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Attenuation and dispersion of first sound near the superfluid transition of He- He mixtures*
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The attenuation a, the velocity u, and the dispersion D = u(co) —u(0) of first sound have been determined in
'He-'He mixtures (molar 'He concentrations X3 ——0, 0.070, 0.194, 0.377, and 0.517) at frequencies

2.3 & co/2m & 627 kHz and in the temperature range 1 p.K &
~

T —T),
~

& 10 mK. From the measured

velocities we calculate the thermodynamic velocity u(0), as well as (BS/BP)), and (PV/3P)), . The
attenuation and the dispersion are considerably reduced when the 'He concentration is increased. They are

interpreted as arising from a relaxation process occurring only below T&, and a fluctuation process occurring
on both sides of the X transition. Both contributions have about equal strength. The strength AR of the
relaxation process decreases nearly three orders of magnitude with increasing X, in our concentration
range. Using the obtained relaxation time T = T pf (with t =

~

T —T), ~/T), ), and published data for the
correlation length g', and for the second-sound velocity u„we find r' = ('/u, for T & T„. The amplitude T 0

increases more than one order of magnitude with increasing X3 in the investigated concentration range. For
T & T&, our absorption and dispersion data for all co and X, can be scaled with functions of co7 over four
decades of co7. This scaling analysis shows that the time 7 characterizing the critical attenuation and dispersion

at T & T„has the same temperature and concentration dependence as the relaxation time 7' at T & T„; these

two times differ at most by a constant multiplicative factor. Below T„, the data are represented by the sum of
the contribution represented by the scaling function plus the contribution from order parameter relaxation.
The frequencydependencesof the attenuation and of the dispersion for car & 1 scale as a —co'+' and D —co,
respectively, with y = 0.10 for X3 & 0.2; the exponent y increases at higher X,. For car & 0.1 our data allow the

hydrodynamic behavior a —co' and D —co'.

I. INTRODUCTION

Many properties of liquid helium have been in-
vestigated with high precision near the superfluid
transition of 4He under saturated vapor pressure,
under higher pressure, and in 'He-'He mixtures. "
In general the agreement between experimental
results and theoretical predictions of scaling, ' of
the concept of universality, 4 and of the renormal-
ization-group theory' are very good." This state-
ment may not yet be applied to the attenuation a
and dispersion D of first sound near T„. First
there is no comprehensive theoretical description
of a and D near the superfluid transition. And

second the velocity and attenuation of first sound
near T~ have been investigated experimentally
only for pure 4He at saturated vapor pressure,
first by Chase, ' and Barmatz and Rudnick, ' and
then in more detail and with higher resolution in
Refs. 9 and 10. Although rather important infor-
mation about the dynamics near the superfluid
transition could be obtained from acoustic investi-
gations, no measurements at higher pressures
have yet been performed. For 'He-4He mixtures
the attenuation near Tz is known only qualitative-
ly, " and accurate data for the velocity are limited
to low frequencies, ""so that sound dispersion
cannot be determined. The special interest of
studying critical phenomena as a function of 'He
concentration X, or pressure P results from the

fact that these are "inert" variables for the super-
fluid transition; i.e. , they should leave critical
exponents and amplitude ratios unchanged. 4'4

In this paper we report on a detailed study of
attenuation and dispersion of first sound in He-
4He mixtures of various molar 'He concentrations
(X, =0, 0.070, 0.194, 0.377, and 0.517) in the iow-
frequency range 2.3 kHz ~( &u/2w(627 kHz near T&,

(5xiP- t=i7' T, i/7', 5x 1P- ).""
This paper is organized in several sections.

Section II contains a short summary of the theo-
retical predictions for the thermodynamic velocity,
the dispersion, and the attenuation of first sound
near Tz. In Sec. III we describe the cryogenic
and acoustic apparatus, as well as the experi-
mental procedure. Our apparatus contains two
sound resonators. Hence we could take data
simultaneously under identical conditions at two
different frequencies. Since we used sample
heights of 0.5 cm only, our data are much less in-
fluenced by gravity than the data from earlier
work. "' ' High-temperature resolution and

homogeneity are obtained by using slow tempera-
ture drifts (2 p, K/min), or taking data at constant
temperature, regulated to within 0.5 p. K. Concen-
tration changes due to temperature changes are
negligible because the sample is sealed by a cold
valve, and the gas volume above the mixture is
kept very small.

In Sec. IV we present the data of the sound veloc-
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ity, dispersion, and attenuation. We calculate the
thermodynamic velocity of sound u(0), (sS/sP)~,
and (SV/BP)„ for various X,. Whenever possible,
our results are compared to those of other authors.

Section V is the discussion and interpretation of
the dispersion D and attenuation n. It is shown

that our attenuation data are consistent with the
dispersion data and vice versa. At T & T„both e
and D are separated into a relaxation and a fluc-
tuation contribution. It is shown that these pro-
cesses give contributions of about equal strength,
which decrease strongly with increasing 'He con-
centration. The order-parameter relaxation
time 7' =70I' " for the investigated X, is consis-
tent with w' = $'/u„ increases witli concentration,
and has a critical exponent x' = v'+w (v' is the
critical exponent of correlation length ('; M is the
exponent of velocity u, of second sound).

The concentration and temperature dependences
of the maximum relaxation attenuation and dis-
persion are discussed. The maximum total at-
tenuation, the maximum relaxation attenuation,
and the attenuation near T), scale with frequency
as o. -~'", with g =0.10 for X,&0.2, and y in-
creasing for the higher concentrations. The maxi-
mum of the dispersion shows the corresponding
frequency dependence, D -(d'. Only for ~v &O.I,
where our data are loosing accuracy do they allow
the behavior expected for the hydrodynamic re-
gime, Q (d ~ andD (d.

The data for T & Tz are analyzed with a scaling
function of ~7. We find, that the critical attenua-
tion, e.g. , can be scaled by the function fF =&ov/

(c+&us) for all investigated &u and X„and 10'~ &or

& 10 ' in spite of its strong v and X, dependence.
For T & T„ the resulting characteristic time
7 =70t "has the same temperature and concentra-
tion dependence as the relaxation time v' for
T & T),. Hence these two times differ at most by a
constant multiplicative factor. Consequently,
there exists a unique time scale throughout the
critical region, as predicted by dynamic scaling.
We find c = (0.506 +0.005)vo/70, independent of X„
and for all co in our range. At least for I,&0.2
our attenuation data allow equally well the scaling
function f~ =(~~)' '/[c+(~r)' "], with the same
r and c = (0.55 +0 01)(ro/7'0) '. .This modified
scaling function agrees with hydrodynamics at
re~ « I for a -&u'"f~, and y P 0. In a corresponding
analysis it is shown that the dispersion, too, can
be scaled at T&T& for all investigated (d and

X, ~ 0.377.
For T & T&, the data are represented by the scal-

ing function, determined from the data for the
fluctuation contribution at T & Tz, plus the contribu-
tion from order parameter relaxation. A summary
and conclusions are given in Sec. VI.

II. THEORY

A. Thermodynamic velocity of sound

The isentropic sound velocity u exper iences a
sharp dip near T„. It has been shown that for
co =0 this dip resembles the reciprocal specific
heat C»', and that u(0) obeys a modified Pippard
relation'9 sufficiently close to T) for 4He,"' and
for 'He-'He mixtures ""Near T the thermo-
dynamic relation between u in the zero-frequency
limit and the heat capacity C~ is given to a very
good approximationa. z2, ~3,x7 by

u(0) = aC» ' + bt +c,

with a =(u3~T~/2V'~)(BS/aP)'„and t =~T —T„(/Z~. The
subscript ~ denotes values at the ~ temperature.
In the limit T- T~, Eq. (1) becomes thermody-
namically exact. The specific heat C~ dominates
the behavior of the thermodynamic velocity of
sound near T),.8'~"'" Because the peak of C~
decreases with increasing X„' the minimum of u
becomes weaker with increasing X,. Our experi-
mental path is at constant pressure and 'He con-
centration; w'e also use parameters from other
authors taken along this path if needed in the analy-
sis. We do not perform a renormalization to a
path of constant chemical potential difference.

8. Dispersion and attenuation of sound

At finite frequencies the velocity becomes fre-
quency dependent, and a pronounced increase in the
sound attenuation occurs near T„.' ""Whereas
the early data lacked sufficient precision and tem-
perature control for a detailed comparison to
theory, '8 recently detailed studies of sound attenua-
tion a,9 and dispersion D, '0 have been performed
for 'He near Tz. The results of these experiments
have been discussed in terms of attenuation and
dispersion arising from two processes.

J. Order-parameter relaxation

This process, first studied by Landau and
Khalatnikov, "arises because the superfluid den-
sity p, needs a relaxation time ~' to reach equilib-
rium if a pressure wave travels through the liquid.
The time 7' increases strongly for T- T~. Later
on,"this process has been ascribed to a linear
coupling of first and second sound. The relaxation
occurs only below T~, where the time average of
the order parameter is nonzero. If a nonequilib-
rium order parameter decays exponentially in time
with a single relaxation time 7', the resulting
attenuation e„and dispersion D„are given by
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hu oP7'
0 u2

(d 7D„=Su .I+(d 'T

with

attenuation and dispersion, because even for
~u = const, nR -0 for t -0. Experiments show
that a is nonzero at Tz, and that the proposed
minimum of o. near T~ (Fig. 5 of Ref. 18) clearly
is absent. Other processes are significantly con-
tributing to attenuation and dispersion near Tz.

((' js the correlation length; u, is the velocity of
second sound}."" We use primed parameters at
T & T&, unprimed parameters are used at T & Tz,
if they pertain to both phases, or in obvious cases.
The difference bu =u(~) -u(0} of the velocities in
the high- and low-frequency limits has been calcu-
lated for He ' as

0) ph 1 p s(p, /p) T s
4v)" p, 8T C~ sP ~

The temperature dependence of Au, which mostly
has been neglected, ""'"is then given by

where v' is the critical exponent of the correlation
length, and A„ is a constant. Using the value
Sv' —2 =0.026 determined recently for 4He, ' and
published values for C~ of 4He, 2~ one finds that Au

changes by about 50% per decade of t in our tem-
perature range. ' Both, nR and D„vanish at T~.
Very recently, Sanikidze has calculated eR and

D„ for 'He- He mixtures. ' He also obtains Eqs.
(2) and (4) with

(5)

where k and g are the amplitude and critical ex-
ponent of p, /p near T~.8'6 This relation for As
may be transformed to Hohenberg's result for
A„[see Eqs. (3}and (4}]by using p, ('/T =const." "
Hence Hohenberg's Eq. (3}is valid for the mix-
tures, too, and the asymptotic temperature be-
havior of hu is the same for allX, . We have

2. Order- parameter fluctuations

There is a coupling of the sound wave to critical
fluctuations of the order parameter. This occurs
on. both sides of T&, is nonsingular at T&, and has
been discussed for the superfluid transition in
several papers. ""'"'"The contributions from
fluctuations above and below T& are expected to be
about equal for the same values of t, and to be of
about the same strength as the relaxation contribu-
tion." Kawasaki has obtained the most detailed
information by considering a sound wave which
interacts with order-parameter fluctuations. "
Using mode-mode coupling and scaling ideas he
derived the following general scaling law form for
the sound attenuation near the critical temperature

+~ =ABC„'t'" 'u '&uF (u&r),

with

'u)03.

Here 7 = ~,t ' is the time characterizing the critical
order-parameter dynamics. Of course, the particu-
lar scaling functions for the relaxation and for the
fluctuation mechanisms, as well as in the super-
Quid and in the normal-fluid phases can be rather
different. For example, F~ should not show the
strong decrease at large (d~ as FR does; experi-
mental results indicate that nF must become rather
weakly dependent on t near the transition. How-
ever, we expect the critical exponents to be identi-
cal in either case. The temperature dependence of
Eq. (7) is mainly contained in the scaling function
F~(~7'}; the factors in front of F~ are only very
mildly dependent on t. Consequently we may write

I X
t

V

l+(d To t
n~ =B~t '(uF~((u7) =Cp(u'"i"f~((u7), (8)

=AsCPt ~" u 2&uFs(w7),

2 ~2 -2x
(d 'T~ t

DR=ARCP t
1+(d 'To t

=A„C t '" ~rF„(ter),

with A„, C~, u, T,', 3v' —2, and possibly x' de-
pending on ~He concentration" (cf. Table I).

Equations (3) or (6) cannot describe the total

(6)
where B~ and Cz are constants. We have s/x& 0,
because s is a small positive number. The valid-
ity of Eqs. ('7} and (8}is restricted to the range
where the sound wavelength is much greater than
the range of correlation of critical fluctuations
(~r «u/um). ~ This condition is always fulfilled
for our measurements. At higher frequencies
other processes should contribute which may ex-
ceed the discussed contributions. ~ ~
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TABLE I. Parameters used in the analysis.

r, (K)

f= v' (from Refs. 6, 26, and 31)"
3 v' —2 (see Ref. 32)

w (from Ref. 26)

x =~ +w

(~ ~') at +g max

0.000

2.1, 72

0.675

0.026

0.387

1.062

0.131

0.070

2.072

0.675

0.026

0.387

1.062

0.098

0.194

1.883

0.675

0.026

0,388

1.063

0.052

0.377

1.556

0.675

0.026

0.394

1.069

0.013

0.517

1.255

0.720

0.160

0.401

1.122

0.003

'These values were determined from the measured T&(X3) and the data of Ref, 11.
"According to Refs. 26 and 31, v'= &= const for X& &0.4, and g(0.517)—&(0.4) =0.045. For

X3 &0.4, we take the value f=0.675 recently determined for He (Ref. 6).
Calculated at t =10; (co 7') at e&,„ is rather insensitive to t, with a change of less than

3% per decade of t, e' is the critical exponent of the specific heat.

3. Hydrodynamic regime

In the hydrodynamic regime (~T «1) all pro-
cesses and therefore the total attenuation and
dispersion above and below T~ should vary as""

This has to be fulfilled by Eqs. (7) and (8), there-
fore, e.g. , fz(~T)-m' '~* for &or&&I.

III. EXPERIMENTAL

A. Cryogenics

The essential parts of our cryogenic apparatus
are shown in Fig. 1. We have a vacuum can which
is surrounded by a 'He bath at T =4.2 K. Lower
temperatures are obtained by a continuously
operating 'He refrigerator inside the vacuum
can.4~ The refrigerator is filled with liquid helium

TO PUMP

F I I L
CAPILLARY—

F ILTER

~~-—
I MPEDANCE

VACUUM-
SAMPLE
CHAMBER
VIITH
RESONATOR S

FIG. 1. Cryogenic part of the experimental apparatus.

HEAT SINK
-----—~He -POT

HEATERS

COLD VALVE—

~THERMOMETER

from the bath through an. impedance, and pumped
through an orifice of d =0.1 cm. Its temperature
of about T =1.4 K is regulated to mithin 10 p. K by
a thermometer and a heater in an electronic feed-
back loop. "" All mires, capillaries, and the
tubes for a cold valve are carefully heat sunk first
at 4.2 K at the top flange of the can, and then at
1.4 K at the refrigerator before they are connected
to the sample chamber. The sample chamber in-
side of the vacuum can is a copper cell of 1 cm
minimum wall thickness to ensure temperature
homogeneity. Two sound resonators, to be dis-
cussed below, are fit tightly into the sample cham-
ber. In addition, a germanium thermometer" is
fit with grease into a hole in the chamber's wall,
and a heater is wound around the mall.

The cold valve is operated mechanically from
room temperature. The tmo stainless-steel tubes
leading to its german-silver seat (0.1-cm-diam
hole), and to its stainless-steel needle (3' taper)
are well heat sunk by copper braids to the 'He
refrigerator, half-may between the top flange of
the can and the sample chamber. The seat of the
cold valve is bolted to the sample chamber. The
weak thermal coupling (40 pW/K) between the
sample chamber and the refrigerator is provided
via the tubes of the cold valve. A constant heat
input to the heater at the cold valve is providing
most of the energy to raise the sample tempera-
ture above the refrigerator temperature.

B. Resonators

Tmo first sound resonators suitable for different
frequency ranges mere fit inside the sample cham-
ber. Both mere made out of copper for tempera-
ture and therefore concentration homogeneity of
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the mixtures. Everywhere in the sample chamber
and in the resonators the liquid is at most 0.25 cm
away from copper, thus reducing thermal relaxa-
tion times. The resonator heights were only 0.5
cm to avoid corrections due to gravity at t &10 6

(see below). "'""In both resonators, sound was
excited and detected by condenser transducers
with aluminized Mylar as active elements. ' The
main advantage of these transducers for the pres-
ent investigation is their good response at low fre-
quencies and their low heat production, a neces-
sity for temperature and concentration homogeneity
within mixtures. One resonator was a cylin-der"""'" (0.5 cm high, 0.8 cm diam) with a
fundamental plane-wave harmonic of 21 kHz in
4He; it was used up to frequencies of 630 kHz."
The second cavity was a torus (3.0 cm mean diam,
0.3 cm wide; 0.3 cm high), as used by Kojima
et aL."for studies of fourth sound. Its funda-
mental azimuthal resonance is at 2.3 kHz for 4He.
The torus covered the frequency range up to 40
kHz, and in addition served as an "acoustic ther-
mometer" for localizing the & temperature" (see
below). The transducers in both resonators were
biased with 270 Vd, . The ac-drive voltage was
about 0.5 'V, , for the cylinder, and about 3 V,
for the torus, giving pickup signals of approxi-
mately 0.01-1 mV, «, and 1-10 p, V,«, respectively,
depending on temperature and selected harmonic.
First sound could be generated and detected simul-
taneously in the two resonators at two frequencies
with different electronic setups (see below). This
method allowed various cross checks.

superfluid transition. '0 Because of the gravitation-
al pressure gradient in a liquid sample of finite
height h, the ~ transition occurs at the top of the
sample at a temperature T'„which is higher by
ghp(aT/sP)~ than the A. transition at the bottom of
the sample" [(aT/sP)&, is the slope of the & line].
When drifting the sample through Tz, the sound
velocity at zero frequency shows an. inflection
point at Tz, when the transition reaches the top
of the cell." With increasing frequency this in-
flection point occurs at slightly lower tempera-
tures T„as shown in Fig. 2 for X, ~0.3'77. At

X, =0.517, the behavior of the sound velocity is
more complex (see Fig. 4), and we find the in-
flection point only at &u/2m&40 kHz. For ~/2w
&10 kHz, (T, —T&, ~

is less than our resolution of
+0.5 p, K for all investigated mixtures. During
every run, we used the torus resonance at e/2v
=9 kHz to determine T„set T~ —= T, (9 kHz), and
refer all our temperatures to this value. For the
mixtures we consider this at present to be the
most reliable method of determining T),. Usually,
T), has been a free variable parameter in the analy-
sis of data for critical phenomena in 'He-'He mix-
tures. " Our experimental determination of T~
removes this additional parameter from the analy-
sis, and therefore reduces the uncertainties for
the remaining ones.

In searching for possible temperatuxe or con-
centration differences between the two resonators
we recorded the attenuation and velocity of sound
with both resonators at about the same frequency
(21 or 42 kHz) and drifted in temperature. From

C. Thermometry

Our main thermometer was a commercial ger-
manium resistor, 4' calibrated against the 1958
4He-vapor-pressure scale. 44 Its resistance was
measured in an ac-bridge arrangement as de-
scribed in Refs. 6 and 30. The heat (about 1 NV)
dissipated in the thermometer resulted in negligi-
ble self-heating. Temperature changes of 0.5 p. K
could be resolved, and the temperature of the
copper sample chamber was regulated to within this
limit, with the thermometer and the heater
(wound around the chamber walls) in an electronic
feedback loop"0 (heating power during regulation:
5+2 pW). Even for 'He, no anomaly in the ther-
mometer characteristic could be detected while
drifting through T)„ indicating that temperature
gradients in the system could at most be of the
order of our temperature resolution. With a mix-
ture in the sample „no anomaly is expected any-
way, because its thermal conductivity varies
smoothly through T&.4' We used the behavior of
the velocity of sound near Tz as an indicator of the

~ —0—g

0
7

194 '/
377 /o

10
(i)/2'; [kHzj

100

FIG. 2. Temperature difference T;-T'& as a function
of sound frequency for the indicated He-4He mixtures.
Here T; is the temperature where the velocity of sound
has its inflection point (see Fig. 4); T ~ is the tempera-
ture when the A, transition reaches the top of our 0.5-cm-
high sample. The full lines are guides for the eye only.



1108 C. BUCHAL AND F. POBELL

these checks, as well as taking our resolution in

temperature, and the drift of our thermometer
(less than 5 gK in 2 weeks) into account, we be-
lieve our determination of ~T~ —T~ to be accurate
to somewhat better than 1 p. K.

D. E1ectronics for acoustic measurements

In Fig. 3 we show the electronic setup for one
resonator. The wave analyzer is operating in the
"tracking-generator" mode. It produces a sine
wave of tunable frequency x to drive the resonator,
and measures the amplitude of the received signal.
The input and output are internally tuned to the
same frequency cu, but there is no rigid phase
relation between them, i.e. , the output is not the
filtered input signal. Hence, the resonator is
determining the phase relation between the drive
and the pickup signal. When tuning through a reso-
nance, the phase changes by 180'. This rapid
phase change at ~Q is used to control the operating
frequency. For this purpose a phase-sensitive
measurement of the pickup signal, referenced to
the drive, is performed. The lock-in amplifier
shows a zero out-of-phase signal when the reso-
nator is operated exactly at the resonance fre-

RECORDER

AMPLITUDE

quenc y ~Q, but smal 1 changes +dv produce a large
out-of-phase signal +dV. The error voltage +dV
is used to tune the voltage-controlled oscillator
back to roQ. The stability of this arrangement is
determined only by the sound resonator and it very
sensitively tracks all velocity-of-sound changes.
Any instabilities of the oscillator are eliminated
by the lock-in amplifier. The system may be
locked to any point of the phase curve of the reso-
nator. To measure the quality factor Q of the
resonators, it therefore is not necessary to in-
terrupt the advantageous feedback operation. One
simply changes the phase setting of the lock-in
amplifier, until the amplitude reaches the -3-dB
points [A =A((uo)/W2; y =y((u ) +45'; (u=(uo
+ gD(d].

When locked to the resonance at (dQ„velocity-of-
sound changes of Au/u =10 ' are easily measured.
But this resolution is not the precision of the data.
Changing amplitudes of the pickup signal due to
the change of sound attenuation with temperature,
the capacities to ground, and sometimes reso-
nance behavior of the drive transducer or micro-
phone induce phase changes which can deteriorate
the performance of the system. Therefore during
a run we frequently checked the tuning by mea-
suring the -3-dB points of the resonance (ru,
+2nv) and controlling the center frequency u~.
Taking all these effects into account, our velocity
data have maximum errors of 0.5, 0.5, 0.5, 0.2,
and 0.1 cm/sec for X, =0, 0.070, 0.194, 0.377, and
0.517, respectively.

E. Procedure

I AST 2
DIGITS

OUT-OF-PHASE
IN REF, =: = FREQ. COUNT.

LOCK-IN

PRE-
AMP.

RESONATOR

RECEIVER DRIVE

FIG. 3. Electronic setup used for the acoustic investi-
gations,

The mixture to be investigated was first con-
densed into a charcoal trap at 4.2 K. After warm-
ing the trap to room temperature, the gas had a
pressure of 50-100 bar. The pressurized gas was
forced through a small capillary into the sample
chamber kept at 1.1-1.3 K. This procedure should
produce negligible fractionation. Then the cold
valve was closed and the fill capillary above the
valve evacuated. With the empty fill capillary,
the sample is isolated from its surroundings ex-
cept for the small heat leak via the tubes of the
cold valve to the mell-regulated refrigerator.
Warming the sample to temperatures near T„re-
sulted in a small gas volume below the cold valve.
The velocity of sound falls rapidly with decreasing
pressure and precisely indicates when vapor pres-
sure is reached. All our data are taken at satu-
rated vapor pressure. The concentrations of the
mixtures were determined by measuring T~ and
using the X,-vs-T& table of Ref. 11. Keeping the
gas volume above the liquid very small ensured
that the change of the ratio X, , /X, „d resulting
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from temperature changes is negligible.
13ata were taken either with the temperature held

constant to within 0.5 gK, or during drifts of about
2 ir, K/min. While the temperature drifted, the
resonant frequencies of both resonators, one
sound amplitude, and the temperature were re-
corded simultaneously on a four-pen recorder.
When the temperature mas held constant, the fre-
quencies at the -3-dB points of the particular
resonance were also measured. These data give
us the Q value and the total absorption, via Q =uro/
d~ (-3 dB), and n,„,r=&u/2Qu. Far away from
Tz, our resonators had Q values of 500-5000, de-
pending on resonator, mixture, and frequency,
decreasing to 200-800 near T~. Comparing the
Q values mith the pickup amplitudes U of the reso-
nances, me always found that in the investigated
temperature range Q is proportional to U. %'e

then used this relation for calculating n. p~ in the
region mhere the temperature drifted, and the
pickup amplitude was recorded continuously to
obtain continuous curves for the absorption coef-
ficient. From the measured attenuation n,„pt we
subtracted a constant background attenuation n~
measured far away from Tr, (e.g. , at 600 kHz and
in 'He, at

~
T —T~~ &10 mK), in order to obtain the

attenuation n = nezpt Qg associated with the transi-
tion. The ratio ns/o, „p, was 0.1 for 'He at 600
kHz, and increased with increasing concentration
and decreasing frequency. Usually the electrical
crosstalk did not exceed 1Q of the pickup signal,
reaching in the most unfavorable case 5%. Onlyfor

0.15 em ', the -3-dB po' t had tobe c
rected for the crosstalk to find the -3-dB points
of the signal without crosstalk.

When investigating a cylinder harmonic with a
frequency between 40 and 630 kHz, me use the
temperature dependence of the sound velocity in
the torus at &u/2rr =9 kHz as an independent refer-
ence, especially to determine T'),. Vice versa the
cylinder at 40 kHz is used for control, while in-
vestigating resonances at 2 kHz &v/2rr &20 kHz in
the torus. This allows a temperature scale inde-
pendent of the germanium thermometer.

IV. EXPERIMENTAL RESULTS AND ANALYSIS OF
THERMODYNAMIC VELOCITY

A. Influence of gravity

The ~ transition is pressure sensitive with a
sloPe (ST/SP}r,&0. For a samPle of finite height
the gravity induced pressure gradient leads to a
1.ower T}, at the bottom than at the top of the cell.4'

For a 0.5-cm-high resonator the spread in transi-
tion temperature is 0.6 p, K for 'He. The absolute
value of the slope (BT/BP)q of the & line increases
with 'He concentration, being about 15/~ larger

at X, =0.15 than at X, =0.""No information is
available at higher concentrations. For our mix-
tures with X,& 0.2 the spread in transition tem-
perature is &0.8 JL(. K, so that for these samples
gravity effects are limited to a very narrow re-
gion around T},. For X, =0.517 and X, =0.377, the
temperature dependence of attenuation and dis-
persion near Tz is already much weaker than at
lower X, (see Figs. 7 and 9). Therefore, even a
somemhat larger spread of the transition tem-
perature at these concentrations mould have a
negligible influence on our conclusions.

B. Sound velocity and related thermodynamic parameters

Our measurements of resonant frequencies of the
helium-filled cavities are much more precise than
any determination of the effective cavity length.
To convert our frequencies to sound velocities,
we normalized the 'He data for ~/2rr &20 kHz to
the value u(0) =21 800.0 cm/sec at T —T~r, =-40 irK,
where dispersion and gravity effects are negligi-
ble, and the velocity varies very mildly with
temperature. This normalization at finite t and
low frequency in a region without dispersion is
likely to be more reliable and accurate than a
least-squares fit of the data to u(&u ~ 0} and then
normalizing at T~. Our normalization value is
consistent with that of previous work, u~(0)
=21 730.0 cm/sec """"In each run, data were
taken at one of our reference frequencies, u/2rr
=9 or 40 kHz, and simultaneously at a second fre-
quency. The data taken at this second frequency
mere normalized to the 9-kHz data at a tempera-
ture far enough below T~ mhere no dispersion
occurs. Hence, all our velocity data are normal-
ized to u(0} =21 800 cm/sec for ~He at T —T~
=-40 p. K. Examples" are shown in Fig. 4 mhere
the thermodynamic veiocity u(0) as well as the
velocity rr(&u) at various frequencies between 2.3
and 627 kHz are plotted for X, =0.070, 0.377, and
0.517. The velocity scales have different resolu-
tion and are referenced to u~(0), the value of the
thermodynamic velocity at Tr, (see Table II).

The values for the velocity of sound for rAr/2' =9
and 20 kHz were fit to Eq. (1) over the tempera-
ture range 20 irK& IT —T~l &1 mK, a range which
is clearly free of dispersion at these frequencies
or gravity effects (see Fig. 4). These fits were
performed independently for T & T~ and T & Tz. For
the specific heat me used the closed-form expres-
sion Cr =(4/a)(t —1)+II with coefficients given
in Ref. 26. Because the peak of C~ near T}, de-
creases with increasing X„'o the minimum of g
near T}, becomes less distinct with increasing X,
(see Fig. 4). The differences u«.««, q —ur„usually
are less than 0.1 cm/sec for 20 irK- IT —T~l -1
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FIG. 4. Measured first sound velocity u(cu) minus
u },(0) as a function of (T -T &)/T'~ for the three indicated
mixtures (Ref. 49). u &(0) is the zero-frequency velocity
in a zero-height sample at T& obtained from a fit of
Eq. (1) to our low-frequency data (see Table II). T& is
the A. temperature at the top of our sample. The data are
for ~/2m =627.4, 193.8, 107.7, 43.1, 20.6, and 9.16 kHz
(indistinguishable on this scale from 4.6 and 2.3 kHz) for

X3 =0.070; for ~/27I =598.3, 205.4, 102.7, 41.1, 21.8,
10.9, and 4.4 kHz (indistinguishable on this scale from
2.3 kHz) for AS=0.377; and for cu/27t =604.2, 241.6,
100.6, 40.3, and 10.7 kHz at X3=0.517. The dashed
lines are the gravity-corrected thermodynamic velocities
u (~ =0, h =0.5 cm), calculated with Eq. (1) from a fit
of our data at 9 and 20 kHz for 20 pK~ ~T -Ts& ~~1 mK,
where no dispersion occurs. Note the increasing resolu-
tion of the velocity scale, necessary to show the weak
dispersion at the higher 3He concentrations.

mK and at allX, .
The values of uz(0) calculated from the data at

T & T~ and at T & T~ agree to within 2 cm/sec for
X, &0.2, and to within 0.6 cm/sec for the higher
concentrations. The values for u~(0) are given in
Table II. This table also contains u (2.3 kHz)
—u~(0), where u (2.3 kHz) is the minimum veloc-
ity measured at v/2n =2.3 kHz; this difference
decreases strongly with 'He concentration. In
addition, we give in Table II the values for the
difference between the minimum thermodynamic
velocity in an h =0.5-cm-high sample and the
thermodynamic velocity in a sample of zero height
at T~, u (0) —u~(0). u (0) is obtained from the
mentioned fit of Eq. (1) to our data using""
pgh(sT/aP)~ =0.6, 0.6, 0.8, 1, and 2 gK for
X3=0, 0.07, 0.194, 0.377, and 0.517, respective
ly, for the calculation of the influence of gravity
on u(0) close to T~." The values for the thermo-
dynamic velocity very near to Tz depend on the
detailed behavior of C~. We attribute the differ-
ence between the value for u (0) —u~(0) at X, =0
obtained here, and the value of Ref. 17 to the dif-
ferent equations used for the t dependence of C~."
For the thermodynamic velocity at Tz we find the
following concentr ation dependenc e:

uq (0) = 21 736 —3182X, + 173X',

to within nu/u =10 '.
From the values for the coefficient a of Eq. (1),

which is related to thermodynamic quantities, we
calculated (aS/aP}~, using published data for V~,~
and our data for T~ and u~(0) (see Tables I and II).
The values obtained from data at T & T& and at
T& Tz are shown as a function of X, in Fig. 5. The
two values at each X, generally agree within their
errors, and they agree well with earlier published
values. """The systematic difference (&S/SP)~
& (aS/ap)~ is attributed to the uncertainties in the
coefficients A, a, and B of the specific heat, "and
to the fact that the asymptotic values for (aS/BP)q
are determined from a fit of data measured at
finite t. The values for (sS/aP}~ increase with
'He concentration by less than a factor of 2 in our
concentration range.

With the relation'

(10)

where all quantities are per unit mass, we calcu-
lated (aV/aP)„ for the mixtures. We used V~ of
Ref. 48, C~ from Ref. 26, and our data for uz and
(aS/aP)~. For (a T/BP}, we used the values for
X3 ~ 0.1 5 of Refs . 46 and 4 7, and extr apol ated them
for higher concentrations to the above given values.
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TABLE II. Thermodynamic velocity and related parameters.

0.070 O. i94 0.5i7

u&(0) (cm/sec) a

u;„(0)—u), (0) (cm/sec) " 39.7 2i.2 0.4 O. i

2i 734.0 2i 5i7.7 2i i26.0 20 559.2 20 i38.9

u„.;„(2.3 kHz) —u &(0) (cm/sec) ' 52.6

u (600 kHz, Ty) —u y(0) (cm/sec)

29.i i0.8 i.3

8.4

0.5 '

BP & mole K

8P & mole dyne

-0.92i

-4.23

-0.890

-4.9i -6.06

-0.6i 5

-7.i3

'Normalized at u(0) =2i 800.0 cm/sec for He at T —T&= —40 ~.
u;„(0) is the minimuxn thermodynamic velocity for a 0.5-cm-high sample obtained from

a fit of Eq. (i) to our data at 9 and 20 kHz for 20 pK jT& —T ( i mK.
'u ~;„(2.3 kHz) is the minimum velocity measured at 2.3 kHz.

u mjil (i0 7 kHz) u
)4 (0)

u(600 kHz, T&) is a measured velocity, which is not noticeably influenced by gravity (Ref.
i 5).

Since the second term of Eq. (10) contributes less
than 1% to (a V/sP)~, this extrapolation is a suffi-
cient approximation. The values obtained for
(SV/SP)~ are given in Table II.

C. Dispersion of sound

At finite ~ the dip in u near Tz becomes less
distinct due to dispersion of sound. '0 Figure 4
demonstrates the drastic decrease of the dispersion
with increasing He concentration. In addition, the
dispersion extends to larger t for increasing

X,. At X, =0.517 and u/2n -200 kHE, the disper-
sion more than compensates the C~' dip of the
thermodynamic velocity, so that no minimum in

u(&u) can be resolved. One may also see how the
minimum in u, which for ~ =0 occurs at T~~™,"
moves away from Tz with increasing cu.

From the velocity data we determined u(&u/2v)
—u(2. 3 kHz), as well as the sound dispersion
D =u(u) —u(0). As examples"' we show in Fig. 6
these two differences for X, =0.377 at all investi-
gated frequencies (cf. to X, =0.194 in Ref. 16), and

0
~ ~ ~ I ~ I ~ I
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I ~

-0.2

tuo-0
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fL -0.8
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I
-'1 0

i i i

W 0.2 0.3 O.f

)vtOLAR CONCENTRAT)ON OF 3He

0.5

FIG. 5. {BS/BP}~vs molar He concentration. The
shown values are from fits of Eq. (1) to data measured
at T &T),), and at T &T ), (Q). The corresponding
squares are from Ref. 13, the cross is from Ref. 12,
and the triangle is from Ref. 17. The error bars on the
present data are shown only if greater than the data
points. They correspond to an uncertainty of 0.3 cm/sec
for the sound velocity, and the resulting deviation for
the fitted parameter "a" in Eq. (1). Errors resulting
from the unknown uncertainties in the used parameters
for the specific heat (Ref. 26) are not included.
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FIG. 6. Measured velocity difference u(~/2')
-u(2.3 kHz) for X3=0.377 as a function of ~T T~~~. The-
data are for ~/2' =598.3, 205.4, 102.7, 41.1, 21.8,
10.9, and 4.4 kHz, in decreasing order. The dispersion
u(2.3 kHz) -u(0), which has to be added to each of the
shown curves to obtain the dispersion u(w) -u(0}, is the
dashed peak on top of the highest-frequency curve. u{0)
is the thermodynamic velocity of sound in a 0.5-cm-high
sample. Note the changes in temperature scale at
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in Fig. 7 we show D for &u/2m =600 kHz at all in-
vestigated mixtures. Qualitatively the results at
each frequency and mixture show the same be-
havior as a function of temperature. The mea-
sured dispersion is asymmetric around T& with a
peak on the low-temperature side. It is appre-
ciably smaller at T & T ~ than at T & T~. The dis-
persion u(&u) —u(0} in the mixtures becomes clearly
smaller than in pure 4He at the same frequency;
in Table II we give the value for u(600 kHz, T~)
—u~(0). Another influence of increasing X, is the
slower decrease of the dispersion with increasing
t =~T —T~~/T~. The maximum of the dispersion
occurs slightly below T'), because we have a sample
of finite height, and refer all temperatures to the
temperature T'), when the transition occurs at the
top of our sample. Figure 6 demonstrates that
even at &u/2v =2.3 kHz there is appreciable dis-
persion at

~ T~ —T~ & 5 y. K. The dispersion
u(2. 3 kHz) —u(0) (the dashed dip in Fig. 6) is
strongly influenced by the detailed behavior of u(0),
and therefore of C~. Because of this strong depen-
dence on C~, whose investigation is not an object
of this paper, we decided to analyze the dispersion
in a region only where u(2. 3 kHz) —u(0} =0; we
choose ~T —T~I &5 gK for the analysis. The fre-
quency of 2.3 kHz is so low, and the height of our
samples is so small that u(&u/2x) —u(2. 3 kHz) rep-
resents the dispersion u(&u) —u(0) for a sample of
zero height except for -5 p, K& I' —T~&1 p. K which
we exclude from the analysis.

D. Attenuation of sound

Examples" for the temperature dependence of
the attenuation n for X, =0.194 at various fre-

0.08 I ~ I II I I I lI I I I I I I 1
1

1 I I ~ J
I ~ I I

E
O
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C

Z5

0.04
o
I—

Z:
0.02

0
10 10 10 10-6 10-6 10

I T TA I [Kj

FIG. 8. Attenuation n for X3 ——0.194 and at the indi-
cated sound frequencies as a function of IT —T),~. A

temperature independent background has been subtracted
from the measured data in order to study the attenuation
associated with the A. transition only.

10-4 1O-3

quencies, and at ~/2v = 600 kHz for all investigated
mixtures are shown in Figs. 8 and 9, respectively.
The shape of cy as a function of temperature is
qualitatively the same at all ~ and X,. The attenua-
tion e, too, is asymmetric about 1"~ with a peak
in the superfluid phase. It is a smooth, nonsingular
function of t. Its strength is strongly reduced with
increasing 'He concentration, as expected from the
behavior of the dispersion. At the same time the
maximum of n moves away from 1), with increas-
ing u or X„and the attenuation seems to extend
over a broader I' range with increasing X,. The
concentration dependence of the maximum of the
attenuation, and of the attenuation near T ~ are
shown in Fig. 10. They both decrease by roughly
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FIG. 7. Dispersion u(600 kHz) -u(0) for He —4He mix-
tures with the indicated molar He concentrations as a
function of ~T —T~&~ /T~& at a frequency of about 600 kHz.
The exact frequencies used in the individual runs are
given in Ref. 15. Note the changes in temperature scale
at I T —T z~ /T ), ——10 '.
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FIG. 9. Attenuation + for mixtures with the indicated
molar He concentrations as a function of )T —T),I, /T'
at a frequency of about 600 kHz. The exact frequencies
are given in Ref. 15. A temperature-independent back-
ground has been subtracted from the measured data in
order to study the attenuation associated with the A,

transition only. The dashed line is the result of Williams
and Rudnick for X3 ——0 and a/27r =600 kHz (Ref. 9).
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seems to be essentially concentration independent.
A detailed comparison of our dispersion data to

former results"' does not seem to be appro-
priate because those results are appreciably in-
fluenced by gravity (which can be very severe for
dispersion measurements if the sample height is
not small enough), and insufficient temperature
homogeneity at T + T„.

V. ANALYSIS AND INTERPRETATION OF DATA FOR
DISPERSION AND ATTENUATION OF SOUND

A. Separation into relaxation and fluctuation contributions

g. Basis for separation (Ref. 51)
FIG. 10. Values of the maximum of the total attenua-

tion P), of the attenuation near T),P), and of the max-
imum of the relaxation attenuation (L) at ~/27} = 600 kHz
(Ref. 15) as a function of 3He concentration. The full
lines are a guide for the eye only. The open symbols
are the corresponding results of Ref. 9 for 4He and 600
kH z.

one order of magnitude if X, is increased from 0 to
0.517. Because the temperature dependence of
the attenuation near T~ is very weak (see Figs. 8
and 9}, we used data for IT —T~~ &1 gK for the
analysis of the attenuation.

E. Comparison to other author's results

The value of a observed by Barmatz and Rud-
nick' for 4He at 22 kHz is roughly a factor of 2
larger than our data. We disagree with their ob-
servation that n' & n . The t dependence and the
absolute magnitude of our data for 4He are in very
good agreement with the results of Ref. 9 for X,
=0 at 600 kHz. This is demonstrated in Fig. 9
where it can be seen that the two sets of data agree
to within 10% for T&T~, and to within (15-20}%
for T & Tz. Because two quite different methods
have been applied to measure n in Ref. 9 and in
this work, we consider the agreement in absolute
magnitude to within the given limits as very satis-
fying. The frequency dependence of the maximum
of the attenuation of our data, taken at &u/2w & 600
kHz, scales very well with the results of Williams
and Rudnick at 600 kHz & &u/2v &3.17 MHz (see
below).

Our observation of a decrease of the dip in. u
and of the peak in n with increasing X, is in agree-
ment with the qualitative observation of these phe-
nomena by Roberts and Sydoriak at ~/2n'=5 MHz. "
Dyumin eI; a/. ' have measured n at 9.56 MHz and
for t&2x10 ' in mixtures with X, =O, 0.063,
0.110, 0.197, and 0.314. Their data have less
resolution in a and t. For 5~10 '«t«2&10 '
they find an attenuation of roughly 0.3 cm ', which

There is experimental9" and theoretical"'~
evidence that for our frequency range attenuation
and dispersion of sound near T~ are arising from
order-para. meter relaxation below I'& and order-
parameter fluctuations on both sides of T~; the
processes are assumed to be additive. " These
ideas are the basis of the following discussion.
We have then

(t) =«(t) (12)

with a factor & of order unity. This gives

and correspondingly for dispersion. We use:
n. '=n(T&T~); n =n(T&T~); n~: absorption due
to fluctuations only; n~: absorption due to relaxa-
tion only; a: total measured absorption (minus
temperature-independent background attenuation).
The relaxation contribution is described by Eqs.
(2)-(6). The fluctuation contribution, on the other
hand, is known neither for 4He nor for the mix-
tures in a functional form to which data could be
compared in detail. 23'~ But it is expected that the
fluctuation contributions above and below T~ are
about equa1. ,23 as supported by experimental re-
sults. "' According to scaling, ' n~ and n~ should
have the same t dependence. And, according to
the universality concept, the ratio a~/nr' of the
fluctuation contributions above and below Tz on an
appropriate temperature scale is expected to be
independent of "the inert variable" concentra-
tion. "4 These predictions are inherent in the
scaling form Eq. (7). In this analysis we used the
following two approaches to take the fluctuation
contribution to e and D into account, and to sepa-
rate out the relaxation part:

(i) The functional dependences of n~ (and Dr)
on temPe&ature are the same above and below T„,
but they may have different amplitudes in the
superfluid and normal-fluid phases, respectively,
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A shortcoming of this approach is the fact that
factors re 1 introduce discontinuities in n (or D)
at T~ (in contradiction to our experimental results}.

(ii) A characteristic time or a correlation length

might be the more appropriate scale than tem-
perature for critical phenomena. In a second ap-
proach, therefore, we assume that the functional
dePendence of nr (and Dr) on the characteristic
t&~e T is the same above and below the transition,

20

15-
He, 591 kHz

~Is'

nr(7 ) =nr'(~") at 7

According to scaling

(14)
0

100

I

80

I

60

T),
— T []jKj

I

40

I

20

T =TOI; "; T' =Tot (15)

with x =x' =x, but possibly To 0 To. Hence, we

assume

and get

(16)

n„(t) =n (t) —nr(t) =n (t) —n'(qt). (17)

The factor q =(7, /~;)'~' should be of order unity. "'"
The relaxation contribution ns (and Ds, respec-

tively) was obtained by subtracting the data mea-
sured above T), from those measured below T~,
according to Eqs. (13) or (17). The obtained ns
(and Ds) were fit to Eq. (6) with the values for
3v' —2 from Table I and parameters for C~ from
Ref. 26. In these nonlinear least-squares fits we

first used As, 7'', x', and q (or r) as fit param-
eters. We obtained optimum values for the expo-
nent x', which were scattering around x' = v'+ ~,
with v' and w determined in independent measure-
ments of $' and u, (see Table I)."'" This scatter
induces a very broad scattering of To, because of
the strong correlation between x' and To We then
fixed x' to the value v'+ w [see Eq. (2)]. With

these fixed values for x', absorption data for
~T —T~~ -1 pK, and dispersion data for ~T —T'~~

~ 5 p, K were fit independently for each mixture and

each frequency. For ease of computation, r (or q}
was fixed, and A~ and To fit as usual. Then r
(or q) was changed by a step, the whole procedure
repeated, and after sufficient steps, finally, the
absolute minimum of the sum of squares of devia-
tions determined the optimum values for r (or q},
A~, and T'.

FIG. 11. Relaxation part DR of the dispersion as a
function of T ~ -T for 4He and ~/27( = 591 kHz. The few
data points represent a continuous measurement and are
the difference between the dispersion measured below and
above T')„at ~T -T),

~

—5 pK. The full line is a fit of
Eq. (6) with x' =1.062, and Az and To as free parameters
to the shown data.
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influence on the fit parameters. " Qften the best
fit actually was obtained for r=q=1, or very close
to this value. We conclude that our data for the
attenuation and dispersion for the investigated mix-
tures and frequencies do indicate that the fluctua-
tion contribution to n and D is very similar in the
superfluid and normalfluid phase if Eqs. (2)-(6}
and Eqs. (13) or (17) are correct. In the following,
we discuss the results for r = q = 1, which are rep-
resentative for all fits with r and q varied within
the mentioned ranges.

Examples for the fits of n~ and D~ are shown in
Figs. 11 and 12 for 'He at 591 kHz. " The attenua-
tion ns is a nearly symmetric function of log»(t),
as expected from Eq. (2) (see also Fig. 15). The
agreement between the fitted curves and data for

2. Results of this analysis

The attenuation and dispersion remaining after
the subtraction procedure [Eqs. (13) and (17)] could
be fit rather well to Eq. (6). Varying the ampli-
tude factor z between 0.8 and 1.2, or the factor
q for the temperature scale between 0 and 2.5,
and looking for the best fit resulted in a broad,
insignificant scatter of y and q around the value
1, without systematic deviations or appreciable

10 3 10-4

T~~-T [K]

1P-5

FIG. 12. Relaxation part uz of the attenuation as a
function of T'& -T for 4He and ~/27t = 591 kHz. The few
data points represent a continuous measurement and are
the difference & —&+ of the attenuation measured below
and above T'&. The full line is the fit of Eq. (6) with x'
=1.062, and A~ and To as free parameters to the shown
data.
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a~ and D~ is within the precision of our data. But,
we observe a small systematic deviation because
the data for n~, e.g. , show a slightly larger half-
width than the fitted curves, if plotted on a log-
arithmic temperature scale (cf. Fig. 12). It is
not possible to overcome this problem with dif-
fexently chosen parameters. We reanalyzed the
data of Ref. 9 with the correct Eqs. (2) to (6),
and observed exactly the same effect."

In Fig. 10 we show the decrease of the maximum
relaxation attenuation n~ with increasing 'He
concentration, as well as the maximum total at-
tenuation, and the maximum fluctuation attenua-
tion a(T= T„). These results demonstrate the
similar behavior of the strength of the relaxation
and the fluctuation attenuation, which agree to
within a factor of about 2, at least for X3 &0.4.
The dispersion, u(600 kHz, T&„) -~, (0), shows a
somewhat stronger decrease with increasing con-
centration X,. The consistency between our dis-
persion and absorption data is confirmed by the
agreement of the parameters A~ and v",, obtained
from independent fits of n~ and D~. The results
for Az and 7'0, as a function of X3, are shown in
Figs. 13 and 14, and in Table III." The amplitude
A„decreases by almost three orders of magni-
tude when X, is increased from 0 to 0.517. The
Iog,g„seems to decrease linearly with X,. The
corresponding decrease of 4g with concentration

is strongly reduced by the factor I'"' 'C&' [see Eq.
(4)]. In addition, we show in Fig. 13 the values for
As calculated from Eq. (6). For this calculation
we used T„and g from Table I, our values for u„
and (sS/8P), from Table II, $,' = r,'u2O with v,' from
our data (Table III), V„ from Ref. 48, and u20 and

p, from Ref. 26. There is no adjustable param-
eter, and the two curves in Fig. 13 are not nor-
malized at X,=0. The very good agreement in
absolute magnitude and in concentration dependence
is a strong support for our analysis. The fit-
ted values of A~ depend on the exponent 3v' —2
and on the specific heat C~ [Eq. (6)]; the deviation
from the measured values for the higher X, may
result from uncertainties in 3v' —2 or in C~ for
these concentrations. "'"""'"

The amplitude v'0' of the relaxation time increases
by more than one order of magnitude in the in-
vestigated concentration range (see Fig. 14). The
increase of logg070 again, occurs approximately
linear with X, for X, &0.4. Our value v,'=(2.01
+0.3) x 10 "sec at X,=O corresponds to $0= v,'/
u»= (0.93+ 0.14) A, which is in quite good agree-
ment with experimental results of others. '"'"
In addition, we have plotted in Fig. 14 the value
7'0 = 1.45 x 10 "sec, which we obtained from a fit
of William's and Rudnick's data for 'He at &u/2v
= 600 kHz to 3.1V MHz. '" We also show Yo from a
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FIG. 13. Amplitude Az of 4u=u(~) -u(0) fsee Eq. (4)j
as a function of 3IIe concentration. The points are the
mean values determined from a fit of Eq. (6) to the re-
laxation part of the attenuation and dispersion at various
frequencies (Ref. 54). The data obtained from +z and

Dz agree within their errors. Note the drastic decrease
of Az with X3. The dashed straight line through the
data is a guide for the eye only. The value of Ref. 9 for
X3 =0 coincides with our result, if their data are rean-
alysed with Eq. (6} (Ref. 53). The full line is calculated
with no adjusted parameter from Eq. (5) (Ref. 25); the
curves are not normalized at X3=0.
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I
FIG. 14. Amplitude ~'0 of the relaxation time ~' = Yot "

as a function of 3He concentration. The full dots p) are
the mean values from fits of Eq. (6) with x' from Table I
to the relaxation part of the attenuation and dispersion
at various frequencies (Ref. 54). The data obtained from
az and DR agree within their errors. The triangles (A)
are the values for To ogtained from the scaling analysis
of n and D at T &T & described in Sec. V 9; they are
normalized to 70

——2.01x10 ~~ sec for X& =0. At the same
value the data (Q) are normalized for 7'o =('0/u 2 0 obtained
from measurements of correlation length $', and velocity
u2 of second sound as reported in Ref. 31. If the data of
Ref. 9 are analysed as described in the text, they give
the full square (~) for X3 =0 (Ref. 53). The straight
line is a guide for the eye only.
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TABLE HI. Results from analysis of dispersion and attenuation (Ref. 54).

X3

10 '5A& (cm /K sec )

f012 zo (sec) a

10 ro (sec)"

g (A)'

0.070 0.194 0.377 0.517

2.01 ~0.3

(2.01)

2.56 + 0.7

2.79 ~ 0.2

5.68 + 1.2 14.1 + 2.9 39 + 20

4.02 +0.5 10.1 +1.0 29 +3

0.93 1.21 2.49 4 ~ 57 8.8

925 +75 445 +52 102 +21 11.1 +3.1 2.33+0.53

From analysis of the relaxation contribution (Sec. V A).
From scaling analysis with x=x'= v'+ w, and normalized to 70(0) =2.01 x 10 sec (Sec.

V D).
'From Q= u20 ~0, with u20 from Ref. 26.

scaling analysis of our data at T & T„, to be dis-
cussed below (see Table III), and values which we
obtain from vo = go/u, „using published values for
the healing length and the velocity of second sound
of the mixtures. "'" The obtained agreement gives
us confidence in the discussed analysis. Our re-
sults disagree with 7' = 0.65 ~ 10 "t ""' sec re-
ported recently in Ref. 35 for X, = 0.36 and &u/2v

=36 MHz.

3. Temperature dependence ofposilion of maximum of
relaxation attenuation

The maximum o.~ of the relaxation attenua-
tion at constant co moves away from T~ with in-
creasing X„since the amplitude 70 of the relaxa-
tion time increases with X,. This is shown in Fig.
15 for u&/2m=600 kHz.

We only have co7' = 1 at n„ if the temperature
dependence of &u is neglected. With Eq. (6) we
find for the maximum n„of the relaxation at-
tenuation

x' —(3v' —2) —2a 'q (t)

with

and parameters from the specific heat C~ = (A'/
a')(t -1)+8' The v.alue of &ur' at as changes
by less than 3% per decade of t in our temperature
range, and is essentially determined by the ex-
ponents x', v', and n'. Its values, calculated at
t=10 ', are given in Table I.

Neglecting the weak t dependence of ~~' at n„
(i.e. , ~v'= const ata~ ), andplotting t„(the
reduced temperature difference at a~ ) versus fre-
quency, we candetermine the critical exponent x' of
r' [see Eq. (2)], Which is the slope in a log-log plot.
An example of such a plot is shown for X, = 0.194
in Fig. 16. A least-squares fit of 7' =&at yields
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0.02 3 610
I I I I
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FIG. 15. Relaxation part uz = n —n+ of the attenua-
tion, obtained by subtracting the attenuation measured
above Tz from the attenuation measured below T~, as
a function of (T'& -T)/T'& for the indicated mixtures at
~/2n = 600 kHz (Ref. 15).

4) /2' [ kHz j

FIG. 16. Temperature difference (TP -T)z ~ where
the maximum of the relaxation attenuation occurs as a
function of sound frequency for X& =0.194. Tz is the
temperature when the & transition reaches the middle
of our 0.5-crn-high sample. The straight line corre-
sponds to (dt =const. The slope represents the
exponent and depends strongly on the value of Tz due to
the small values of (T -T)R at low frequencies.
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x' values for the investigated mixtures which are
0.1-0.2 higher than the values x'= v'+ sv. Taking
the weak t dependence of ~v' at n~ into ac-
count changes x' by less than 1/0. Because of the
rather small values of tz at the low-frequency
end of our range, changes of only a few 10 ' K
in T„significantly influence the results for x .
For this analysis we used T„, the temperature
of the A. transition at the middle of our 0.5-cm-
high sample. Changing these values for T~ by
0.5 pK gives values for x' from this analysis
which agree with x'= v'+zv. Such a shift in

T„ is within our uncertainty in determining the
transition temperature; we therefore do not con-
sider the above mentioned discrepancy for the
values of x' to be significant, and still consider x'
= v'+u to be valid.

The maximum of the relaxation attenuation can
occur significantly further away from T~ than the
maximum of the total attenuation; this fact has
sometimes been neglected. '"

Q=Q (d0 (18)

we find the exponents y given in Fig. 17."The first
remarkable result is the fact that for each of these
three attenuation values the exponent y is the same
(within our errors), except at X, = 0.517. Next we
notice that y is about constant at 0.10 for X,&0.2
and increases to about 0.4 for X,= 0.517 (except
for the exponent of as ). An exponent y larger
than 0 is in agreement with the result y = 0.15 of
Ref. 9 at 16 kHz» &u/2w» 3.17 MHz for 'He, and

y =0.17+0.1 for X,=0.36 and 1 MHz» ~/2v
—36 MHz given in Ref. 35. For higher frequen-
cies, 0.6 MHz» ~/2m» 1 6Hz, values for the ex-
ponent y of the attenuation at T„of about 0.3 have
been reported for 'He. "'"'"

The calculated amplitudes a, depend very strong-
ly on the exponents y. %e therefore hesitate to
give absolute values, and remark only that n,
decreases roughly from about 5 & 10 ' cm ' to
about 1 x 10 "cm ' for X,= 0 to Xs = 0.517, within
an uncertainty of about a factor of 2, and for our
exponents y. For a better comparison of ampli-
tudes use Fig. 10.

From the proportionality

(19)

8. Frequency dependences of 0. and D

Besides the temperature and concentration de-
pendence, the frequency dependence of the attenua-
tion and dispersion near T~ is of particular impor-
tance. U we write for the maximum total attenua-
tion, the maximum of its relaxation part, or the
attenuation near T, (maximum fluctuation part),

0.2 "-
0-

I—
Z'.
UJ 00
C)
Q
OC
U3

-0.2

0.1 0.2 0.3 0.4
MOLAR CONCENTRAT ION OF 3He

I

0.5

FIG. 17. Exponents of the frequency dependence of
n = n~ + for the maximum of the total attenuation (~),
for the maximum of the relaxation attenuation (4), and

for the attenuation near T'&), respectively. The open
circles (0) are the frequency exponents of the maximum
dispersion u(~) -u&(0) -&~. The investigated frequency
range is 2.3 kHz~~/2' ~627 kHz. The value of Ref. 9
for e at X3=0 and 0.6 MHz~~/27t. ~3.17 MHz is y=0.15,
in good agreement with our results. The line at y =0.10
is a guide for the eye only.

we find the frequency exponents y of the maximum
dispersion which are also given in Fig. 17. The
obtained values are in very good agreement with

the corresponding values for the attenuation. But
since y is small, we cannot distinguish between
Eq. (19) and u((o) —u„(0) -log„((u~), which is equal-
ly compatible with our data. The frequency de-
pendences of the attenuation and dispersion de-
scribed by the results given in Fig. 17 are in
agreement with the prediction of Eq. (8) that a„-~"' " for constant (d7', and s&0.

D. Scaling of dispersion and attenuation

Our attenuation and dispersion data at all & and

X, behave qualitatively similar. Hence, one may
expect that by using an appropriate scaling variable
the results for all ~ and X, may collapse onto a
single curve, and one may be able to determine
the form of the scaling function. Therefore, a
more general analysis of our data based on scaling
assumptions was performed by fitting them to

C. Hydrodynamic regime

To check the compatibility of our data with the
prediction of Eqs. (9) for the hydrodynamic re-
gime, we plotted a/&u' and D/ &u' vs I T'—T~ I. We
find that our data fall onto one common curve, and
allow Eqs. (9) only for &u7 &0.1 on both sides of T~
Unfortunately, in this range n and D become
rather small, and conclusions are subject to con-
siderable uncertainties.
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scaling equations like Eq. (8) with the variable &ur

Recently, this approach has been applied also by
Golding" to sound attenuation at the ferromagnetic
transition of MnP, and by Ref. 35 in a preliminary
analysis of sound attenuation near the X transition
of 'He and of a 'He-'He mixture (X, = 0.36) for fre-
quencies from 1 to 15 MHz.

10 ~
~ sg tPa ~

~ Q ~

f

0.5—
d

~ ~

il'1
g

~

1Pl

7 &7~

J. AflPHQQll07l Nf TP T~

Data below and above T~ are treated separately,
and the exponent and amplitude of the characteris-
tic time 7 =&Ot " are determined independently.

All data are normalized to their values near T~,
which means at large &7'. This normalization re-
moves the frequency factor ' ' from o. , leaving
n~ - fz(er) only; a normalization at +r =1 gives
the same results. ' The data for each mixture
have been plotted as a function of cot " for various
x in the range 0.9 ~ x & 1.4. These plots show that
the best agreement of the data measured at various
~ is obtained for x =1.10+0.05 for all investigated
mixtures. Actually, within the given resolution
me cannot distinguish whether the best matching of
the data to one curve for each mixture is obtained
for x=1.10 or x=x'=v'+go, where v' andre are the
critical exponents of the correlation length at T
&T„, and of the velocity of second sound (see Table
I). We use x=—x' in the following.

We agree with the result x=1.1 reported in Ref.
35 for X, =0, but we disagree mith their result
x = 1.3 for X, = 0.36 and 1 MHz «u/2v & 15 MHz.

The next step is a plot of the data for all u and

all X3 vs u70t " mith values of 7'0 so that the data
for all mixtures, too, collapse onto one curve.
The result is shown in Fig. 18. Within deviations
of at most s 5/o the data points for all &u and X„
for the investigated ranges, collapse onto a single
curve. The deviation of the data points is random
without correlation to &, u7', or X,. The values of
7'0, giving the best matching of the individual
curves, measured at different & and X„are given
in Table III [normalized to r, (X, =0) =2.01 x10 '
sec]. These values for ro are plotted in Fig. 14,
too. Within their errors, the amplitude To of the
eharaeteristie time & =7ot " determined from the
scaling analysis at T & Tz agrees with the values
~0 determined in Sec. VA from the fit of the re-
laxation part of the attenuation and dispersion at
T & T~. We can conclude that the critical attenua-
tion a~ of first sound at T & T& in 'He- He mix-
tures with X, &0.517 and for 9 kHz «u/2w & 627
kHz can be scaled by Eq. (8) over at least four
decades in ~~. The attenuation normalized near
Tz or at ~T =1 is a function of ~7 'nly, thus in-
cluding the dependence on t, u, and X3. The con-
centration dependence of the amplitude of the char-

0

100

I I s a I I ~ I ~

10 1 0,1

~ ~ ese

FIG. 18. Scaling plot of the critical attenuation a for
T &T & at 9 kHz ~ ~/2' ~ 627 kHz and for all investigated
mixtures versus the scaling variable ~T. For ~= 7 pt

the values for the amplitude and exponent as given in
Tables I (x=x') and III are used, which also describe
the relaxation attenuation at T &T&. The data are nor-
malized near Tz. The inset shows as a full line the
function fz =~7/(c+ ~T) with c =0.506, The dashed lines
mark the range which includes 95% of our data points.

acteristic time ~ as mell as its critical exponent
which me find for the scaled critical attenuation at
T &T& agree to within the given errors with the
amplitude and critical exponent of the relaxation
time v ' = $ '/u, at T & T~. Or in other words, the
relaxation time &' which characterizes nR and D„
in He II is the same which scales the critical at-
tenuation in He I, possibly to within a factor which
is independent of t, ~, and X,. This seems to be
one of the most remarkable results of this re-
search. This agreement also supports our belief
in the validity of the subtraction procedure de-
scribed in Sec. VA, at least for our frequency
range.

Because of the smooth behavior of the attenuation
data as a function of ~w, for all ~ and X„ it is
possible to determine the scaling function fz(~7').
We find that the function

f~(~r) = ~r/(c+ ~~), (20)

with c = (0.506+0.005) (7o/roI) fits the datavery,
well, as shown in Fig. 18. The factor To/ro is nec-
essary, because me obtain only the concentration
dependence of 70 and not its absolute value from
the scaling procedure. The given error for c is
one standard deviation; this error in e corresponds
to a deviation of the data points in Fig. 18 of about
4%%uo of o. (T~). The same function fits the sound at-
tenuation at the ferromagnetic transition of MnP
with e =2.2„"and Ahlers" has shown that fz is in
agreement with sound attenuation data at 1 GHz
for 'He.""

Equation (20) together with Eq. (8) has an asymp-
totic behavior for ~v «1 which is in disagreement
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2. Dispersion at T& T„

The dispersion at constant X, and t is only very
weakly dependent on frequency in the critical re-
gion [see Eq. (19) and Fig. 1V]. We have there-
fore plotted D vs +T for 20 kHz & u/2w & 600 kHz,
X, &0.3VV," and at jT„' —T~ & 5/K. For this plot
we used the characteristic time & determined from
the scaling analysis of the attenuation. All data
for the four mixtures can be matched if multiplied
by Do(X, ) =1, 1.36, 2.0, and 6.2 for X~=0, O.OV0,

0.194, and 0.377, respectively. These factors are
nearly proportional to &O'. The result, shown in
Fig. 19, indicates that D does not approach an
asymptotic value in the investigated ~~ range but
rather increases like log»(&u &) for 0.4 & ~v & 20.
Multiplying the data in accordance with the analysis
of the attenuation by a factor ~ "doesnotimprove
the matching of the individual data points.

In an attempt to determine a scaling function for
D of similar simplicity as the one found for n, we
find that

D=D, (~7)'/(d+~7')' ',
with

D, = [21.6/D, (X,)] (~,'/T, )" cm/sec,

d = 0.665(~,/~, ),

(22)

and D, (X,) as mentioned above and y f»m Fig. 1V

represents our data for 0.1 ~~7' &20 and gs
~0.3VV, as shown in Fig. 19. Equation (22) has
the predicted frequency dependences at large and
small ~7. This analysis indicates that the disper-
sion, too, can be scaled with &7 in the investigated
ranges, using the characteristic time Y determined
from the behavior of the attenuation.

with the behavior predicted for the hydrodynamic
regime [see Eq. (9)), because y w0. To remove
this inconsistency we fit our data to

f~(~7') =(~7')' '/[c+(~&)' ') . (21)

For X3&0.2, where y =0.1 (see Fig. 1V), our data
allow f~ and fz equally well. Because of the re-
quired hydrodynamic behavior at &«& I, we pre-
fer f~, of course F.or the constant in Eq. (21) we
find c=(0.55+0.01)(ro/T,')' " for X, &0.2. For the
two highest investigated concentrations where y
&0.1, our data are better represented by fz than

by fz. Possibly, the correct scaling function be-
comes more complicated at these concentrations.

Figure 18 demonstrates that the scaling function
for the attenuation reaches its asymptotic value
within the investigated cot range. Therefore, the
exponent of &7' in the numerator and denominator
of the scaling function has to be identical, exclud-
ing functions like fP=(e&)' "/(c" +to&).
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FIG. 19. Scaling plot of the critical dispersion D for
T &T), at 20 kHz~v/2' ~627 kHz, ITs&-TI~5 p, K, and
for 0 ~X3~ 0.377 versus the scaling variable (dv. . For
the characteristic time 7 the values deduced from scal-
ing of the attenuation are used. The data for X3 =0,
0.07, 0.194, and 0.377 are multiplied by Do(X3) =1,
1.36, 2.0, and 6.2, respectively. No normalization for
the various frequencies is applied. The line is given by
Eq. (22) with y =0.1 (see text). For comparison we
show the function 27 f(d7/(0. 91+ ~T)f2 as a dashed line.

We have no theoretical proof for the above seal-
ing functions and propose them as a representation
of our data scaled with w&. The scaling of the at-
tenuation data by Eqs. (20) and (21) is very satis-
factory. Scaling the dispersion by Eq. (22) might
be questionable for ~7 &20, because for large ~T
this function diverges.

3. Attenuation and dispersion at T&T„

In the analysis we have obtained the following re-
sults, which apply for the investigated frequency
and concentration ranges:

(i) The critical attenuation (and correspondingly
the dispersion) at T & T~ follows Eq. (8) with the
scaling function fz(~r) or f~(&u7')

(ii) The attenuation and dispersion at T & T~ can
be written as a sum of a contribution from an
order-parameter relaxation process and a contri-
bution from order-parameter fluctuations. The
order-parameter relaxation behaves according to
Eqs. (6) if—as our data indicate —the fluctuations
contribute about equally at T & T~ and at T& T~.
The total attenuation at T & T& can therefore be
written as a sum of Eq. (6) for the relaxation part,
and of Eq. (8) with Eq. (20) or Eq. (21) for the
fluctuation part. Both processes can be written in
a reduced form as functions of wf with the same
characteristic time. But the two scaling functions
behave differently; fe decreases for &u7' &1, where-
as f~ approaches an asymptotic value at large ~7.
In addition, the concentration dependence of the
strength of the maximum of these two contributions
is slightly different, as shown in Fig. 10.
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VI. SUMMARY AND CONCLUSIONS

Low-frequency (m/2v s 600 kHz) measurements
of the velocity, of the dispersion, and of the at-
tenuation of first sound have been performed in
five 'He-'He mixtures (K, & 0.517) near their z
transitions. From the data at ~/2v &20 kHz, the
thermodynamic velocity of sound u(0), as well as
the related parameters (8$/BP)„and (8 V/BP)~
have been determined.

It is shown that for the investigated frequency
range attenuation and dispersion near T„arise
from a relaxation process at T & T~ and from criti-
cal fluctuations at T $ Tz. The contribution from
critical fluctuations seems to be of equal magni-
tude in the two phases of the mixtures. Both the
relaxation and the fluctuation contribution are
strongly weakened when the concentration of 'He
is increased. The magnitude, temperature, fre-
quency, and concentration dependences of the at-
tenuation and dispersion due to the relaxation pro-
cess are in agreement with theoretical
predictions by Hohenberg ' and Sanikidze. " The
obtained relaxation times agree with T'= $'/u„
using the characteristic length (', and the velocity
of second sound determined in independent experi-
ments ' '

The attenuation and dispersion due to fluctuations
at T & T~, for which we do not know a closed-
form theoretical prediction, can be scaled with
((pi for all investigated & and X„even though they
strongly depend on & and ~,. Scaling functions of
u~ which represent the measured attenuation and
dispersion are determined. They agree with the
expected behavior at small and large &7.

Below Tz, attenuation and dispersion are the
sum of the critical contribution represented by the
scaling function and the contribution from order-
parameter relaxation. The time ~ characterizing
the dynamical behavior of the order parameter and
determined from the scaling analysis at T & T„
shows the same concentration and temperature de-

pendence as the relaxation time T' at T & Tz,.
these two times differ at most by a constant factor.

In the critical region for ~T ~ 1, attenuation and
dispersion behave as z -~'+ ', and D -&', with

y =0.10 for X, &0.2, and larger exponents for high-
er X,. For (dr &0.1, they allow the expected hy-
drodynamic ' dependence. The amplitudes of
the critical attenuation and of the critical disper-
sion decrease approximately like the inverse of
the amplitude of the characteristic time or of the
characteristic length with increasing 'He concen-
tration.

A consistent description of attenuation and dis-
persion of first sound near T~ and at &u/2v ~ 600
kHz, and their quantitative interpretation is ob-
tained, giving confidence in the applied analysis.
A theoretical calculation of the dynamical scaling
function and its comparison with our results would

be of substa, ntial interest. In addition, a detailed
analysis of attenuation data at higher frequencies
should be performed. In the frequency range of
GHz, e.g. , the attenuation seems to behave differ-
ently, " and it might be impossible to apply the
analysis discussed in this paper. "'" At higher
frequencies other processes than the ones con-
sidered here will contribute; they will become
especially important if the condition &ur «u/u, is
violated. '4
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