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The propagation of transverse elastic waves in paramagnetic crystals in the presence of an applied magnetic
field is investigated both theoretically and experimentally. A theory is developed which is based upon finite-

deformation elasticity theory and a description of the paramagnetic ions as pseudospins. Although the spatial
rotational properties of the pseudospin operators are not known, the theory correctly includes in the
thermodynamic (i.e., quasistatic) limit the spin-lattice coupling arising from the rotational motion associated
with a transverse elastic wave. Explicit calculations of the changes in the elastic constant c44 resulting from the
spin-lattice coupling are presented for several systems in the thermodynamic limit. The lattice distortions
involved correspond to transverse elastic ~aves propagating in the z and polarized in the x directions (u„,
distortion) and propagating in the x and polarized in the z directions (g„distortion), The infinitesimal strains

e„, associated with these ~aves are identical; the rotation co„, is of opposite sign for the two waves; the second-
order lattice compression is along the respective propagation directions. The latter two contributions are not
included in the usual small-strain theory but do make significant contributions to the elastic properties of the

parainagnetic system. Because of these contributions, the shift in c44 due to the spin-lattice coupling is
different for the two types of waves. In addition the shift can be either positive or negative depending on the
relative magnitude and sign of the several coupling coeNcients involved. Measurements of the shift in c44 in

the presence of a magnetic field have been performed in the tetragonal phases of the four rare-earth vanadates:

TmVO4, NdVO4, TbVO4, and DyVO4. These measurements confirm the predictions of the theory presented
here and are in clear contradiction with the predictions of an infinitesimal-strain magnetoelastic theory. In all

four cases the measured shifts in the elastic constant c44 are difkrent for the u„, and u,„distortions. In the case
of TmVO4 the one is positive and the other negative.

I. INTRODUCTION

Touyin's' work on the "elastic dielectric" has
stimulated considerable interest in the concept of
"rotational invariance" and "finite-deformation
theory" not only in dielectric materials but also
in magnetoelastic systems. Tiersten, ' Brown, '
and Eastman~ first applied these ideas to mag-
netoelastie phenomena in ferromagnetic crystals.
Their work showed that a consistent treatment of
magnetoelastic phenomena necessarily requires
the use of finite-deformation theory even in mag-
netically isotroyic systems. The consequences of
the requirement of rotational invariance in mag-
netically anisotroyic media were explicitly con-
sidered by Melcher" for the case of transverse-
elastic-wave propagation in the uniaxial antifer-
romagnet MnF, . For that case it was shown that
the rotational motion of a transverse elastic wave
couples to the antiferromagnetic spin system in
precisely the same order as does the strain as-
sociated with the transverse elastic wave. Mea-
surements of the shift in the sound velocity with
magnetic field revealed that the magnitudes of the
strain and rotational coupling terms in MnF~ were
equal to within the experimental error. '6 Mag-
netoelastie interactions in uniaxial rare-earth
ferromagnets were treated with a rotationally in-

variant formalism by Southern and Goodings. '
Their results are similar in many ways to those
found for the uniaxial antiferromagnet. "

The first exylicit discussion of contributions to
the spin-lattice coupling in paramagnetic systems
was apparently that of Kumar e& @E

8 Their treat
ment of the rotationalcontributions to the syin-
yhonon Hamiltonian is based upon the early work
of van Vleek' and involves the expansion of the
crystal field acting on an ion in terms of the nor-
mal vibrational modes of the lattice. They point
out that there is no basic reason to ignore the
purely rotational modes. Independently, Melcher'
applied the rotationally invariant formalism de-
veloped previously for magnetically ordered sys-
tems to the problem of a paramagnetic syin system.
In this way it was possible to point out that the co-
efficients of the terms in the spin-phonon Hamil-
tonian which involve elastic rotations are simple
combinations of the crystal-field parameters and
that no new parameters are introduced by the in-
clusion of the rotational terms. This treatment is
applicable only if the rotational proyerties of the
spin operators are known. Taking the spin J to
represent the true angular momentum of the sys-
tem, its rotational properties are those of a simple
vector and the explicit results obtained apply. ' In
many cases, however, the spin system is described
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by yseudosyin operators whose rotational properties
in real space are not those of simple vectors and
may in fact be unknown. Abragam et a/. "have
treated such a situation, i.e., a yseudospin —,

' sys-
tem with cubic symmetry including rotational
terms in the spin-yhonon Hamiltonian. Their re-
sults are difficult to apply in general and, as
pointed out below, are inconsistent in the appro-
priate limit with the conclusions of the present
work. A preliminary description of the main re-
sults of the present paper has been presented pre-
viously. ' Independently, Dohm and Fulde'3 have
recently completed a theoretical study of rota-
tional contributions to the spin-phonon interaction
in rare-earth yaramagnets. Their approach, which
is consistent with Ref. 10, makes use of the known
rotational yroyerties of the total angular momen-
tum operator J. Dohm'~ has recently extended this
work. For large J, exylicit calculations become
formidable and it is highly desirable to develop a
valid formalism in which only a limited number of
spin states need be considered even though these
states are described by yseudospin operators
whose spatial rotational properties may be un-
known.

In this yaper we discuss a means of circum-
venting our lack of knowledge of the rotational
yroyerties of yseudospins and thereby obtain use-
ful results for describing a certain class of ex-
periments which involve rotational spin-phonon
interactions. In particular, by restricting our
treatment to ayyly only to situations in which the
frequency of the elastic deformations is much less
than any spin-resonance frequency or spin-relax-
ation rate, me are able to express the Hamiltonian
of the system in a coordinate system which is
fixed with respect to the principal axes of the crys-
tal. In this "crystal coordinate system*' we are
able to construct the thermodynamic free energy
and thereby calculate the changes in the elastic
properties of the lattice due to the spin-phonon
interaction, including rotational contributions. In

this way it is never necessary to know the rota-
tional properties of the pseudospin operators.
Measurements of magnetic-field-induced changes
in the elastic constant c«, corresponding to trans-
verse-elastic-wave propagation in a series of
rare-earth vanadates, are compared to predictions
of the theory. Not only do these experiments de-
monstrate the necessity of including the rotational
and finite-strain contributions to the spin-phonon
Hamiltonian in order to obtain even qualitative
agreement with experiment, but they also confirm
the validity of the present approach to quasistatie
magnetoelastic problems.

In Sec. II the experimental measurements are
described. They represent the only (known to us)

direct measurements of rotational spin-lattice
coupling in paramagnetic systems. The general
method of treating quasistatic syin-lattice interac-
tions is described in Sec. III. Section IV is de-
voted to detailed calculations of the spin-phonon
contributions to the elastic constant c44 for
pseudospin systems describing a non-Kramers
doublet (TmVO~), a Kramers doublet (NdVO~),
and two systems (DyVO, and TbVO, ) the descrip-
tion of each of which requires the use of four
yseudospin states. These calculations are com-
pared to experiment in each ease. In Sec. V me
summarize and discuss the main theoretical and
experimental results of the paper.

II. EXPERIMENTAL MEASUREMENTS

The measurements reported here mere carried
out using the continuous-wave transmission tech-
nique at a frequency of 30 MHz. " A.C-cut quartz
plates bonded to the samples with Non-aq stopeoek
grease mere used as transducers. Each sample
mas a single crystal of TmVQ4, NdVO~, TbVO~, or
DyVO, with two pairs of faces (normal to both the
z and x axes) ground flat and parallel Atyp. ical
linear dimension of a prepared sample was 4 mm.
Simultaneous measurements were made of the tmo
velocities corresponding to transverse-elastie-
mave propagation parallel to the z axis, polarized
in the z plane and propagating parallel to the x
axis, polarized along the z axis as a function of a
magnetic fieM applied along the z axis. Fields up
to 95 kOe mere provided by a superconducting
solenoid with the sample immersed either in liquid
helium or liquid nitrogen.

The distortions associated with the tmo types of
elastic maves are depicted in Fig. 1. Since the
infinitesimal strain e„„associated with each wave,
is the same, any theory based entirely on infini-
tesimal-strain coupling mill predict identical re-
sults for the tmo experiments. On the other hand,
the rotations+&„, associated with the two waves
have different algebraic signs. Therefore a theory
which includes rotational motion will in general
predict different results for the two measurements.
In addition, the tmo transverse waves produce sec-
ond-order compressions, respectively, along the
z and x axes. The origin of these comyressions in
the finite strain is discussed in Sec. IQ. Inclusion
of these compressions leads to additional contribu-
tions to the magnetoelastic interaction. Note that
the geometry of the present measurements is
identical to that employed in the original verifi-
cation of rotational magnetoelastic interactions in
antif erromagnetic Mn F,."

The elastic constant c«corresponds to e„, strains
of the tetragonal crystals of interest here. In
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Sec. IV, the experimental results are presented
as the relative change in e~ as a function of the
applied field strength, [c~(H) -c~(0)]/c~(0). In

all cases the field is oriented along the z axis of
the crystal.

III. GENERAL THEORY

-- "xz

+e„= +{dxz

J
I

Ezz =
p Uxz

The theoretical discussion of this section is
divided into two yarts. In Sec. IIIA we outline a
general approach to a rotationally invariant theory
of spin-lattice interactions valid for rare-earth
ions for which the total angular momentum is
conserved. A rotationally invariant Hamiltonian
is constructed as a function of the comyonents of
the total angular momentum operator J of the rare-
earth ion. This approach, which is equivalent to
that used in Befs. 7, 10, 13, and 14, is generally
valid for all static and/or dynamic phenomena
associated wi. th syin-lattice interactions. How-

ever, the calculational effort required to use this
Hamiltonian to describe physical phenomena can
be formidable. In Sec. GIB we consider quasi-
static phenomena for which the elastic wave {or
phonon) frequency is restricted to be less than any
spin-resonance frequency or spin-relaxation rate.
By describing the spin system with a pseudospin
formalism, simple but meaningful calculations
can be performed. Even though the rotational
properties of the pseudospin operators may not
be known, we demonstrate how to correctly include
the effects of crystal rotations and finite strains.

A. Hamiltonian based on angu1ar momentum operators

The Hamiltonian of a rare-earth ion can be ex-
pressed as

X -g~pz H ~ J +Xc„(Z,)+X,„(J'„E„.). (1)

The three terms correspond, respectively, to the
Zeeman interaction with ayylied magnetic fieM
H', the crystal-field Hamiltonian, and the syin-
lattice intex action. The suyerscript c denotes
that the operators and fields are referred to the
"crystal coordinate system" which coincides with
and is rigidly fixed to the princiyal axes of the
crystal. Hereg~ is the Landl g factor, p, ~ the
Bohr magneton, and E»& denotes the finite-strain
tensor given by

BQ» BQ& BR~ BQ~
E». = — + +

2 BXg BX» BX» BXg

where u(z, t) is the elastic disylacement field. The
second-order contributions to E, and E „arising,
respectively, from the au, /ez and su, /sx dis-
placement gradients are indicated in Fig. 1. Note
that in the crystal coordinate system (often re-
ferred to as the "materia1 coordinate system, "

I
l

Uzx

r ~q~E =~
U&

I XX p zx
I

(t)xz

exz (t) xz

FIG. 1. Schematic diagram of the distortions associ-
ated with two transverse elastic waves corresponding
to u, and ~g» displacement gradients, respectively.
In (a} au»g distortion is seen to consist of an infinitesi-
~» strain e»~, a clockwise rotation „and a quadrat-
ic contribution to the compression aloag the z axis given
by&~ =~u»~ [see Kq. (2}j. In g} aug» distortion con-
sists of the same ~ri~nitesimal strain e»„a counter-
clockwise rotation -u»~, and a compression along the x
axis given by E~= 2&~~».

see Refs. 1-4) the crystal rotations do not aypear
explicitly. The purely elastic contributions to the
Hamiltonian of the system have been omitted in

Eq. (1).
Each term in Eq. (1) must transform as the to-

tally symmetric representation I', of the point
group describing the symmetry of the site of the
rare-earth ion. In addition, the Hamiltonian must
possess time-reversal symmetry. This latter
condition restricts the last two terms of Eq. (1) to
contain only even-oxder polynomials of the com-
ponents J» of the angular momentum operators.
The 4f configuration (I = 3) of the rare-earth ions
further restricts the polynomials to order six or
less.

The Harniltonian &~ of this system, expressed
in the "laboratory coordinate system, "which is
rigidly fixed with x'espect to the measuring appa-
ratus (applied magnetic field), is obtained by a
simple rotation of 3C':

~'=EX'll '=X'(&,Jf,S-„), . (3)

where

J'=a J a-', (4)

and H~ is related to H' by the rotational properties
of axial vectors. The relative orientation of the
two sets of coordinate systems can be described
by the vector 8. The rotational operator is given
by
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R — -«y'e (5a)

The laboratory coordinate system is often referred
to as the "spatial" reference frame (see Refs.
1-4).

The rotation tensor of continuum elasticity theory
is given in terms of the finite strain Eo md the
displacement gradients Suf/sxf ———M,f by

R„=(6,.+I,.) [(1+2E}-"]
To second order in the displacement gradients
u;, , this may be written

(5b)

lI
lf 6ff ~lf 2 ~mi +mj 4 iamf Sf g& aim Mmf) &

(5c)

where &«& is the @ntisyrnmetrical straw tensor
defined by Eq. (9) below and a sign error o&ceurring
in Eq. (5-20) of Ref. 6 has been corrected here.
To first order in displacement gradients this ex-
pression is identical to the usual rotation opera-
tor if u«& is interpreted as the infinitesimal angle
of rotation. Because of the last term on the right-
hand side of Eq. (5c) this interpretation of &gi„

cannot, in general, be made to second order in
u„.. However, for the experimentally interesting
case of shear wave propagation in a plane, the
last term in Eq. (5c) vanishes and &&fff can be
equated with the rotation angle to second order.
For example, shear wave propagation in the xz
plane corresponds to all u;, =0 except u„, and u, .
In this case the last term in Eq. (5c) is easily
seen to be zero and, to second order, &&f„=-,' (I„,
-u„) is identical to the angle of rotation. The
analysis in the remainder of this paper is pri-
marily concerned with this special case although
generalization to other cases is straightforward.

Take 8 = (0, +„„0)which corresponds to a ro-
tation about the y axis through the angle &d„(see
Fig. 2). The Hamiltonian takes the form

gg ffff ~ H ++CF (~j & +gg) +SL(~i& Eo & +gg) '

+CF&&(~ i ) + SLO (~i &+ii) +CF»& (~i

+&i6 SL»& (el& & Elf & Kg g) & (7)

In the laboratory coordinate system the Hamil-
tonian 3C~ explicitly contains the angular orientation
&„of the crystal with respect to the laboratory.
This rotation corresponds either to a rigid static
rotation of the entire crystal or to the local ro-
tation associated with a transverse elastic wave
(see Fig. 1).

In general the last two terms in Eq. (6) can be
written

+CF (~i & i&fgg) ++ SL(&fi &Elf & ~gg)

FIG. 2. Schematic diagram of the relative orientations
of the crystal md laboratory coor~~»te systems. They
are assumed to coincide at equilibrium and differ only
by the rotation about the y axis, w„, associated with a
transver se elastic wave.

where the first two terms on the right-hand side
are identical to the last two terms on the right-
hand side of Eq. (1) with P; replaced by J'zf. The
remaining two terms in Eq. (7) represent the
changes occurring in the crystal field and spin-
lattice Hamiltonians when they are expressed in
the laboratory rather than the crystal coordinate
system. Note that the finite strain Eo is a ro-
tational invariant and hence is identical in the two
coordinate systems. ' 4

The Hamiltonian given by Eq. (6) is rotationally
invariant. It can be used in calculations of all
phenomena associated with spin-lattice interactions.
The total spin-lattice interaction [the last three
terms of Eq. (7)] includes not only the effects due
to lattice strains E,f but also of rigid and/or local
crystal rotations cg„. Since the rotational terms
arise from the rotation of ', their inclusion does
not introduce any new magnetoelastic coupling con-
stants or other parameters into the theory.

Although the above procedure is correct and rel-
atively straightforward, actual calculations can be
rather tedious because of the large number (2g+ 1)
of eigenstates of an ion with angular momentum J.
Often it is convenient to consider only the lowest-
lying manifold of the full J multiplet. This mani-
fold is then described with a pseudospin forma-
lism. ' However, the pseudospin operators acting
within this restricted manifold of states do not
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possess simple rotational properties. Therefore
it is difficult to deduce a correct rotationally in-
variant Hamiltonian.

B. Pseudospin Hamiltonian and the quasistatic limit

The crystal field interaction Xc„[Eq.(1)] lifts
the (2/+ 1)-fold degeneracy of the free rare-earth
ion into a series of manifolds. The eigenstates
of each manifold transform as the basis functions
of an irreducible representation of the point group
describing the site symmetry of the ion. Often the
ground manifold is sufficiently separated from the
excited manifolds so that the thermal population
of the latter can be neglected. In this case it is
useful to define pseudospin operators S, which
operate only within the ground manifold. By pro-
jecting the total Hamiltonian onto the ground mani-
fold, a pseudospin Hamiltonian can be constructed
which describes the energy levels of this manifold.
In the crystal coordinate system this pseudospin-
phonon Hamiltonian takes the form

g,~gsS(H-,'+ X„c( S() X+s(S),H(, E(,) . (8)

Here g,&
is the tensor spectroscopic splitting fac-

tor of the manifold. If the ground manifold is de-
generate the crystal-field term Xc„(Sf) is a can-
stant which can be taken to be zero.

In order to express the Hamiltonian of Eq. (8) in
the laboratory coordinate system the transform-
ation properties of the yseudospin operators S,
under spatial rotations must be known. The sub-
scripti on the pseudospin operator S, refers to
pseudospin space and has in general no direct re-
lationship to "real" space. Therefore the spatial
rotational properties of the pseudospin are not in
general known and the transformation of Eq. (8)
to the laboratory coordinates cannot be carried
out. However, if one is willing to restrict the
calculation to the quasistatic or thermodynamic
limit in which the frequency is much less than
spin-relaxation rates or resonance frequencies,
the calculation can be performed in the crystal
coordinate system. The validity of this restric-
tion and its extension to frequencies higher than the
relaxation rates has been considered by Fedders
and Melcher. "

Restricting ourselves to the quasistatic limit,
the Hamiltonian of Eq. (8} can be used to calculate
modifications of the elastic properties of a crystal
due to interactions with the pseudospins. The
components of the magnetic field H' in the crystal
are r elated to the field 8~ applied in the labora-
tory by a simple rotation. Transverse elastic
waves rotate the crystal with respect to the lab-
oratory. Therefore the expression for H' in terms
of H~ involves the elastic rotation, i.e., the anti-
symmetric strain defined by

4~ 2 Bxs Bx
(10)

This is not, in general, valid in magnetoelastic
media.

In order to make the above discussion more con-
crete we examine here a simple but nontrivial ex-
ample which illustrates the points of interest in
this paper. Consider an ion at a site of cubic sym-
metry whose ground manifold consists of a Kra-
mers doublet separated from the first excited
manifold by b, »kT. We assume that the crystal
coordinate system and the laboratory system co-
incide at equilibrium, i.e., in the absence of crys-
tal rotations. Referring to the character table for
the cubic group, 0,"the eigenstates of the Kra-
mers doublet necessarily transform as the basis
functions of the I', (or I', ) irreducible represen-
tation of the point group, O. The yseudosyin op-
erators S', transforming as I 4 are given by

I(0 Il It'0;),, 1 1 0~

1 oj kg 0) ~0 -1

The components of the ayylied field H', also trans-
form as I;. The symmetrized strains E„[Es,Ez j,
and(Er, Er, Er ) transform, respectively,

ex, ex,

In this way the Hamiltonian X' [Eq. (8)] contains
terms which couple the pseudosyin operators to
both the elastic strain Eo and the elastic rotation

The quasistatic changes in the elastic con-
stants of the material arising from both the strain
and rotational contributions to the magnetoelastic
interaction can be calculated according to the
following procedure. From the eigenvalues of
X' (S;,Hf, EU, &u,~) the partition function Z and the
free energy F can be constructed. The effective
elastic constant c,&

can be expressed as the sec-
ond derivative of F with respect to the appropriate
displacement gradient u, & su,=/sx~ In.the absence
of magnetoelastic interactions this definition of c,~

is equivalent to the usual definition that g&,. is equal
to the second derivative of F with respect to the
strain E,~. However, in the presence of magneto-
elastic coupling this definition is no longer ade-
quate because of the contributions of the elastic
rotations. Furthermore, as discussed by Dohm'4

and in detail below, the quadratic displacement
gradient contributions to the finite strain [Eq. (2}]
can contribute independently to c,&

in magneto-
elastic media. " In describing the second-order
elasticity of nonmagnetic media the finite strain
E,&

can be replaced by the infinitesimal strain e,&

defined by
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as I'„ I'„and F, where

E~—=E„„+E +E

Es =E, -E„& Ee =(2E„-E„E,-), (12)

E2 j -E&y, E~2 -Exg,
' Er 3 =Eye

Requiring that each term in the Hamiltonian trans-
form as the totally symmetric representation I „
the spin-phonon Hamiltonian to first order in the
finite strain has the form

3C'=gq (S'H')+F, (S' ~ H')E, +F, [(2H', S;-H,'S;-H', S;)E +(S'H' —S'H')E, ]1

+Fr [(S„H'+S'H,')Er +(S„H', +S'gH, )Er +(S'„H, +S'gH~)Er ]. (13)

In the static limit, additional terms quadratic in the
finite strain are required for consistency and are
included in the specific example below. In this
equation, g is the spectroscopic splitting factor,
p.~ the Bohr magneton, and Fz. , Fz. , and Fz, areI 5
the magnetoelastic coupling constants. The method
for constructing the pseudospin Hamiltonian is
discussed in greater detail in Sec. IV.

We take the applied field to lie along the z axis
in the laboratory. Thus Hz=(O, O, H~). We restrict
the discussion to distortions in the xz plane cor-
responding to the displacement gradients u„and
u, „. Thus the orientation of the crystal with re-
spect to the laboratory is determined by the angle

X~ =+X =+
2 g peH~ [1+2Fr,e„&u„

+ ,'Fz' e,',—+—,'Fz (u,', +u,', )

+ Fz, (2u,', -u,'„+Fe,', )] . (16)

The free-energy density is given by

F = —(N, /P) inZ = —(N, /P) ln (2 cosh PX), (17)

where N, is the number density of spins and P
=(kr) '.

The shifts in the elastic constant for transverse
waves propagating in the z direction and polarized
along x (u„) and waves propagating in the x direc-
tion and polarized along z (u,„}are given, respec-
tively, by

(14)
82F

(18)

where we have assumed ze„«1. Using Eqs. (2),
(12), and (14) to rewrite Eq. (13) correct to sec-
ond order in the displacement gradients u„, and

u„, we obtain

These definitions for the shifts in the elastic con-
stants are equivalent to those deduced from the
shifts in the phase velocities. The latter can be
determined from the relevant displacements using
the free energy defined in Eq. (17).~ From Eqs.
(16}and (17) we obtain

+Fr e„,(u„, +Fe„',]}, (15)

&egg = Ns (a gpsHs) tanh (2 ilgpeHs)

x(~~Fr2 +Fr +2F+Fr +4Fr )1 5 3
(19a)

where the term in F arises from the quadratic
strain contribution to the Hamiltonian. Of all the
magnetoelastic terms in &' only the term linear
in e„,would be included in an infinitesimal-strain
nonrotationally invariant theory. The terms ex-
plicitly containing the rotation u„, arise directly
from Eq. (14}for the field H'. The terms contain-
ing u„, and u, „explicitly arise from the quadratic
contributions of these displacement gradients to
E„„and E„. Since e„, and u„, are related to u„,
and u by Eqs. (9) and (10) the effects of these
two types of contributions are similar.

The eigenvalues of 3C' correct to second order
in u„, and u, „are

r c,„= N, (,'gp-eHf) tanh (-,'P—gpsH~)

x (~Fr +Fz+2F —Fr —2F, r ) .

The terms proportional to Fz arise from the in-
5

finitesimal-strain contributions to Eq. (15); the
terms in F~ and F~ arise from the quadratic

1 . 3
displacement gradients in Eq. (15); the term in F
arise from the e2, term in Eq. (15}; and the term
linear in Fr comes from the term in Eq. (15) in

e„,+„,. Note that the pure rotational terms in Kq.
(15) do not contribute.

Had both the rotations and the quadratic displace-
ment gradient contributions to the finite strain been
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ignored, the only term appearing on the right-hand
side of Eqs. (19) would have been that proportional
to F~ . Thus such a theory would predict not only

5
that measurements of At."„,and hc „would be iden-
tical, but also that they would necessarily be nega-
tive. Qn the other hand the present theory pre-
dicts that Ac„O 4C, and says nothing regarding the
sign of hc„or ht."„.

Application of the Hamiltonian derived by Ab-
ragam et al."for the Kramers doublet in cubic
symmetry to the quasistatic limit leads to re-
sults which are different from those described by
Eqs. (19). Their spin-lattice Hamiltonian is writ-
ten only to first order in the displacement gra-
dients. In addition, however, the coefficient of
their linear term in (d„differs from ours. No

comparison between the two Hamiltonians in the
dynamic limit (explicitly considered in Ref. 11) can
be made, since the present approach is restricted
to the quasistatic limit.

In Sec. IV the quasistatic method described here
is applied explicitly to the tetragonal rare-earth
vanadates and compared to experiment. Good
agreement is found.

IV. APPLICATION TO THE RARE-EARTH VANADATES

AND COMPARISON WITH EXPERIMENT

The rare-earth vanadates RVO„R = Tm~, Nd~,
Tb~, Dy~, etc. , crystallize with the tetragonal
zircon structure with space group D~„. The site
symmetry of the rare-earth ion is D2d. These
systems (with the exception of NdVO, ) have been
exhaustively studied for the past several years
largely because they exhibit cooperative Jahn-
Teller behavior. " The coupling of the rare-earth
Jahn- Teller ion to elastic shear modes in the basal
plane E„, or E,„-E causes the crystals to be-
come unstable at low temperature. They therefore
undergo a uniform distortion to orthorhombic sym-
metry with an associated soft acoustic mode. " Qur
interest in this paper is unrelated to this coopera-

(20)

where the G's are coupling constants and O~.
represents an operator transforming as the ath
basis function of the ith irreducible representation
of the D„point group. Typical examples of these
operators are

0, =(J,J, +J,J, ); Or =(J„J.+JgJ, );

Oz' (J~Jg+Jg J~)
58

(21)

tive behavior. Rather we are interested in the
anisotropic magnetic properties in the undistorted
high-temperature, tetragonal phase of these ma-
terials. This anisotropy, which arises from the
tetragonal crystal field, causes significant con-
tributions to the spin-lattice couplings from the
rotational motion associated with transverse elas-
tic waves and from quadratic displacement gra-
dient contributions to the finite strains.

In the following sections we consider explicitly
TmVQ4, NdVQ4, TbV04, and DyVQ4. In each case
the treatment is restricted to the case of a dc
magnetic field applied along the tetragonal z axis
and only distortions in the xz plane corresponding
to the displacement gradients u„, and u, „are con-
sidered. The results are ostensibly restricted to
the quasistatic limit &z «1, although in a separate
paper it is shown" that for the present geometry
the results are actually more generally valid.

In describing the symmetry properties of the
states and operators we use the notation of Koster
et al." The character table for the D„point group
is reproduced in Table I together with the trans-
formation properties of some relevant functions.

The complete spin-lattice Hamiltonian to first
order in the strain for the vanadates may be writ-
ten

TABLE I. Character table for the point group D2d [see Ref. (19)].

D2 2S4 2g4

C2

C2

2C2

2C2

2 (7d

20d Basis functions

i -i
2 0

v2

—2 -v2

2 2 2x+ y& g& rx + yy~ Ess

J,H
2 2J„—Jy, E„„—Ey

J„J +J J„,E„

{J,J),(H, H), (J,J +J J,J J +J J), (E, , E )
(~(-.'. -!»,~(-.', —.'»)

r6xr3
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Spin-lattice coupling terms quadratic in the strains
will be introduced as needed in the following para-
graphs.
a. TmVO, . The (2 J'+ 1)-fold degenerate ground

state of the trivalent Tm ion (g =6) is lifted by the
D,~ crystal field in TmVQ, into three doublets and
seven singlets. The ground manifold is a non-
Kramers-doublet transforming as the l, irre-
ducible representation of D,~ and is separated
from the nearest excited state, a singlet, by
-54 cm '.""Therefore at temperatures such
that the excited states are not thermally populated
we are justified in describing the ground doublet
with a pseudospin —,

' formalism. The transforma-
tion properties of the components 'of the magnetic
field, the elastic strains and the total angular
momentum operators are presented in Table I.
The multiplication table for the group D2~ is given
in Table II. Any oyer ators with matrix elements
within the ground doublet must be contained within
the direct product decomposition

I;x I', = I'~+ I 2+ I'~+ I 4, (22)

(24)

where Gz, G~ » Gz. , and Gz, are new coupling
4

where the superscripts S and A denote the sym-
metric and antisymmetric deeomyositions, re-

spectivelyy.

Since the operators / and / transform as I",
and hence do not appear in the decomposition in
Eq. (22), the projection of the Zeeman Hamiltonian
onto the doublet is given by

=gj]W~ S gH', ,

where the pseudospin operator S; [Eq. (11)] trans-
forms as p2. The perpendicular spectroscopic
splitting factor g, is zero by symmetry. The
crystal-field Hamiltonian Sic„, when projected onto
the degenerate ground doublet, is a constant which
we take to be zero.

The projection of the spin-lattice interaction, Eq.
(20), onto the ground doublet is

constants and 8„' and 8; are, respectively, propor-
tional to the projections of O„and Oz onto the"3
doublet. The projections of Or and 8r onto~lot 1B
the doublet are proportional to the unit matrix 1.
The first two terms in Eq. (24), being propor-
tional to 1, cannot contribute to the magnetic field
dependence of the elastic constant and will hence-
forth be dropped. The second two terms are
responsible for the cooperative Jahn- Teller be-
havior exhibited by TmV04. However, since they
are off-diagonal, the quadratic u„, and g,„parts
of E„„-E„andE„„donot contribute to the second-
order elastic constants corresponding to the g„,
and u, „displacement gradients. Thus the projec-
tion of Eq. (20) onto the degenerate ground doublet
of TmVQ~ does not lead to any field-dependent
contributions to the c~ elastic constant.

In the presence of an applied magnetic field the
degeneracy of the doublet is lifted and the eigen-
states are perturbed admixtures of higher-lying
states of the multiylet. The projection of the spin-
lattice Hamiltonian, Eq. (20), onto the ground
doublet as perturbed by the applied field leads to
the following contributions to the yseudospin-lattice
interaction:

gt(4a Sg[F~H E,g+Fa&Hg(E, +Eye) +Fq3HgEgg]

(25)

By considering the transformation properties of
the operators, fields, and strains (Table I), each
term of Eq. (25) can be shown to transform as I', .
Note that contrary to common assumption, "there
is no justification for including in Eq. (25) a term
of the form S'O', E,. Since 8'„ transforms as
the quadrupole operator Oz, i.e. , as I'„and hence
is a time symmetric operator, 8„'II', is therefore
time antisymmetric and cannot appear in the pseu-
dospin Hamiltonian.

For completeness we must include the quadratic
str ain interaction:

g II I Jg 344 g+g +~@

In a bvo-level system, terms of the form

YAHI E II. Multiplication table for the group D2&.

Fg F2 F4

r4
13
12
r,

rg
I'5

Fg
r,

I"g+ I'2+ I'3+ I'4

I'6

re
r,
r7

r, +r,
I j+F2+F5

rp
rg
F6
I'6

F6+ rg
r, +r4+r,
r, +r, +r,

rg
rp
I'3

F4
rg
I 6

r,
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gI~ jl, F~4~,"E„'.do not contx lbute to the mag etjc
field-dependent change in the elastic constant.
Therefore such terms are omitted here.

Combining Eqs. (23), (25), and (26) the pseu-
dosyin Hamiltonian for the ground doublet of
TmVO4 may be written

X g„u,,S,(a, +F„H„e„.+,F„e,u.„

Here, consistent with the requirement that $C' be
correct to second order in u„, and u, „, me have

Using Eq. (14), 3C' may be rewritten as

X'=g„peH~S;(1 —,'s).', +—F«ru„,e„+2F„u,',
+ ,'F„u„-',+F~e,', ) . (28)

The eigenvalues of this Hamiltonian are easily
found. The calculation of the change in the elastic
constant c« follows that of the example given in
Sec. IIIB. The result is

I.Q

0.5

0

-0.5
0

X,

D

Tm VQ+

(a)
IQN

IQN

ATION

GATIQN

=~& (2k'iipa&, )tanh4PÃiips& )

x(1-2F 4F --2F ). (29)

0)

1-2r -4F„-2E,= 36.62,
&+2~„-4F„-2F,=-25.80;

for 7 = VV. 4 K

1-2E -4F„-2Z,=26.44,
~+2++a-4F3~-2Fm&=-9 68.

(31)

For waves propagating in the x direction and
polarized along z, the corresponding shift in the
elastic constant (n.c,„=O'F/su,',) is given by Eq.
(29) with F«and F» replaced by -F«and F»,
respectively.

The only term in Eq. (29) which would have been
included in a theory in which only infinitesimal
strains are considered is the E~~ term.

In Fig. 3 we shower experimental measurements
of Ac«/c«vs (H~)' for both u„and u, „distortions
at 4.2 and VV. 4 K. The most stx'iking feature of
the data is the difference in the sign of ~c~ fox'

the hvo types of distortions. This feature cannot
be explained on the basis of a theory @which in-
cludes only infinitesimal strains. Since the in-
finitesimal strains e„,associated with u„, and u, „
distortions are identical, any theory based on
infinitesimal strains will yx'edict identical re-
sults for the two measurements. The proper in-
clusion of the elastic rotations and/or the finite
strains are requix ed to even qualitatively under-
stand the behavior shoran in Fig. 3,

The solid curves in Fig. 3 mere plotted using
Eq. (29) with g~~

= 10 and the following sets of
par t
for T=4.2 K

0 2000 4000 6000 BQQQ IQQQQ

FIG. 3. Relative shift in the elastic constant c&z versus
the square of the magnetic field in TmVO& at 4.2 and
77.4 K. The field is aligned along the z ({,001)) axis.
The bvo sets of data at each temperature correspond to
N~~ and u«distortions, respectively.

The difference in the parameters obtained from
the data at the bvo temperatures is px'esumed to
be a reflection of the increased thermal population
of excited states of the multiylet at VV.4 K. These
states have not been included in the present ana-
lysis. Note that in order to obtain values of the
four indeyendent coupling constants appearing in
the Hamiltonian, Eq. (27), two additional indepen-
dent measurements are required.

5. NdVO~. Nd~ is a Kramers ion whose ground
multiplet has an angular momentum J = +. The
2J +1 tenfold degeneracy of the free ion is lifted
by the D2~ crystal field of N1704 into five Kra-
mers doublets. The lowest of these doublets
lies some 100 cm ' below the first excited dou-
blet. ~e' Therefore at lou temperatures the ground
doublet can be described as a pseudospin —,

' system.
The states describing the Kramers doublet

transform as the I', irreducible representation of
the D,„double group. 2' However, the arguments
of this section do not depend uyon whether the I',
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or I', representation is used. The direct product
(see Table II)

r,~ r, =r,x r, =r, +r, +r, (32)

determines the symmetry of operators which are
capable of having nonzero matrix elements within

the ground doublet. The projection of the Zeeman
interaction onto the doublet may be written

X', =g)( pe S',H', +g,pe (S„'H„'+S;H„'). (33)

In contrast to the non-Kramers doublet [Eq. (23)]
there is no reason based upon symmetry for the
Kramers ion to have g~ =0. The values of the
spectroscopic splitting factors as determined by

g~~= o. g, = . .""The
pseudospin operators S'„ for the Kramers
doublet transform as

S;-1„(S,',S„'j-l,. (34)

In accordance with Kramers theorem the pro-
jection of the spin-lattice Hamiltonian, Eq. (20),
onto the degenerate doublet is a constant which

can be taken to be zero. In the presence of an

applied field the projection onto the perturbed
states is nonzero. The resulting pseudospin-lattice
Hamiltonian for u„and u„distortions takes the
form

&st. =g~~ W~ F«S «&„E„«+gj.p.3 F4qS „H«E„«

+g~, ps F»S;H', E„+g~~ps F»S;H', (E„,+E„„)

+g]t 93 +3«S«&«Fx» ~

From the transformation properties of the strain
and field (see Table I} and the pseudospin opera, -
tors [Eq. (34)], each term in Eq. (35) is seen to
transform as I',.

Combining Eqs. (35) and (33), expressing H' in
terms of the laboratory field H~ = (0, O, H~}, and

constructing the free energy, the calculation of
the shift in the elastic constant c44 yields

+C~g 4 Ng (2gg gs H, ) t~h (2

Phyll

I B Hg)

In Fig. 4 is shown the behavior of b,c~/c~ for
NdV04 at 4.2 and 77.4 K for the u„, and u, „dis-
tortions, respectively. The solid curves are
plotted using Eq. (36) with the following values
of the parameters: for T =4.2 K

1-2F„-4F„-2F„,-(g, /g )'(1+F'„)'=-240,
I+2F„-4F„-2F -(g,/g i)'(I -F,', )' = —800;

(38)

for T =77.4 K

1 —2F„—4F„—2F~ —(g~/g~~)'(I+F,'~)' = —328,

1+2F„—4F„—2F~ -(g~/g, )'(I F~-)' = —1104.

(39)

c. TbVQ, . The ground multiplet of the trivalent Tb
ion has angular momentum J =6. The D,„crystal
field of TbVQ~ lifts the 13-fold degeneracy of the
free ion into seven singlets and three doublets.
The lowest-lying states of the multiplet consist of
a singlet ground state, a non-Kramers doublet
which lies at 6 =11.5 cm ' above the singlet, and

a second singlet at 6 =11.5 cm ' above the dou-
blet." The other states of the multiplet are suf-
ficiently far removed from these states that they
can be neglected. In the presence of a magnetic
field along the z axis the D, ~ symmetry is reduced

0

02

—THEORY
I I j I

0 2000 4000 6000 8000 l0000

x [1—2F44 —4F»- 2F»4 —(Z~/Zii) (1+F44) ].

For waves propagating in the x direction and po-
larized along z, the corresponding shift in the
elastic constant ac„ is given by Eq. (36) with

E«, E», and E~4 replaced by -E«, E», and -E4„
respectively. This result differs from that for
the non-Kramers doublet [Eq. (29)) only through
the necessarily negative term in (g~/g~, )'. Had

only infinitesimal strains been included in the
theory the square brackets in Eq. (36) would be
replaced by

[-2F~-(g /«i'}'F~l.

—T HEORY
l i

0 2000 4000 6000 8000 |0000

H (k0e )

FIG. 4. Relative shift in the elastic constant c44 versus
the square of the magnetic field in NdVO4 at 4.2 and 77.4
K. The field is aligned along the z ((001)) axis. The
bvo sets of data at each temperature correspond to u„«
and N«» distortions, respectively.
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to the point group S4." Labeling the four states
according to the irreducible representations of S,
we find that the singlets transform, respectively,
as I', and I'2 and the components of the doublet as
I', and I

Projecting the Zeeman, the crystal field, and
the spin-lattice Hamiltonians onto the four low-

lying states leads to a pseudospin Hamiltonian
which may be written

4r,

4r, &02 ™11M12 M13

4r,
0

x'=4r

4r,

12 04 M22

M13

M24

M24

A, 03+M33 M34

M~ A, 01+M«

(40)
Here, A.~ are the eigenvalues of 3C', +c„ for a
z -axis magnetic field:

A, 02 =6,
1 C

~04 zS IiPgH g ~

1 C
~03 — 2$ (i P g&g ~

A. =-b,Ol

(41)

2
M4. =~44E- ~

where g~~ is the parallel g factor for the F3 4 dou-
blet. The M„. are matrix elements of the spin-
lattice interaction between the eigenstates of X',
+Sic„. They are determined from the symmetry
properties of the linearly perturbed eigenstates in
the presence of a magnetic field and the symmetry
of the angular momentum operators. They are
given by

2
ll G 11Exg t

M22 =G22E„~+kg(I gs [F44H„E~g

+H: (FssE-+F3&E..+F~4E'. )~ ~

33
=

22 xs agll i s [ coax xs

M&2 = G ~~ E~g + ~ gu p a (G j2E„Hg +G 2 H, ),
13 G12Exg 2g12 I B(G12ExgHg G2 x ) t

M24 = G 24 E,g + 2 g 24 ps (G 24 E„H', + G4'H,' ),
M34= —G2~E, g+ 2g24y, s(G24E, gH', +G4H, ),

(43)

where

s ~ BX.pi g1l
44 + i

i=1
(44)

g -8 Xoi (46)

and A.," denotes the second derivative with respect
to either u„or u, „of the eigenvalues of Eti. (40).
These eigenvalues are given by

2 2
M12 M13

$2 —A.02 +Mll + +
A P2 P4 XP2 XP3

Mlz M24
A. 4

—A, 04+M22+
~04 02 04 01

M~ M13
A. 3

= A.03+M»+ +
03 01 03 02

(46)

=A. +M + +
Ol 03 Ol 04

We substitute Eq. (46) into Eq. (44) and obtain the
following results in the high-temperature limit
(P X~ (&1):

where S» and g24 are the perpendicular spectro-
scopic splitting factors. Note that the diagonal
spin-lattice matrix elements Mi, are correct to
second order in the u„, and u, „displacement
gradients, whereas the off-diagonal matrix ele-
ments M„.,i', are correct only to first order.
Using Eq. (14), H'„ is seen to be first order in

ru„ for the laboratory field H~=(0, O,H~), assumed
here.

Prom Eq. (40) the shift in the elastic constant
is given by

&czar = a Nz P (2g~~ p&Hz) [1—2F+& —4F33 —2F344 —2 (g&&/g~~) (1 +G&2) —2(g2&/g~~ ) (1 +G&4) ] +O(P ) &
(47)

where O(p') indicates that we have taken pG„«1.
The elastic constant shift Ac,„, corresponding to
a u, „displacement gradient, is obtained by re-
placing F, F„, G», and 624 by -F44, F», -G»,
and -G',4, respectively.

~c„,and Ac,„are quadratic in H, which is in
agreement with the experimental results shown
in Fig. 5. The difference in the slopes of the data
for u„, and u, „distortions is entirely a consequence

of the inclusion of the rotational motion and the use
of finite strains. As in the case of TmVQ4 and
NdVO„ the use of infinitesimal strains results in
4c«being the same for both u„, and u„distortions.

d. DyVO4. The ground multiplet of the Kramers
ion Dy~ has an angular momentum J = —", . The
lowest-lying states of the multiplet in the presence
of the D2~ crystal field in DyVO4 consist of two
Kramers doublets separated by 26 =9 cm '. We



ROTATIONAL INVARIANCE, FINITE STRAIN THEORY, AND. .

4rx'=

I~

where the eigenvalues of &,+~F are given by

(48}

label the eigenstates by their symmetries accord-
ing to the point group 84 (corresponding to a z -axis
field) and obtain the Hamiltonian in the form

0,
C)

u

D

2
I

Ct

D
0

l i I

2000 4000 6000 8000 IOOOO

j.
~%i P P&»y

~06 = -6 + pg(} p g H
1

~op =+& + ~A' )I W a &» y

~08 = +4 -
g g )) p g H» .

(49)

FIG. 5. Relative shift in the elastic constant c«versus
the square of the magnetic field in TbVO4 at 77.4 K. The
field is aligned no~i~~lly along the ~ ((00i)) axis. The
two sets of data correspond to the u„» and u„distor-
tions, respectively.

Here
y gt and g,', are, respectively, the parallel g factors for the two doublets. The matrix elements of the

spin-lattice interaction between the eigenstates of +, +&cF are given by

1 1
Wi =Gii E"—ggI(&BI44Hx Exg - xg(I &BH'g(~s3 Egg+Exes Exx+~s44 E.g)

M33 = Gag E + 3g(I gB F~H„E + gg(( PBH (E 33 E+F3/ E„+E~4E )

M33=G33E*'.-3&I'I &BE'4H:E*.—3»II uBH;(E33E-+E,', E, ++~4 E„'.),
44 33 xx +31 II i B 44 Hx Exg+38 ll PB Hg( 33 Egg 3$ Egg ++344 Exg) y

M, 3
= 3gxgB(G,'3' E„g+G,"3H;),

13 G13 Exg 3» J i B(G13Hg Exg+Hx} s

M34 =G,3E,g+gg~PB(G,'3Hg E„g+H;),

M„-3g~ P, B(G34H, E„,+ H, ) .
The eigenvalues of Eq. (4S) can be expressed formally as in Eq. (46) and the shift in the elastic constant

can then be expressed as in Eq. (44). The results are given in the high-temperature limit by

The elastic constant shift 4e,„, corresponding to
a u,„displacement gradient, is obtained from Eq.

Q,
' with -I', I'„, -6,', -I", E'„-G', and

1
'Gj. s
The behavior of Ec44 vs (HB}3 in the high-tem-

perature limit in DyVO~ is shown in Fig. 6 at
77.4 K for both u„, and u~ distortions. The pro-
portionality to (H, )' in the high-temperature limit
is clearly seen as is the difference in the slopes

for the two distortions arising from the contribu-
tions of the rotations and the finite strains.

The main conclusions of the present investiga-
tion are (i) the elastic rotations associated with

transverse elastic waves, together with finite-
strain effects, make significant contributions to
the magnetoelastic properties of paramagnetic



1140 L. BONSALL AND R. L. MELCHER 14

0
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0 2000 4000 6000 8000 10000
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FIG. 6. Relative shift in the elastic constant c44 versus
the square of the magnetic field in DyVO4 at 77.4 K. The
field is aligned non~»lly along the z ((001)) axis. The
two sets of data correspond to the u, and u~, distor-
tions, respectively.

materials. These effects are not included in the
usual infinitesimal-strain theory. (ii) We have
developed a calculational technique, valid in the
quasistatic limit, which enables us to correctly

calculate the changes in the elastic properties
associated with the magnetoelastic coupling. This
technique can be used even when the magnetic sys-
tem is described by pseudospin operators whose
rotational properties are not known. (iii) Experi-
mental data on four paramagnetic materials,
TmVO4, NdVO„TbVO4, and DyVO4, have been
presented. These data clearly exhibit significant
deviations from infinitesimal-strain theory and
confirm the theory presented here. These data
are the first to clearly demonstrate these effects
in paramagnetic materials.
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