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The nature of the order as T~0 in the one-dimensional interacting electron gas is investigated. We consider
both low-momentum-transfer (g, and g4) and large-momentum-transfer (g, and g,) electron-electron
interactions, focusing upon the particular value of gl for which Luther and Emery have recently found an exact
solution. For this value of g, = —6/5n vF, we calculate the low-frequency behavior of the zero-temperature
response functions explicitly. For the singlet superconducting and charge-density-wave responses, our results

are consistent with those of Luther and Emery, implying that these response functions are divergent as co~0
for certain values of g, . For the triplet superconducting and spin-density-wave responses, however, our results
differ from those of Luther and Emery, as we show explicitly that these responses have a gap for low

frequencies, as was predicted by Lee. Furthermore, they do not diverge at the gap edge for any value of g, .
We also consider the effect of interactions between electrons on the same side of the Fermi "surface, " and find

that the low-momentum-transfer process of that type (g4) does not change the response behavior qualitatively.
For the large-momentum-transfer process between electrons on the same side of the Fermi "surface" (g,), we

may solve the problem exactly for g, = 0 and g, = —6/5n v~, and find that the ground state of the system
exhibits only long-range charge-density-wave order. By a mapping onto the classical two-dimensional

Coulomb gas problem, we may extend those results for g3+0 to the region g, & 0 and g, —2g, &
~ g3~.

I. INTRODUCTION

The problem of ordering in one-dimensional
metallic chains has been discussed extensively
since Little suggested the possibility of supercon-
ductivity in one-dimensional organic chains. The
interest in this problem has greatly increased re-
cently following the experimental work on TTF-
TCNQ (tetrathiafulvalene tetracyanNluinodimeth-
ane), ' KCP [K,Pt(CN), Br, ,~ 3H, O],' and the discov-
ery of superconductivity in (SN}, (polysulfur ni-
tride). '

The basic difficulty in the theoretical treatment
of order in one-dimensional Fermi systems is
the fact that such systems possess two inherent
instabilities. These show up as divergences in the
four-point vertex function F(k,k„k,k, ). One diver-
gence occurs in the particle-particle channel
(Cooper channel) for k, = -k, and it indicates the
onset of superconductivity. The other divergence,
which is more typical of a one-dimensional sys-
tem, occurs in the particle-bole channel ("zero-
sound" channel) for k, —k, = 2k', and it indicates
the onset of the Peierls or Overhauser instabili-
ties which result in charge or spin-density waves.
There is a competition between these instabilities
and it is the role of the theory to specify the condi-
tions under which one, or the other, mode of be-
havior will prevail.

Bychkov et al.' were the first to treat the diver-
gences in the two channels simultaneously. They

summed the so-called parquet diagrams (which
amounts to making the mean-field approximation}
and found that in the logarithmic approximation
the transition temperatures to the Peierls state
(Tr) and to the superconducting state (T,) are
equal. Strictly speaking, however, a single chain
cannot undergo a phase transition at any finite
temperature, as the fluctuations drive the transi-
tion temperature to 0. But real systems are com-
posed of many parallel chains which are in some
sense coupled, and may exhibit a phase transition.
Any long-range order that might arise in such a
system is due solely to its three-dimensional or
"coupled" nature. Thus, the discussion of phase
transitions involves the solution of the coupled-
chain problem. This will be done in the second of
this series of papers. In the present paper we re-
strict our discussion to the single-chain problem.
The question of order in a single chain is still
meaningful in the sense of a tendency towards long-
range order as T-O.

A one-dimensional Fermi system is character-
ized by a Fermi "surface" consisting of two points
ok~. The important electron-electron interaction
processes are those which involve electrons with
momenta in the neighborhood of these two points;
therefore, the momentum transfer is either q =0
or [q )

= 2k~. There are four relevant scattering
processes (Fig. 1). The q=0, or the forward
scattering, processes may involve either elec-
trons on opposite sides of the Fermi "surface"
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(g, } or on the same side (g,). In the )q [ =2k~, or
backward scattering process (g, ), two electrons
on opposite sides of the Fermi "surface" interact
and exchange momenta. In the case of one elec-
tron per atom (or a half-filled band) there is also
an umklapp process in which two electrons on the
same side of the Fermi "surface" scatter together
to the other side (g, ). Various treatments of one-
dimensional systems in the literature may be char-
acterized by the assumptions made on these cou-
pling parameters. For example, in the work of
Bychkov et a/. ,

' it is assumed that g, =g, =g and

g„g4 are neglected.
The first discussion of order in a one-dimen-

sional system that went beyond the mean-field
approximation was due to S6lyom. ' He applied the
renormalization-group method to calculate the re-
sponse functions corresponding to three types of
order, and found that for g, ~ 0, the line gg 2g2
separates between the regions of singlet supercon-
ducting and charge (spin) density wave behavior
(only g, and g, were taken into account). This ap-
proach was extended by Fukuyama et al. ,' who also
calculated the triplet supercondueting response
function. The renormalization-group method used
in Refs. 6 and 7 apparently fails for g, & 0, as the
invariant couplings become strong.

Luther and Emery' (LE) have recently found a
remarkable solution for the one-dimensional elec-
tron-gas model with both g, and g, . They extended
the Luttinger'" model by adding the backscatter-
ing term to the Hamiltonian and were able to diag-
onalize this Hamiltonian for a particular negative
value of g, . They have also calculated the re-
sponse functions for this value of g, . It was then
pointed out by Lee" that in contrast to their con-
clusion, there is no possibility of triplet super-
conductivity or spin-density wave ordering. Chui
and Lee" mapped the LE Hamiltonian onto the two-
dimensional classical Coulomb gas problem and
gave arguments extending the regions of charge-
density wave and singlet superconductivity be-
havior to the entire gy + 0 half-plane.

In See. II of the present paper we review the LE
solution. Section III presents a detailed calcula-
tion of the response functions on the LE "line of
solutions" including a novel calculation of the co-
efficients of the leading divergences. These coef-
ficients will be used in the second paper to calcu-
late the transition temperatures. As the calcula-
tion of these response functions has been the
source of some confusion in the literature, we
present here a rather detailed derivation. In Sec.
IV we consider the addition of the g, and g4 inter-
actions. We find that the addition of g~ is trivial,
but should be included on physical grounds, as the
case of g~ =g, is of particular interest. This addi-

tion does not qualitatively change the regions in

g, /g2 plane of charge-density wave and singlet
superconducting behavior, although it distorts
them and increases the size of the region in g, /g,
space for which the model may be solved. For g,
0 0, we may solve the model only for g, =g4 =0 and
for the particular value of g, for which the LE
model has a solution. For this "point" in the g, /g,
plane, we calculate the correlation functions, and
find that at T =0 there is long-range order of the
charge-density-wave type.

II. LUTHER-EMERY SOLUTION

The starting point of the LE model i.s the Lut-
tinger' Hamiltonian with spin

H = v~ Q @[at,(k)a„(k) —a~, (k)a„(k)]
k,s

+X g V.p, (&)p, ( &), -2

k

where a;,(k) is the fermion annihilation operator
for an electron with momentum k, on the branch
i = 1 (2) with spin s = sl. The density operators
p;(k) are defined as

(2)

The important features of the Luttinger model are
the linear dispersion e';(k) = +v~k for the kinetic
energy, where the upper (lower) sign refers to the
i = 1 (2}branch, and the assumption that in the
ground state of the noninteraeting system all the
states with momentum k&k~ on branch i= 1 and
k& -k~ on branch i=2 are filled. We also define
the spin-density operators

1
c,(k) =~ Q sat, (P+@)a„(P).

ps

The p; and o; satisfy the usual boson commutation
relations

(4a)

where the upper (lower} sign refers to i= 1 (2}.
These commutation relations hold when evaluated
in any excited state of the unperturbed system. A
similar model for the interacting one-dimensional
electron gas was proposed by Tomonaga. " This
model assumes that the relevant states of the sys-
tem are those with electrons and holes in the
neighborhood of the Fermi. "surface" and that
there is no transfer of electrons from one side of
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the Fermi "surface" to the other. In view of the
first assumption Tomonaga linearized the electron
kinetic energy near +k~ and defined the density
operators p'(k} =+~ oat(p+ k)a(p) and p (k)
=+~„a~(p+k}a(p). These operators satisfy the
same commutation relations as the p, (k), p, (k)
operators of the Luttinger model, only when eval-
uated in the subspace of states with electrons and
holes in the neighborhood of the Fermi energy.
Since it is assumed that these are the only states
that matter, the Tomonaga model becomes equiv-
alent to the Luttinger model" (if p' is identified
with p, and p with p, ). Theorists prefer to refer
to the Luttinger model, but it is good to keep in
mind the equivalence to the Tomonaga model which
has a greater physical appeal as it avoids the un-
realistic, infinitely deep Fermi-Dirac sea.

The linear dispersion e';(k} = av~k leads to the
relations

-kF —k F

F

[p, (k),H, ] =+v,k p, (k),

[o;(k),H, ] =+vrk o, (k},
(4b} F "F

where H, is the first part of Eq. (l) and, as before,
the upper (lower} sign refers to i= 1 (2}. Com-
bining these relations with the fact that all the ex-
cited states of Ho can be obtained by operating
with products of the collective operators p, and o&

on the ground state, it is possible to writeHO in
the form" "

H, = Q [p, (k) p, (-k)+P, (-k) p, (k)
A)0

+o,(k)o, (-k) +o, (-k)o, (k)] . (6)

where

x (U&5, , + U~ ~, ~ ),

The interaction term in Eq. (l) describes the g,
"forward scattering" interaction shown in Fig. l.

LE have added to the Hamiltonian the term

H„= Q I dxq'(x)y'(r)y, .(x)y,..Ix),. ..
ss'

FIG. 1. Shown are diagrammatic representations of
the four possible types of electron-electron interactions.
Of the two low-momentum-transfer processes, g4 and g2
describe the "forward scattering" of electrons on the
same and opposite sides of the Fermi surface, respec-
tively. Of the two large-momentum-transfer processes,
g& andg& describe the "backward scattering" of electrons
on the same and opposite sides of the Fermi surface,
respectively. However, p& is only important for an ex-
actly half-filled band.

model, and hence it is advisable to distinguish be-
tween them by different coupling strengths U~~ and
U~. We shall keep this notation till the end, when
we put U~~ =U =g, . The case of parallel spins can
be immediately written as a bilinear form in the
density and spin-density operators

1
y(, (x) =~~ Q e' a„(k) .

k

——P [p, (k)p, (-k) +o, (k)o, (-k)] .
k

(8)

This term represents the "backward scattering"
denoted by g, in Fig. 1. The processes in which
the spins of the two electrons are parallel or anti-
parallel play essentially different roles in the

To express the "back-scattering" interaction for
electrons with antiparallel spins in these opera-
tors, LE make use of the boson representation for
the fields

1 1g„(x}=,z, exp + ikrx-~ pA, (x)[p, (k)+so, (k)]

where
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2v o. ski
A (x) =—exp — —ikxk 2 (9)

the upper (lower) sign in the exponent corresponds to i=1 (2), and a ' is a cutoff parameter which is in-
terpreted as a momentum transfer cutoff. When the full Hamiltonian is expressed in terms of the p and 0

operators, one finds that it separates into two commuting parts,

H, =
& P [p, (k)p, (-k)+p, (-k)p, (k)]+& g[2V(k) —U„]p, (k)p, (-k)

k&0 k

(10)

H, = g [o,(k)o, (-k)+o, (-k)o, (k)]
k)0

——"Q(r[a]o[-a]+ ', f d* exp(W2 QA[x)[v(a)+v[5]])+H c.
k k

The first part, H~, is simply the Luttinger Hamil-
tonian and i.t is readily diagonalized by the canoni-
cal transformation e' ~H&e

' ~, with

l

~here 5~=—', e~ is the renormalized velocity of the
fictitious fermion excitations, resulting from the
transformation in Eq. (13). This Hamiltonian may
be diagonalized by the rotation

]['u, (k+k )} cos&, -sin8, } (o', (k)) 1V)

G, =
& g —„o,(k)o, (-k), (14)

where

tanh2$ =+U]]/2vv~. (15)

The transformations in Eqs. (13) and (15) are de-
fined as long as the magnitude of the right-hand
side is ~1. This implies that the model breaks
down when V(k), U]] are outside the region bounded
by the lines U]] =+2 U]]/2 V(k) =%1 where U]]

=U]]/vv~ and V(k} = V(k}/wv~. The effect of the last
transformation on JI is to multiply each of the 0
operators by e~. LE noted that this term simpli-
fies greatly for the case 2 t e 1, which on ac-
count of Eq. (15) implies U]] = —&. For this par-
ticular case, one can express this term as a, bi-
linear form in some fictitious spinless fermion
creation and annihilation operators. To do this,
one uses E[l. (9) with the factor (1/W2)[P;(k)
+so, (k)] replaced by o, (k). WritingH, in the fic-
titious fermion representation, we have

H. = v," g k[~,'(k)o, (k) o,'(k)o, (k)]—

+2
' Q [o.~(k)a, (k —2k|,)+H.c.], (16)

tanh2 $(k) = -[2V(k) —U]] ]/2vv~ .
One can similarly diagonalize the bilinear terms
in H, using a canonical transformation generated
by

where tan28, = &/vg k, and & = IU, I/2wn is the gap
in the energy spectrum

e, ,(k) = v) k~ssgnk[(vl', k)'+&']'~'. (18)

(19)

where v], = v~sech2$(0) is the renormalized veloc-
ity due to the transformation in Eq. (12}. The
spectrum of this Hamiltonian consists of the usual
Tomonaga-Luttinger "sound waves*' arising from
the p operators, and of fictitious "single-fermion"
types of excitations with gaps, arising from the 0
degrees of freedom.

III. RESPONSE FUNCTIONS

Any type of order in the ground state would show
up as a singularity in the response of the system
to a corresponding generalized external field.
Following LE, we shall consider four possible
types of one-dimensional ordering as T-0:
charge-density wave (CDW) and antiferromagnetic

We have defined the transformation in Eq. (1V} so
that k is measured relative to the Fermi momen-
tum.

The full Hamiltonian may finally be written in
the diagonal form

2 t
H = ~'g [p, (k)p, (-k)+p, (-k)p, (k)1

k)O

+ g [e,(k)n,'(k)n, (k)+ e, (k)Z J(k)a, (k)],
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or spin-density wave (SDW), and singlet and trip-
let pairing (SS and TS). To each of these types of
order there corresponds a generalized suscepti-
bility, or retarded response function;

]t,",„(x,t) = -ie(t) ([[)„(x,t)]t,', (xt), [)'„(0)[t",,(0)]),

X"„(x t) =-ie(t)([0.(x t)A' (» t) [)'. (0)]t'+(0)]),

(20)

]t"„(x,t) = -ie(t) ([q„(x,t)q, (x, t), q,
' (0)[),', (O)]),

)(,",(x, t) = -Ie(t) ([[)„(x,t)q„(x, t), g,', (0)g,', (0)]) .

One can also write other susceptibilities, involv-
ing only operators on one side of the Fermi sur-
face, however, these do not show any singular be-
havior.

The separation of the Hamiltonian into two inde-
pendent parts H~ andH, implies a similar factori-
zation of each of the two terms of the commutators
in the response functions. Expressing the field
operators in their boson representation and sepa-
rating the p and 0 parts, we find that the four re-
sponse functions can be written in the general
form

y"(x, t) = [-ie(t)c/(2wo. )'] [S~ (x, t)8,'(x, t) —Sp'(-x, -t)S,'(-x, -t)], (21)

where c = 1 for the pairing susceptibilities and c = e'"r* for the charge (spin) density-wave susceptibilities,
and

ee'(x, e)= (e
""eexp (

—I *
[p, (k)e p, (k)] e ""e exp I '

[p, (k)e p, (k)] (22)

x.'(*,e)=(ee" e p(-I '*Ie,(k)+, (k)I -""exp I ' Ie, (k)+e, (kll
vY

where the upper (lower) signs in Eq. (22) corre-
spond to CDW and SDW (SS and TS}, and in Eq.
(23) to CDW and SS (SDW and TS). The Sz and S
satisfy

s, .(-x, t}=s,.(x, t),

S, .(x, -t) =S,+.(x, t),

as will become apparent from their explicit ex-
pressions [Eqs. (26), (34), and (35)]. Using these
symmetry relations with Eq. (21), we get

im]t" ((u) = -- [e'"'Sp'(x, t)S,'(x, t)
2 ~ 2%& ~ 27TH

—((k) -(k) )] (25)

where ]t"((d) is the Fourier transform of Eq. (21)
at momentum q =0 for the paring susceptibilities,
and at q =2t,r for the charge (spin} density-wave
functions.

We shall now calculate the right-hand side of
Eq. (25). The functions S~ (x, t) are essentially the
same as the corresponding correlation functions
in the Luttinger model. The slight differences are
the replacement of the forward-scattering coupling
strength 2V in the Luttinger Hamiltonian by (2V
—U~() in H~, and the appearance of I/v 2 in Eq.
(22). Keeping these in mind, one can obtain

S~ (x, t) from the first term in Eq. (24) of Luther
and Peschel. '0 At T =0, we obtain

Sp (x, t) = o['"[[a—i (v~t —x}][c[—i(v~t+x)]].

(26)

1 v (g', +-', )

I+(g, +—', )

and g, = V(0)/wvz. The exponent 5, corresponds to
CDW and SDW, and 5 to SS and TS.

LE argued that the low-frequency behavior of the
zero-temperature response functions is deter-
mined solely by S~, owing to the finite gap in the
excitation spectrum of the o degrees of freedom.
Thus, they found Imp"((d)z, , (k)", where p= -2+5+
for charge- and spin-density wave behavior and p,
= -2+5 for singlet and triplet superconducting
behavior. The fallacy of this argument was pointed
out previously by Lee,"who has shown that the v
factor in the response functions for CDW and SS is
dramatically different from that for SDW and TS.
In the first case S (x, t} is dominated by a term
constant in space and time, so that the Fourier
transform of y (x, t) is indeed determined by
S (x, t) leading to the result of LE. In the second
case S,(x, t) has no such constant term. Careful
examination of the space and time behavior of 8
in this case shows that Im]t "((d)r, never diverges
as cv-0. To see how all this comes about we shall
now consider S,'(x, t) in some detail.

Let us first perform the transformation in Eq.
(14}on ail the operators in Eq. (23). The result
1s
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k', (*,kI= e"" e p —E ',~, 'k[, (k)k, (klj "" e p E,&,
' [,IkIk, (k)l))

Ak(0)

k

(26)

whereH, =e' &H,e' &. On the LE line of solutions,
namely for e ~ =kt2, this expression may be cast
in a, fermion representation using again Eq. (9)
for spinless field operators. One obtains

S'.(x, t) = (2v~) ([e,(x, t)e', (x, t)e-'"~*]"
x [q', (0)q', (0)]' ')

for CDW and SS, and

(29)

S,(x, t) = (27ra)'(kip, (x, t)kik, (x, t)ki, p, (0)klk,t(0)) (30)

for SDW and TS. The q, ,(x, t) =—e""04'»(x)e ""~
are the fictitious field operators corresponding to the
K»(k) annihilation operators in Eq. (19) and the
expectation values are calculated with respect to
H, . Examination of Eqs. (29) and (30) shows two
basic differences between these expectation val-
ues. One difference is the powers of the opera-
tors, which we shall show to be of minor impor-
tance. The major difference is that S', is (except
for the square roots) a. fictitious fermion particle-
hole correlation function, whereas S is a fictitious
fermion particle-particle correlation function.
First let us discuss S'. We are interested in the
behavior of S' at large x and t and may therefore
take [q, (xt)pe(x, t), $, (0)p, (0)] =0, which is true for
finite x, t . We can now write

S+,(xt) = 2vo. e ' +'([$,(xt)gt(xt)g, (0)g~(0)]'t') .

(31)

At this point we make the classical approximation

S', (xt) = 2vue ' ~((,(xt)gt(xt)g, (0)g~(0))'t' .

(32)

The main result of the subsequent calculation of
S', is that it is a constant for x, t-~. This can be
shown by general arguments" which do not depend
on the last approximation. However, the form in
Eq. (32) will enable us to compute this constant

explicitly and we believe that the approximation
involved will give a correct order of magnitude
est1.mate.

We are now ready to calculate S'. To this end
we express the field operators in terms of the
creation and annihilation operators n, „n,„
transform to the n.», n, , representation [Eq.
(17)], and evaluate the expectation values with re-
spect to the n part of the Hamiltonian [Eq. (19)].
After a lengthy but straightforward computation
(see Appendix A) we get at T =0,

and

S', (x, t) = ~[C'+f(x, t)f( x, t)]"-

S-.(x, t) = ct'[f(x, t)f( x, t) -g'(x-, t)],

(33)

(34)

where (in units of vs=1)

"dk tkD(k)
E(k)

f(x, t)= dke ' t" 'D(k) coskx+ ik sinks
E(k)

;z~k&, D(k) coskxA
E(k)

(36)

(37)

where E(k) = (A'+ k')'t' and D(k) is the density of
states for the o modes. For simplicity of the
final form, we take D(k) = exp[-o. 'E(k)], which cuts
off the integral at I/o'=I/o —k„, which is the
available bandwidth above k~ where the gap ap-
pears. Examination of Eqs. (33) and (35) reveals
that as x, t-~ the dominant term in S', =nC
=(o.&)K,(a'&), where K, is a Bessel function, and
thus the low-frequency behavior of ImX (&v) for
CDW and SS is determined by $'. Combining Eqs.
(25), (26), and (33), we have

I+ 6& $(d 0

imp"(ur) = 6, dx dt~[, (, )] [
.(, )]]~,&,

—(kv- -&d) =f(6k) sgn&d ~ o&d
~

where

f(z) = (ac/v'2 "')I'(1 ——,
' z) sin' —,

' vz .

(38)

(39)

This is the result of LE.
Let us now consider the SDW and TS response functions. The integrals in Eqs. (36) and (37) can be eval-

uated analytically, " and after some algebra we obtain

S.-(x, t) = (~&)'[Z', (&Wg) —IC', (&Wg)),

where

(40)
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( = [o.' —i (v~ t+x)] [o.' —i(v~ i —x)],
and K„K, are Bessel functions. Combining Eqs. (40}, (26), and (25), we get

oo oe lid f

Im)("(~)=+, dx dt, , ~
[N(&W&~) -E',(&Wg*)] —((u - -(u) .8v' „„([n+ i (v~ i+ x)] [n + i (v„' t —x)]j~~

(41)

It is shown in Appendix 8 that for lorn frequencies

)
(2v)'/'o ([ (u [

—2vg n)' "/'6() (u [ —2v~ h) ego&a

Sv;(v, }&r(~+-,')
~
~

~

'/' (42)

where I (x) is the gammafunction, v)= —,vz and vz'

=25vz/(1+6') and we have set 5, =5. Thus we see
that the SDW and TS response functions do not di-
verge as u-0. The gap in the imaginary part of
the response function was predicted by I.ee" on
the basis of a convolution argument. The present
calculation allows us to investigate the behavior
near to u& =2v$4. Equation (42) shows that there
is no singularity at the gap edge. We note that
this equation is only valid for ru —

2m~4 «1, or
very near the gap edge. As one moves away from
the gap edge, corrections of order (( ur [

—2vgn)~"/'/
u'/' begin to play a role. If in Eq. (42) we take the
limit »& 2m~4, we obtain the high-temperature
frequency dependence given by LE, Imp"(e)-~,
although all of these higher-order corrections mill
also make a contribution of order cv, so that the
overall constant will be different than in Eq. (42).

Chui and I.ee" have recently mapped the LE
Hamiltonian for any U~~ on the classical two-dimen-
sional Coulomb gas problem. They then argued
that the SDW and TS response functions do not di-
verge as &-0 for any U„&0, and that the leading
term in the o parts of the CDW and SS response
functions is constant. The last conclusion implies
that the frequency exponents of these response
functions are determined by 8' in the lowex half
of the (g„g,) plane. The low-frequency behavior
is then determined by the exponents

Performing the integrals as in Appendix 8, me
would find for this form of S,

Imp((u) -B(i(u [ —2vgh) i(u [
' '

x () ~
~

2v II/) 3/2+ 6+@ sgn~ ~ (45)

which could be divergent at the gap edge for —T'3

+gy ~ 0 ~ In order to investigate this interesting
possibility, it would be necessary to examine the
behavior of the spin-spin correlation function to
logarithmic accuracy in the exponent.

The regions of divergence of the various re-
sponse functions are shown in Fig. 2.

g =Kg~

CDW

SDW)

1+(g, -g, /2) "'
I + (g, -E,/2)

(42)

g =-6/5
I

We have shown that for g, = —$ there is no diver-
gence at u =2@~4, however, there is the intxiguing
possibility that such a divergence might appear
mhen one moves away from this value tomards less
negative g, . Chui and I ee relate the v part of the
TS and SDW response functions to a spin-spin
correlation function, claiming that for large x
and t

i) [p (,I' i)2] p/2 exp 2, n[(vll i)2 x 2]1/2j

where

(CDW) (SS}
FIG. 2. Shown are the regions in g &/g 2 space of dif-

ferent types of low-temperature response behavior for
g4 ——0. The model can be solved on the linesg&=0 and

g&
——-+5, but can be extended into this entire region

-1&-g&/2& 1 and -1&g2-g&/2& 1 by a mapping onto the
two-dimensioaal Coulomb gas problem. The line
g& =2g2 separates the region in which superconductivity
predominates over Peierls-Frohlich behavior from that
region in which the reverse is true.



1080 H. GUTFREUND AND R. A. KLEMM 14

IV. EFFECT OF OTHER INTERACTION PROCESSES

The interaction term in Eq. (1) contains only the
small momentum scattering process correspond-
ing to g, (Fig. 1}. One can easily include also the
other k=0 process (g, }. To this end one has to
start with the full interaction, as was done by
Mattis and Lieb, '

9)

Q V(k)p (k)p, (-k),1

k,ss'
(46)

where

p. (k)= g 'a(I +k) a(P). (47)
g 5

Separating p, (k) into p,'(k) with summation over

p & 0 and p, (k) with summation over p & 0, and iden-
tifying the p' operators for small 0 with the Lut-
tinger p, , operators (see Sec. II), we have

—g = 2
I

H,„, =—g V(k)[p, ,(k)+p, ,(k)]
1

k,s,s'
x [p„,(-k) +p. ..(-k)],

where

P;,(k) = Q a;, (p+k)a;, (p) .

(48 )

FIG. 3. Shown are the regions in&&/p2 for&&& 0 and

g 4=g &
of the different types of low-temperature behavior

of the response functions. The dotted and dashed lines
represent the limits for which the model can be solved.
The lineg& =2g& still separates the region in which supe.
conductivity predominates over Peierls-Frohlich be-
havior from the region in which the reverse is true.

The terms which involve p operators with different
indices yield the g, interaction in Eq. (1). The
other terms may be written in the form

& g V(k)[p, (k}p,(-k)+ p, (-k)p, (k)] .2
(49)

This expression corresponds to the g, interaction
in Fig. 1. The k-0 limit of V(k) in Eq. (48) is
denoted byg4. One can discuss the model for a
general g4eg„however, it is clear that the phys-
ically interesting case is g, =g, . Equation (47)
can be added to the kinetic energy in Eq. (5), which
results in replacing vv~ by mv~+g4, without
changing the LE Hamiltonian. Keeping this in
mind, we can immediately write down the new ex-
ponents

tions in Eqs. (13) and (15) (with ave- 7tvz+g, ) are
not defined, because the magnitude of their r.h.s.
exceeds unity. Note that the line g, =2g, still
plays the same role as before. An interesting fea
ture of Fig. 3 is that all the dividing lines meet at
a single point.

The inclusion of the umklapp process (g, ) in the
case of a half-filled band into the LE model is not
so straightforward. Since the process involves a
short-range interaction, we can represent it by a
contact interaction similar to the backscattering
Hamiltonian

g, +3/5 '~'
1 g, +3/5

1+F4 1+E4
(50)

Using Eq. (9) to express 8„ in the boson represen-
tation we find"

where g, =g, /vv~. Applying the arguments of
Chui and Lee" as in the preceding section, we
can generalize these exponents to the gy + 0 half
plane replacing the -', by ——,'g, . The inclusion of
the g4-interaction modifies the picture of Fig. 2.
The new regions of divergence of the CDW and SS
response functions are shown in Fig. 3 for g4 =g, .
The broken lines define the region of validity of
the model. Beyond these lines the transforma-

a„= ~',
(2vo. )'

x dx exp -4ik~x+v2 Ak(x) p, k)+p, {k)
k

+H.c. (52)

This is exactly of the same form as the boson
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representation of H«, except that it depends on
the p operators instead of the o operators. The
transformation in Eq. (12) now diagonalizes the
bilinear part of H~ and introduces the factor e@~"
in the exponent of the umklapp term [Eq. (50)].
This term can be reduced" to a bilinear form in
fictitious spinless fermion fields for the case
e~~"/W2= 1 just as in the I.E case and the spec-
trum ofH shows a gap r'=lg, l/2va at+)'s». In
view of Eq. (13) and the fact that the diagonaliza-
tion of H, requires -Us/2wv» =—', , we find that H~
with the term H„can be diagonalized when V(k) =0.
Thus, including g, we can solve the px oblem at the
point g, = —~, g, =0. To calculate the response
function at this point, we note that the functions
S~ are now identical to S'„except fox a different
value of the gap. The CDW response functions in-
volves the product S&S~, which is a constant at
large x, I,, which indicates the presence of long-
range order of the CDW type. " For the other re-
sponse functions me get

imxsow(~) sgn~e(l ~ I
—2v»&)R [a(l (o l

—2v»b )]'~'

a leal —2v"a'))'~'
lmxss(&) sgn~e(l ~ I

- 2v,"&')

Imp s(~) sgnru8[l &u l
—2(v' 6+ v "6')]

[o.[l(u l
—2(v' b, + v "a')]]'~'

l
a(ul'~'

(53)

V. DISCUSSION

We have investigated the low-temperature prop-
erties of the one-dimensional electron gas with a
variety of electron-electron interactions. For the

Thus, we find that none of these three response
functions diverges as cu-0. We can apply the
argument of Chui and Lee" torl„and find that Sz
is a constant and S~ has the same asymptotic
form as S, for g, —2g, & lgs l. However, this is
mostly in the region in g, /g, space for which the
CDW response functions is dominant even in the
absence of g„so it is still possible that for g, 10,
the SS response function might diverge fox suffi-
ciently positive g, —2g, . However, we note that
Dzyaloshinskii and Larkin'0 found that in the par-
quet approximation, the system exhibits a metal-
lic ground state for g, &0 andg, —2g, & lgsl. If we
may speculate on extrapolating their results to
g, &0, their results suggest thatg, may destroy
the tendency towards long-range SS order as T-O.
However, as this extrapolation ean only be made
for small g, and g„ it cannot be trusted in the
region for g, &0 mhere in the absence of g„ the SS
response function is the only divergent one.

case of only low-momentum-transfer interactions
(g„g,oO, g, =gs =0), the model reduces to the I.ut-
tinger model, and the response behavior of the
system has been found by Luther and Pesehel. "
For that case, we have Imp(&u)r, -~ ", where p
=1 —5'„and 5', is given by Eq. (50) with the —', re-
placed by 0. The SS and TS response functions
are identical, as are the SDW and CDW response
functions, and the regions of g, for which they
diverge do not overlap. We note that since Luther
and Peschel" did not include spin in theix calcula-
tion, they found Imlc(&u)r, -~ '", which has the
same regions of different response behavior, but
is slightly different in form.

The inclusion of the large-momentum-transfer
process between electrons on opposite sides of the
Fermi "surface" (g, ) changes the response be-
havior of the system dramatically. Luther and
Emery' found a remarkable solution to this prob-
lem for g, = —-', , and we have explicitly calculated
the four response functions. We find that in
striking contrast to the case g, =0, the response
functions for SS and TS (and for CDW and SDW)
behavior are completely different. The SS and
CDW response functions are each characterized
by an exponent, Imp(~)-&u ", where p, =2 —5'„
and 5', ls given by Eq. (50). Fol this value of g„
there is now a region where both the SS and CDW
response functions diverge, but the point g, = --',
separates the region in which the CDW response
function diverges more strongly than the SS re-
sponse function does, from the region in which
the reverse is true. There are also regions in
which just one of these two response functions di-
verges.

The TS and SDW response functions, however,
are never divergent on the LE line of solutions.
Their 1.ow-frequency behavior is characterized by
a gap, as was first pointed out by Lee." However,
we have also shown that they do not even diverge
at the gap edge for gy: g However, there is the
intriguing possibility that for 0&g, & —~, these
response functions might diverge at the gap edge
for T =0, unless there are some additional loga-
rithmic corrections to the exponential "gap" factor
of the o. mode correlation function. This mould not
imply static l.ong-range order at T=0 for q =0
(or q = 2k»), since for finite temperatures, the gap
would contribute a factor -exp(-2v»&/T) for q =0
(or 2k»), insuring that these response functions
mould vanish as T-0. However, the divergence
at the gap edge for the zero-tempex"ature response
functions would show up as a peak in the finite-
temperature response functions in the neighbor-
hood of T-2v~&, so that the excited states of the
system would contain a large amount of TS and/or
SDW character, depending upon the value of g, .
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For the case of a half-filled band, the presence
of g, tends to enhance the tendency towards long-
range CDW order as T-O, and to suppress the
ordering of the 88 and TS types. By a method
analogous to that of Luther and Emery, ' we were
able to solve the problem for g, e 0, g, = 0, and

g, = —&, and by arguments similar to those of
Chui and Lee,"we were able to state that for -2
&g, &0 and for (g, —2g, )/(1+g, ) «)g, ), there is a
long-range order of the CDW type at T =0, a,nd all
of the other response functions have gaps for small
frequencies. This result is not inconsistent with
renormalization group results of Dzyaloshinskii
and Larkin, ' who find the possibility of a metallic
ground state for g, & 0 and g, —2g, & [g, [, where g,
was set =0. For g, &0 andg, small, this is en-
tirely in the region in g, /g, space where in the ab-
sence of g, the system mould have exhibited super-
conducting ordering as T-0. Thus, we may spec-
ulate that for g, &0, the presence of g, for a half-
filled band might remove the possibility of super-
conducting ordering as T-O.

We remark that me have not given any considera-
tion to the case g, &0. However, that regime is
attainable by the renor malization group calcula-
tions. Since there are only two regions of differ-
ent physical behavior (instead of four for g, & 0),
the expansion for small interaction strengths ap-
pears to give a full physical description of the
system. For g, & 0, the renormalization group
cannot fully describe the system, as a mapping
onto the two-dimensional classical Coulomb gas
reveals that the boundaries of the regions in
which only one response function diverges occur
for g, of order unity when g, is small in magnitude.
We note, however, that 86lyom' predicted from
renormalization group calculations that the ground

state of the system for g, &0 was a "period-doubled
singlet superconductor, " or that the response func-
tions for SS and CDW behavior both diverge for
g, &0, which is consistent with the Coulomb-gas
mapping for small coupling constants.

We have considered the important types of elec-
tron-electron interactions in the one-dimensional
electron gas, assuming the interactions to be
static, or arising only from the electrons them-
selves. We have not considered more physical
models, such as might more properly treat the
electron-phonon interaction. We have also ne-
glected the effect of impurities, as mell as many
other possible physical situations which could give
important corrections to these results. Perhaps
the most important of the interactions that mill be
present in a real material are interchain couplings,
which can be responsible for long-range order at
a finite temperature in these systems. These ef-
fects mill be discussed in the following paper.
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APPENDIX A

We mish to calculate explicitly the quantities
S'(x, t), given by E(ls. (30) and (32) of the text. At
T=O, we have

[S:(x,t)]' = (2ra)'((), (xt)y,'(xt}e-'"~*q,(00)((,'(00)) .

By Fourier transformation of the fields, we obtain

27 '
~

[~(&(x& t)] n e (e al, k-kkak, k&+kye nk, k "+kraal, k kr)(((
kk'k "k"

We must now perform the rotation of the n, operators to the diagonal a, representation [see E(I. (17}],

[s;(*, )] =(—&) a' 'I e'a "*((a„e"'" case, — „e'"&"s'se, (
kk 'k "k'"

(A2)

x(a»&e k cos8k, +a,k&e '& sin8»)(n»«cos8k«+a»&sin8k&)-it {k') itgI {k') ~

&& (a& cosk8«&k«& — akkl«&sn8k))&«»

We use the zero-temperature results for the free fermion operators n„
(a;ka,tk ) = 5;,Gkk. e(+It),

(a(ka&k ) =8i;~kk e(+h),

(As)

where the upper (lower) sign refers to i =1 (2). In evaluating the expectation values, the chemical poten-
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tial p. is chosen to be v~k~. After some straightforward algebra, we have

S',(xt) = n[C'+ f(x, t)f( x, t-}]'/',

where

(A5}

C =—g D(k) sin26»,
2v

k&p

(A6)

f(x, t) =— D(k)e " " (cos'8»e ' '+sin'8»e+' *),2m

k)p
(A t)

and E(k) =(k'+&')' '. In Eqs. (A6) and (A'I), we have introduced the density of states, D(k), as S', is other-
wise logarithmically diver gent. Letting

f-es,

and rearranging the terms in f, we obtain Eqs. (35) and (36) of the text.
Similarly, for S,(x, t) we have

2 ~ ~ k(k+k')x z itH -1tHS (x, t)=n — ~ e (e n»a a n a'+a e ~n a"+a n a"' a )»E ' F » + p» p g
kk'k»k"'

(A8)

Goingto the diagonal representation,
2

S,(*,e)=a'(— P 'a'"(( „e'"t"cose, —a„e"s~"~ 'ss, )(a„,e""c"cosa, , ~ „,e' 'c'~s' e, , )

kk'k»k»'

We finally obtain

x (n, „„cosea.+ n„sin 8, .)(n„,cos 6»» —n„-sine„„))„-/
(A 9)

S-.(x, t) =n'[f(x, t)f( x, t) -g'(x, t)]-,

where

(A10)

g(x, t) =—P D(k)e ' t )'coskxsin28».
k&p

(A11)

Again rearranging the terms in f, we obtain Eq. (3"t) of the text.
Clearly, the functions S'(x, t) satisfy

S'.(-x, t) =S'.(x, t)

and

S'.(x, -t) =S'.(x, t)+.
(A12)

We note that our expression [Eq. (A10)] for S,(x, t) differs slightly from the expression given by Eq. (12)
in the comment by Lee.

APPENDIX B

In the present appendix we derive the low-frequency behavior of the TS and SDW response functions at
zero temperature, Eq. (41}of the text,

ce 00

Imp((v) =, dx dte' '([n+i(v~t —x)][n+ (vt»+ t)]x].8w'

x(K', [&([n'+

i(vent

—x)] [n'+ (vi) t+ )]j'«']

—K',[&([n'+ i (v~ t —x)] [n'+ i (vg t+«)] I'/']) —(cu —-(v),

where n ' and (n') ' are the available bandwidths in momentum units for the plasmon and fictitious
fermion modes, respectively, and v~ and v~ are the renormalized Fermi velocities for the plasmon and
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fictitiousfermionmodes, respectively, as are defined inthe text. In Eq. (Bl), 5=5 for TS, and 5=6
for SDW responses. Letting s= t —x/v$ and s'=t +x/v$, and using the asymptotic form for the Bessel
functions, we have

a " ds ds' exp[is&(s+ s')/2vg —2&[(a'+ is)(a'+ is'}]'i')
16vvg „(a'+is)(a'+ is'}[[a+i(us+vs')] [a+i(vs +us')]] «' (B2)

where u = (v~+ vg}/2vi'„and v = (v„' —v$}/2vr' are dimensionless constants. We observe that the integrals
in Eqs. (Bl) and (B2) have no poles or branch cuts in the lower half s and s' planes. In addition, the
asymptotic form of the Bessel functions is never exponentially growing in the lower-half s and s planes
or on the real s and s' axes. Therefore if we choose &u&0, the (&u- -v) term in Eq. (B2) vanishes iden-
tically. Similarly, if u&(0, the first term vanishes, so we know that ImX(&u) is odd in &o. Let us now as-
sume»0. We may evaluate the integrals by closing the contours along hemicircles of radii R and R' in
the lower-half s, s' planes, and then let R, R' -~. Since the integral is symmetric in s and s', the result
does not depend upon the order in whichR andR' are allowed to go to infinity, so we may choose R'=R.
Thus along the hemicircle parts of the contours, we let s=Re-'", and s'=« '~, where 0(y, y'(m.
We have

x( O)=)nn)6 „).z), j dw j d) '8'""( '"- "»*,"
),„, i„,'„„„., „„„.i, ))gg, )BS)

Changing variables to 8=-', ()I)+rp'} and 8'= —,(4) —&p'), we obtain

P/ d g ei&uRe cose'/og
ImX(u) &0) = lim „. ~

d8e' '
16wv„"(iR)~, ,i, (u'+v +2uvcos28')~i' ' (B4)

Recalling from Eq. (B2) that if ~ had been nega-
tive, the integral would have vanished, we ob-
serve that we may only obtain a finite contribu-
tion to the integral in Eq. (B4) if ~cos8'&2v$4,
and we thus observe that ImX(&u& 0}=0 for
&&2v~&. However, the nature of the behavior of
ImX(&u) near &u = 2vr'b is still of interest, as it is
important to determine whether or not it diverges
there. We shall thus perform an expansion in
powers of (&u —2v]l&). Let us examine the 8' in-
tegral

I,(p) =""""-[(v/-2p)" +o(p-"')] (B8)

independent of 0 in the leading order. There are
also some terms of order P ', but those terms
do not contain an exponential factor, and conse-
quently do not contribute to the 8 integral. The
terms of order e+P ' ' can be shown to give a
contribution to ImX(e) which is smaller by a fac-
tor of order (&v —2&v/}/&v$. relative to the leading
term, and can therefore be neglected. We there-
fore have

m/2 18cosx

Ie, ——2 (u'+ v'+2u v cos2x) t'i2 ' (B5) Is =—(2v/iP)' 'e' (vg/v~) (B9)

where p =R ~e 's/vg. Since I 2u v cos2x I( u'+ v'

for finite renormalized Fermi velocities, we

may safely expand the denominator in a Taylor
series

+) «, q- (-y)'I (-.'6+&)1,(P)
k!I'(5/2}

Combining Eqs. (B4) and (B9), we have

a 6
(v ir

)
6- z/2

8(v' )s(2v&u)'i'

xlim (iR) & +'i'l d8 exp[i(6+ ~)8R~

where y =2uv/(u'+v'), and

e/2
I,(P) = dx e's"'* (cos2x)' .

0

(B6)

and

+iR e 's(&u/v~i) —24)] (Bl0)

Since we are interested in co near to 2v~ and R
large, we require only the asymptotic form of
I),(P} for large P. By writing (cos2x)" in terms of
cos2mx, where 0& m(k, the integrals may be
performed, and we find

ImX ()v)

(2v)'~'a (I(uI —2v~}"'I'e(l(uI —2vg&) sgnu)
8v" (v')sl'(0+3/2) I ~ I'"

(Bl1)
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where 1'(x} is the gamma function, vr =25v„/
(1+6') and v)= —', v„. Equation (Bll} can be ob-
tained from Eq. (B10)by relating the 8 integral
to which is given in the tables.
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