'n(n —1}ways to pick the pair. Thus the part of

4„ involving shell variables is

(n) 2
iio (f)Iv)z-»/a ~» ~y( ~ )n 2(n 2)i ~ Pj i) i

f= 1

x5 q] 5 {d; ' tII qy&

(4.13)

Now the coefficient of the shell 4 's is no longer
just a quadratic function of the nonshell 4''s, but

includes the sum of all of the expressions like
(4.14) over all n. In place of (3.14) we find

2Z= &exp —— " r0+q2+ 4'q, u '- ', p ' ~' " + q;, {d; 5 q;
q (i/ n=4 k=1 k=1

1 n n

,+q"~, +g ', (()(() 'L ""I*I»(e;)&,I e; () L;) I
(4 (4)

q 4) n=2 tf~ i&~ j=1 )=1 1=1

(In this section, all sums on n are taken over even
n only. ) In words, the new functional has two

parts, the fixst of which is just the old func-
tional restricted to the nonshell 0 's and the sec-
ond of which is an average over the shell of the
logarithm of the inverse RPA propagator plus
the second functional derivative of the original
functional with respect to the shell 4"s.

As in the preceding discussion of the 4 -only
problem, we linearize the group equations around
the Gaussian fixed point u'") =0, and solve them
subject to the initial conditions u(")(0) =go(").

Things simplify enormously on linearization. Qn

expanding the logarithm, we get a change in u(")

proportional to Q

i ~ i(()»)- I g»(
)I ~f

and take the Laplace transform of (4.17),

Su " (S) -u(" = eu'"'( S)+ 'K t7 -""I(S). (4.19)

(,) (S) u, ,K,u (S)(2) 1 —{4)

8- e2 8- e2

u") -'Z u("
uO 2 duo

S —e, (S- e,)(s —e,)

(k& }'I"'
(S —e,)(s- e,)(S —e,)

In taking the inverse Laplace transform

~(I) =~"'(I )

(2) 1 (4)
Q() 2 Kg Q0

2vi c S —e, (S —~,)(s —e,)

'x'dx
= -'l C ln2+ z —u("")

2
0 X +

y@(n + 2)

The other cutoff model (3.21) gives
(n) I l~ (n+2)

gQ

(4.15)

(4.16)

(4.21)

we ax'e interested only in the large-l behavior, so
we need worry only about the poles at the largest
e„, that is, c, = 2. Then

—,'Z u") &-'Z &'~("
~(I) 2i (2) ~ 2 (i 0 (2 (i) O

dw'n'
@(n) + I~ (n+2}

n 2 (4.17)

Vfe solve them by I.aplace transform. Define

We shall use (4.16) rather than (4.15); the differ-
ence is only quantitative. Combining the changes
in u" from rescaling (4.11) with (4.16) gives the
renormalization-group equations

But since &„—&„„=d+z—2=-A, this is
~(4) (1g )2g(6)

t'(I) 2) (2) & (i 0 + (& (i) so

(1g )3@(8)
+ 2 g 0 +.. .

3 x22P

(4.22)

'"'(S) =j d i '* '"'(i) (4.18}

n /2 ~(n)
2l (4.23)



14 QUANTUM CRITICAL PHENOMENA 1177

(.) ~u(x) = g —,u,'"'x" (4.24)

over a Gaussian distribution of x with variance
K, /a. To see this, just evaluate

& u dd (x)) u(n )
& x tl -2)1

(n —2) i

1 g(n+ 2) X n

n=0

de n tt2

f1=0

(n +2) K n/2
0 d

2tl/2(1 ) ) ~ t

n=O

(4.25)

which is just what appears in (4.23). Hence the
arguments which led to (4.5} give a correlation
length

] =(&u"&) 'n=[r, +&(u" r,))]-'a. (4.26)

A dimensionless parameter measuring the de-
viation from the pure RPA result is

There is a simple way of looking at this result. '
The coefficient of e" is just the average of the
second derivative of the function

path. This should be contrasted with the Landau-
damping form (2.11). We can incorporate these
effects into our formalism by using a quadratic
part of 4 of the form

4 = — r+q2+ 2 4q ~
DOq

(5.2)

instead of the expression in (2.13). The imaginary
part of the reciprocal of the coefficient in (5.2)
is then of the form (5.1). The only significant
difference between this problem and the previous
one is in the rescaling. When q- q'=qe' and we
let w- &u'=we", q' =q"e " and

~
m~/D~'

= (~ &u'~ /D, q")e' "'; thus we must choose z =4
to make the two coefficients identical, so that they
can be made equal to unity by a scale change in 4'.
Therefore one expects Landau critical exponents
in any positive dimensionality for this problem.

There will also be minor quantitative differences
in the form of the group equations for this case,
since in eliminating the shell variables, one now
encounters integrations of the form (Do= 1)

I = —g' r +q'+ (5.3)
qQJ q

instead of (3.18). The second terms in the brack-
ets in (3.19) and (3.20) are therefore replaced by

K ' 4Q 1/2
d d

(2 )"'d(d * —2)) (4.27)
x"'dx x dx

z , , and z+rx +1 (x'+rx'+1)' '

In three dimensions, o =0.0518.

V. OTHER MODELS

x "(q ~) = x(q)Dq'~/[~'+ (Dq')'] (5.1)

It is apparent from the discussion in Sec. III
that the value of the dynamical exponent z is
crucial in determining the qualitative structure
of the renormalization-group equations, and that
its value (i.e. , 3) in the paramagnonproblem is a con-
sequence of the fact that frequency occurs in the
generalized LGW functional in the form of a term
in the quadratic part of 4 proportional to

~
v

~ /q.
In this section we examine some other systems,
finding their z's and discussing the consequences
for the T =0 critical behavior and the low-T cross-
over to normal critical exponents. We shall not
derive the quantum LGW functionals for these
systems; rather, we shall appeal to the physical
interpretation of the LGW coefficients to argue
what qualitative form they should have.

ExamPle 1: dirty itinerant ferromagnet. Fulde
and Luther have shown how impurities lead to spin
diffusion in the RPA, " that is, the spin-fluctuation
spectral weight function has a form

(5.4)
respectively. [If we construct a model with a
cutoff in analogy to (3.22}, we get equations like
(3.25) and (3.26), except that Kd is multiplied by
a factor d/(d+ 1).]

Actually, the introduction of randomness should
actually be regarded as having a more fundamental
effect on the LGW functional than just making the
dyna. mics diffusive. The parameters r, and u,
should become random functions of position with
specified probability distributions, as in the work
of Lubensky and Harris" and of Grinstein and
Luther. " However, their work indicates that this
has little effect on critical properties when the
order parameter is a three-vector, as it really
should be in this case.

ExamPle Z: itinerant antiferromagnet. In this
case the instability is at a finite wave vector Q,
so fluctuations near this wave vector have no
special q dependence like those imposed by rota-
tional invariance on the ferromagnetic fluctuations
of long wavelength in the previous examples. We
characterize their decay by a single relaxation
time T, and express this in writing the quadratic
part of 4 as

when ql«1, where l is the electronic mean free 4.=2 Q(r. +q'+I~lr)14(q, ~)l'1

n bl

(5.6)
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X(q, (u) ~, ~, (ru real),

&cP —uP (q)
(5.7)

where u&'(q) is an even function of q whose q-
independent part goes to zero as the instability is
approached. This is often described as a soft
magnetic exciton. In properly chosen units, and
for sufficiently small q,

&g'(q) =r, +q'. (5.6)

We can put this information into a generalized
LOW functional by writing a quadratic part of 4,

(5.9)

In order that the second and third terms here scale
in the same way, we must take z=2. The Gaussian
fixed point will therefore be stable in greater than
two dimensions in this case. There will also be
minor changes in the form of the group equations,
as in the previous example, but we will not write
these here. This model also describes incipient
charge-density wave or superconducting fluctua-
tions.

The order parameter should, strictly speaking,
be a vector in this problem as well. In fact, if
there are m inequivalent values of Q at which the
instability can happen, 4 should be a (Sm)-compo-
nent vector. Similarly, for a charge-density
wave instability, where the char ge density is a
scalar, the order parameter has m components
if there are m inequivalent values of the instability
wave vector, and for a superconductor, 4 has two
components. But, again, the points we discussed
in Sec. III do not depend on the number of compo-
nents of 4.

One must use extreme caution in applying the
model (5.6) to one-dimensional metallic models,
or to higher-dimensional ones with one-dimension-
al features such as flat pieces of Fermi surface.
In these cases, the coefficients xo, u„and all
higher-order u~"~ have a singular temperature
dependence as T-O, and each u" is more sin-
gulax than u~" '~. One therefoxe may not truncate
4 at any finite order at low temperatures.

Example 3. singlet-gmund-state magnet (sin-
glet-singlet model). In these systems, a non-
vanishing matrix element of the z component of
the total atomic angular momentum between two
crystal-field-split levels leads to a magnetic
state for sufficient exchange strength. " (The
problem is isomorphic to that of an Ising model
in a transverse field equal to the crystal-field
splitting. ) Even in the absence of magnetic order
the exchange allows the crystal-field excitons to
propagate in the lattice; the excitation structure
is reflected in the RPA susceptibility

[The change in relative sign of q' and sP between
(5.7) and (5.9) is because the r0's in (5.9) are
( imaginary) Matsubara frequencies. ] This heu-
ristic procedure has been justified microscopical-
ly by Klenin and the author. " The quadratic term
looks like (5.9), and at zero temperature the
quartic term is of the fox'm we have been using
here." At finite T, there are anomalous singular
quartic terms proportional to e """~,which we
can ignore here for very low temperatures. In
this problem, then, time acts just like another
dimension I(5.9) is Lorentz invariant], the dy-
namical exponent z =1, and three dimensions is
the dividing line between Landau and Wilson
critical exponents. "'"

The singlet-triplet model, which has very dif-
ferent critical dynamics in the classical statistical
region at finite temperature because of its rota-
tional symmetry, "is not expected to behave
very differently from the singlet-singlet model in
the quantum scaling region, since as we empha. -
sized above, the vector ox scalar character of the
order parameter is irrelevant to the critical
dimensionality and crossover index.

One way to look at this problem or the preceding
example is to think of the frequency label of 4' as
labeling different components of an infinite-di-
mensional vector field,

~.=
2 p (r. +q')

I +.(q) I',1
(5.10)

with r, =r, +
I

&v I

' in this example, or ro = ra
+

I e I
in the antiferromagnet. (These frequen-

cies are measured in units of the high-frequency
cutoff. ) This point has been made independently
by Young. " In carrying out the renormalization
group on this anisotropic classical problem,
initially the behavior of the group transformations
is as if the spin dimensionality is infinite, pro-
vided that the anisotropy is small. As the scaling
proceeds, however, all m values except m =0 be-
come irrelevant, and there is an eventual cross-
over to a scalar-field problem. The crossover
exponent can be extracted simply in this picture
by the same sort of arguments we used in obtain-
ing (8.29). The scaling stops when r~(l) =roos"
= 1, and if the other r (l) =roe" have not reached
unity well before this, the critical behavior will
not be characteristic of a scalar field. Whether
this has happened depends then on whether t'~
»r,', that is, I&d I'&r, (example 3) or Iso I&~r,
(example 2). This gives a crossover exponent of
1 for the antiferromagnet and & for the singlet-
ground-state problem, in agreement with the
prediction 2z obtained from the (d+1)-dimensional
sealing procedure in Sec. III.

The crossover diagram looks slightly different
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from Pig. 4 in this case, and is shown in Pig. 5.
Pxom mean-field theory, we find that the curve
T,(Z} rises from zero at the critical exchange
J, with all of its derivatives infinite. Since the
crossover exponent is —,'z =-,', the crossover bound-
aries approach the T = 0 instability point with
infinite slope, in contrast with the itinerant fex-
romagnetic case of Pig. 4, where they came in
with zero slope. In both cases, however, the
approach to zero temperature with coupling fixed
so that T, =0 is in a classical statistical region.

This is not necessarily universally true, how-
ever, as the following example shows: Suppose
that we designate the variable coupling parameter
(IJ or 4 in previous examples) by x, i.e., F=x-x, .
Suppose further that the phase boundary T,(x)
rises from zero at x,(0) with a power law

[x —x,(0)] 8. Then if the crossover exponent P is
greater than p (or equivalently, if z &2/p) the
paramagnetic crossover boundary will move left-
ward from x, as T rises, as in the previous ex-
amples, but if Q&P, it will begin by moving right-
ward instead. The simplest way to see this is to
look at the crossover boundaries as functions of T,

«, (T) = «.(T) + aT'~' = x, (0) + c('T'~' ~ aT"
(5.11)

(a and a' are constants). If 2/z &1/p, the T'~z

term is initially negligible relative to the T' '
term, so the net sign is necessarily negative for
the paramagnetic crossover boundary. But if
2/z &1/p, the T ' term is a small correction on
the T'~ piece so the total term (5.11) is neces-
sarily positive for small enough T. The latter

T (J)

/
e /' Classical ~I

I
Qua ntunl

Quantum
/

\ I
q

I
II

FIG. 5. Crossover diagram for the singlet-ground-
state ferromagnet gsing model in a transverse field).
(J' is the exchange coupling. )

Quan
ICIassical. .

FIG. 6. Crossover djagram for a hypothetical system
with p =1 and fI}=2. X is a coupling-strength parameter.

e.= Q (.~ q' ~ . Ie(q, ~)I*.o (5.12)

Under the rescaling transformation, this becomes

gl m ,r. .-..r j
qt ~ I

x
l 4(q'e, K'e ) l (5.13)

so the fields must rescale like

l(q ~l)le(z+ 8+(r)( ll (lrr(qe(~le(c()(514)
and z must be chosen to satisfy o = mz —m'o, i.e.,

z = ((r+m')/m . (5.15}

Vfhen the rescaled fields are substituted into the

situation is shown in Pig. 6, where we take P
and z =1 for illustrative purposes.

One sees that here at T =0 critical point [with
«=«, (0)] is approached entirely in the quantum

region as T is lowered to zero. Furthermore, in
this case the width of the temperature region in
which classical statistics hold (for a fixed x) also
becomes negligibly small xelative to T, itself,
unlike the previously encountered situations,
where no crossover could be observed as a func-
tion of T for temperatures near T, . The nature
of the phase transition when T, =0 and the exis-
tence or nonexistence of a crossover near T, as
T is varied both depend on the relative magnitudes
of rp and P.

One can generalize the discussion of this section
to any quantum LGW functional with a 4'~ inter-
acbon which is local in space and time and whose
quadratic part is of the fox m
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quartic term in 4, one finds uo-uoe", where

e =2o —d —x ={2—I/m)c-m'/m —d, (5.16) Sr =

in contrast to the classical result e =2o - d." The
dimensionality is effectively increa, sed by z, as
before, and s will always be positive in the Iihys-
ically relevant cases m, m' ~ 0. One example of
a model in which s is negative would be the case
with m = 1, m' &0, in which the decay rate of fluc-
tuations of wave vector q is propor tional to

q —that is, long-wavelength fluctuations de-
cay faster than short-wavelength ones. {Iam
not aware of any physical situations with this
property. )

A feature shared by all of the examples dis-
cussed here is that they are characterized by a
competition bebveen two parts of the Hamiltonian,
one of which wants the system to order and the
other of which minimized when there is no long-
range order. If the former is just barely strong
enough to counteract the latter, T, will be much
lower than the characteristic energies of either
part, and many finite-e 4 's must be integrated
out of the problem before it can be cast into
classical I GW form. Our discussions here are
relevant to any such situation. An example of a.

system where these effects are negbgible is an
ordinary Heisenberg magnet, since there T, is of
the order of the only characteristic microscopic
energy J, hence near T, no modes have charac-
teristic energies» T.

VI. ALTERNATIVE FORMULATION OF THE

RENORMALIZATION GROUP

0

Ib'I

FIG. 7. LO%'est-older diagrams for the change 1Q

parameters r(a) and I (b) under the renormalization
group. A bar through a propagator indicates that its q
is in the outer shell e '&q ~ l.

5r= ' 'X q, (u

and a vertex correction

6+= —
p~ Q X (q& &) ~ (6.2

where X(q, &o) =(r,+q'+
~ &o~/q)

' is the free-
paramagnon propagator. (Here the prime on the

In this section, we set up the renormalization
group in a diagrammatic language'25 and perform
the scaling in a different way. %e will scale out
shell variables explicitly only in q; the scaling jn
frequency will be taken care of implicitly by
Bose functions which appear in the integrals, %e
start again with the scalar paramagnon problem.
The elimination of the shell variables is expressed
as a Hartree (single-loop) self-energy correction
to the free propagator (ro+q '+

~
u~ /q) ' and in-

ternal-loop corrections to the four-point interac-
tion vertex uo (Fig. 7). In both of these correc-
tions, the internal loops have their momenta be-
tween e ' and 1. If we also restricted their
Matsubara frequencies to lie between e ' and 1,
these self-energy and ver tex corrections would
lead to the terms in brackets in (3.19) and (3.20).
Here, however, we choose to sum over all fre-
quencies. The scaling is thus in vertical strips
in (q, &u) space (Fig. 8). We therefore have a
self-energy correction

&EF

FIG. 8. Scaling procedure used in Sec, VII. The
dashed line marks the f-sum-rul. e cutoff imposed to
make (7.4) finite.
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sum indicates that q's, but not v's, lie in the
shell e '&q «1.) The Matsubara sums can be
converted to integrals over real frequency, using
the spectral representation

argument of the Bose functions must also be
scaled by a factor e ". Explicitly, the renor-
malization-group equations are

( )
d(() X (Qi (())

(6 2)

—=2r+SuC~ d(d)t"(1, (d)t(n((de ")+—,')],
dl

—,X "(q, ~)(n(~)+ a] (6.4)

du d(dj dQP2' X"(I, (d, )X"(I, ~,)
-1

n((o, e ")—n(+,e ")
X

(d2 —QP j

»o ~, "d~d~' x"(e, ~)x "(e,~')
40

x [n((()) —n((()')] . (6.5)

The first of these is formally logarithmically
divergent as it stands, since the Bose function
approaches zero and X" goes like I/~ for large (d.
%'e remedy this deficiency by noting that the
true spectral weight function from which our
model (2.11)was derived has an abrupt cutoff
when &=quiz. %e therefore cut the integx'als off
at e=q=1.

Two limiting cases are apparent: In the high-T
limit, the Bose function may be approximated by
T/&o for (() &1. Then the frequency integral (6.4)
just gives T)t(q, 0), the equal-time correlation
function in this classical limit. Similarly, the
frequency integral in the vertex correction (6.5)
is just proportional to T)t'(q, 0). Only static
susceptibilities entex the x enormalization-group
equations. In this way, the dynamics become
irrelevant to the static critical behavior in the
high-tempex'ature problem.

In the Iow-T limit, the Bose function is —&(-(()),
or n((d) + —,

' = —,
' sgnco. Here we recover the quantum

limit we have discussed above, except for nu-
merical factors which are a consequence of the
cutoff model we use here. (It is different from
both of the models described in Sec. III.) We
obtain

X(V, ~) =[&0+(q"+
I ~l/q')e "] ' (6.10)

But we want to write things in terms of the re-
normalrzed propagator

R(q', ~') = (t oe" +e"+
I
~'I/(I') ', (6.11)

which differs from (6.10) by a factor e". This,
together with the phase-space renormalization,
forces us to renormalize the interaction to u„
so that the physically relevant quantity

(6.12)Qo X =Co X
q4) 4t 4)

xemains invariant. For example, in the diagram
of Fig. V(b), we want to renormalize the inter-
action so that

+o X Vy+ =@o 2 X 0'y &y X 9'y~2
d~x d+2

Unlike previous renor malization-group equations,
they depend unavoidably on l on their right-hand
sides, through e(l) and the Bose factors. The l
dependence of e has the following origin: In the
diagrammatic perturbation theory, each succes-
sive order in uo involves two propagators and one
integration over k and summation over u. The
rifles are given in the original scale with the
unrenormalized propagators. Now in terms of
the rescaled wave vectors and frequencies (q', (d')
the propagator is

3Qo ~ dg)
O'Y= g —)( (q, (()) sgn(d

N „2m
(6.6) (,)- ( *)] (() (3)

au, —(v,

»', ~, "da) d(u' y" ((I, (u))t" (q, (u')

GP CcP

x (sgna) —sgn(()') . (6 7)

These answers are just what one gets by treating
the Matsubara frequencies in (6.1) and (6.2) as a
continuum and integx'ating from zero to unity.

The point to note here is that we can in principle
deal with the more general expressions (6.4) and

(6.5). But as we scale down in frequency, the

=T'no g'X'(4", o),

so we must choose Qo=Qo8 . Then 6' =4 -d,
as in Wilson theory. But at zero T, (6.13) is

(6.14)

remains constant. One can see that this renor-
malization depends on the temperature. For
the high-T case, this just becomes

».g X'(q, o) = »Oe "g ' ]e"X(e', o)]'
C
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cf 0d-l P r ~1 2 [e 2l -rr( +r)][e 2lg)r( 1)] g 2 g ~2
e (dj —CL)~

e

(6.15)

l

uo=uoexp e /' d/'

d 'd
uo 22' 002 —(d

&

Jh

so that uo=uoe ' ', or e =4 —d- z. That is, e changes from 4- d- z to 4 —d as / passes through /

(3.28). In the intermediate region, one can formally determine e(I) by defining

That is,

f da), d(d2y" ((2),)}("((d2)([n((d,e ")—n((dde ")]/((O2 —(d, )}
f d22, du 2 X"( u))X"( (d)([ 22(~, ) —22(~2) ] /(~2 —(d&)}

(6.16)

where }("((())means It"(1, (()}. In either limit,
I«f, we could of course have found e(I) without
recoux'se to analysis of any particular diagram,
since for /«/ the Matsubara frequencies effective-
ly form a continuum and the sum of ~ may be
approximated as an integral, while for /»/ only
the + =0 terms matter. But the full formalism
[(6.8) and (6.9), with (6.15)] gives one a well-
defined, if messy, calculational procedure for
treating the crossover region.

It is also worth pointing out in passing, although
this limit is not the subject of this paper, that in
the high-temperature problem the procedure
outlined here gives one a handle on the dynamical
problem without recourse to the Langevin-equa-
tion approach generally used to discuss critical
dynamics. The results are the same, of course.
The perturbation series which comes out of the
generalized LGW functional here is equivalent,
after analytic continuation of frequencies to the
real axis, to the perturbative solutions of the
La.ngevin equations of time-dependent Landau-
Qinzberg theory, ' provided that the Bose func-
tions are always replaced by their classical
limits T/(d

specification of the cutoff, and here we use the
first of the two schemes discussed in Sec. III, in
which the wave-vector and frequency cutoff s are
each taken (independently} to be unity. The re-
normalization-group eouations come out slightly
different from (3.18) and (3.19) because it does not
make much sense to talk about a solid angle in one
dimension. Instead of (3.16) we have

(A1)

so

1 g (, I I)" r) f'~(, 1)"

E
' d~

W', (r, +2+22)

(A2)

Thus (3.18}and (3.19) become (e =o, s =3}

dr 3u r+2 ' x dg—=2r+ —
2 ln +3 3dl w2 r +1, (x' +ra+ 1}2
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APPENDIX: THE ONE-DIMENSIONAL PARAMAGNON

MODEL

The solution of the problem expressed by (2.13)
on its borderline dimensionality (1) makes a nice
example of how the quantum renormalization
wox"ks, even though, as I mentioned in Sec. III, it
has nothing to do with one-dimensional interacting
electrons. Part of the model, of course, is the

whose solution is

ld(I) =(M, '+9I/v2) ' . (A6}

We then substitute this expression into (A3), and

keep terms to first order in r on the right-hand
side. " The expansion of the integral gives

du 9u 1 x dx
+3d r' (r+1)(r 1), (r' *~ 1)')'

(A4)

For small r and u we can ignore the r in the de-
nominator of the equation for du/dl, so that

du 9u'
dl m'



X XdX
(A'E)

be no order, %'hen the last finite Matsubara fre-
quency is scaled out, l =l = —,

' ln(Er/T), so (E»E,)
so

3
dE

=2" s'( +QE/ ') ('
(A12)

(A13)

XdX
A. =ln2+ X3+i

The solution of (AB), ignoring transients which
decay as 1/l, is

r(l) = r,e"[l,/(l, +E)j
' /' (A10)

where l, = w'/Qu, . As in Sec. D/, ro differs from
r, because of the txansients. The lineax ized equa-
tion is valid up to the E =E, where & =1, but we need
go no further, since at this point the effective
Kadanoff cell size is equal to the coxrelation
length, and pertuxbation theory will suffice to
finish the problem. To find the correlation length,
then, we set r(l, ) = 1 in (A10) and use e'& = (. Then

F I /2(ln 1/r )
I /6 (A11)

which is exactly the c =0 result found from the
more usual sort of renormalization-group equa-
tions (like 3.25 and 3.26)." This is not surprising,
since the linearized equations in the two cases
are the same.

This analysis tells us that there is an oxdered
state at T = 0 if the coupling strength is large
enough. It 18 lntelestlng to look at this case
(r, & 0) at finite T, since we know there can then

I have not found any x'easonable way to use the x e-
normalization group {or at least its momentum-
space version) on the classical one-dimensional
1.0% problem that remains at this point. However,
this problem has been studied using other meth-
ods." One finds, for lrj»u, a correlation length

t = lr(l) l
'"e~[lr(l) I "js(E)1

(
„,(r )'*()n();Ir)) '

. (A14)

Hwvever, this is the correlation length in a prob-
lem a&hose scale differs from that of the original
problem by a factor e' =(Er/T)' '. Thus the true
g is larger by a. factor e",

Bu, )n(E /T))' '

xsxy '„, (
—~) ()a —

) . (A)5)

The quantum effects manifest themselves in the
fractional powers of ln(Er/T) which produce cor-
rections to classical one-dimensional I.GW be-
havior.
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