PHYSICAL REVIEW B

VOLUME 14, NUMBER 3

1 AUGUST 1976

Critical currents of superconducting microbridges*

W. J. Skocpol
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 15 March 1976)

The critical currents of long uniform superconducting tin microbridges ranging in width from 0.3 to 10 um
have been measured. In the narrowest bridges the current density is nearly uniform and the magnitude
and temperature dependence of the critical-current density agree with the Ginzburg-Landau prediction. In
wider bridges the current density becomes peaked at the edges of the film and the magnitude and temperature
dependence of the critical current are altered. Theoretical calculations of the nonlocal linear electrodynamics
together with adjustment of the nonlinear peak current density to include coherence-length effects appear
adequate to explain both the magnitude and the temperature dependence of the critical currents in the wider

bridges.

I. INTRODUCTION

It is generally accepted that the ultimate limit
on the current-carrying capacity of supercon-
ductors is reached when further acceleration of
the superconducting electron pairs would lead to
such a rapid decrease of their number that the
current-carrying capacity reaches a maximum.
For spatially uniform current flow, this situation
is easily described within the Ginzburg-Landau
theory, and leads directly to the GL critical-
current density,’

IS = (c/3V6 1) [ HAT)/MT)], @

where H,(T) is the thermodynamic critical field
and A(T') is the penetration depth. In many experi-
mental situations, however, the current density
is not uniform, and the critical current observed
in a thin-film conductor of width W and thickness
d is less than (Wd)JSL, often by a considerable
factor. Nonuniform current flow can be caused
either by the tendency of the current density to
peak at the edges of a wide strip®™* or by the entry
of current vortices (flux lines) into the film.5
Early experimental studies of the critical cur-
rents of wide thin films proved difficult to inter-
pret quantitatively because of the peaking of the
current density at the edges.® The most success-
ful results were achieved by Glover and Coffey,’
who used an analytic approximation to the current
distribution to extract a peak current density,
which was similar in magnitude and temperature
dependence to JS, Since then, Hunt® and Andrat-
skii ef al.® have studied the critical currents of
much narrower thin-film microbridges. Hunt
concluded that the uniform JSL was achieved in
bridges about 1-um wide, but that critical cur-
rents of bridges wider than about 3 um were
smaller than expected, perhaps because of the
entry of vortices. Andratskii et al. concluded that
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the critical currents of geometrically uniform
bridges about 2-um wide could be explained by the
use of an approximate expression for the peaking
of the current density at the edges at low tem-
peratures, where the penetration depth is small.
They also showed that greatly reduced critical
currents could result from the entry of vortices
at pronounced edge defects.

In the course of other experiments,'®'!! we have
accumulated critical-current data for a number of
long, geometrically uniform, well-characterized
tin microbridges ranging in width from 0.3 to 10
pwm, The bridges were cut from 0.1-pm films
using a diamond knife, which gives uniform edges
on the scale of 0.1 um.!! The data on the narrower
(~1 um) bridges agree very precisely with the
magnitude and temperature dependence of JS, but
the wider bridges differ systematically in both
the magnitude and temperature dependence of the
critical current.

We have carefully examined the theoretical prob-
lem of computing the depairing critical current of
the wider bridges taking into account the peaking
of the current distribution at the edges, and we
find that certain approximate solutions give a good
account of the observed data. Our calculations
consider both a rounding of the peak current den-
sity by the nonlocal electrodynamic response, and
an enhancement of the maximum peak current
density above JS' when the coherence length £(T)
exceeds the penetration depth A(T).

II. EXPERIMENTAL DATA

In order to compare our experimental critical
currents with the values expected for uniform cur-
rent flow at the GL critical-current density, we
have plotted the scaled quantity 1,(T)/1.(0), where

Ic(o) = (de)CHC(O)/:ifG_ﬂA eff(o)- (2)
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TABLE I. Sample parameters.

L w d l I1.(0)
Sample  a (¢m)  (um)  (um) (um) (mA)

33 A 3.0 1.0 0.10 0.06 19
35 @] 3.0 1.0 0.11 0.08 23
36 O 2.0 0.7 0.066 0.10 11
37 A 30 0.4 0.066 0.18 7.0
38 u 30 0.35 0.066 0.19 6.3
45 + 37 1.0 0.11 0.063 21
47 ) 50 1.3 0.10 0.07 26
50 0 42 3.0 0.11 0.06 62
51 (@) 19 3.0 0.11 0.07 66
39a A 65 8.0 0.066 0.12 126
39b + 65 7.0 0.066 0.12 110
41 [ ] 75 7.5 0.13 0.06 184
42 A 75 7.5 0.43 0.06 184
43 [} 40 8.0 0.10 0.06 151

2 These symbols are those used in Figs. 1 and 2, re-
spectively.

The width W of each bridge (as well as its length)
was observed directly using a scanning electron
microscope, and the thickness d was determined
by a quartz-oscillator deposition monitor cali-
brated by use of an optical interferometer. The
effective penetration depth can be written Aew(T')
=[1+&,/J(0, T)I]V2x, (T), which gives a close ap-
proximation to the correct mean-free-path depen-
dence due to nonlocal electrodynamics.!? Since
J(0, T), which is the BCS kernel for the nonlocal
relation between J and A evaluated at R =0, is only
weakly temperature dependent, varying from 1 at
T=0to 1.33 at T =T,, we shall ignore this tem-
perature dependence and take J(0,T)=1.2. The
mean free path ! is determined from the observed
dimensions and the normal resistivity above T,
using pl =107 Q@ cm?, The other necessary ma-
terial parameters for tin are H,(0) =306 Oe, £,
=2300 A, and A,(0)=350 A, Table I gives the rele-
vant parameters for all samples for which data
will be reported in this paper.

If the GL theoretical prediction Eq. (1) is scaled
in this manner, the result is a sample-independent
function

L(T) _ H,(T) 2,(0)
1,0)  H.(0) A (T)’

where we will use the function H.(T)/H,(0) mea-
sured for tin,'® and the function A, (T)/x,(0) com-
puted from microscopic theory.'* From the more
approximate temperature dependences H (T
(1l =-¢2)and MT)x (1 - t“)"/2, we see that the
temperature dependence of /_ is approximately
(1 -£2)%(1 +£2)“2 which reduces to the familiar
(1 = £)¥2 mean-field dependence near T,.

In Fig. 1, we show data for a number of long tin

F(T)= (3)

microbridges, all approximately 0.1-pm thick and
approximately 1 um or less wide, scaled in the
manner described above, as a function of the re-
duced temperature t=T/T,. (T, for these films

is approximately 2.85 K, varying by 1% or 2%
from sample to sample.) There are no adjustable
parameters. The dashed curve which runs through
the middle of the data is the function F(T) defined
in Eq. (3). The agreement between theory and
experiment is excellent, with the values of /,(0)
determined above scaling the data to agree with
F(T) to within 10%.

In Fig. 2, we show data scaled in the same
manner for a number of microbridges of varying
widths from 3 to 10 pm. Here we see systematic,
substantial departures from the GL result. These
departures increase in the wider bridges. The
temperature dependence of the data for each
bridge is approximately 1 - {2 except very near to
T,, as may be seen by comparison with the shape
of the dotted curve. These are the data which we
will show are explained by nonuniform current
flow across the width of the bridge.

III. THEORETICAL APPROACHES

To see the importance of nonuniform current
density, we turn to an approximation to the actual
current distribution, suggested by Bowers.!> In
the interior of a wide film, the current is approxi-
mated by
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FIG. 1. Scaled critical currents of narrow tin micro-
bridges showing agreement with simple GL theory.
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FIG. 2. Scaled critical currents of wider tin micro-
bridges showing systematic departures from simple GL
theory (dashed curve). The dotted curve illustrates the
shape of a 1 —#% dependence, which gives better agree-
ment.

J(x)=J(0)[1 - @x/W)2] "2 (4)
while near the edges it is approximated by
JI(x) = (eW/2x, W2J (0) exp[(x — W)/A, ], (5)

where A, =bX\%;(T)/d, e=exp(l), and b is a constant
of order unity. The choice b=2 is common.*'!®

For W >, the two forms match in value and
slope at a distance 31, from the edge of the film.
The total current carried through the bridge is
given by I =37WdJ(0), and the maximum current
density reached is J(3W). If we assume that the
critical current occurs when J(;3W) reaches JS,
then

1,(T) A 002 H(T)
1.(0) '"[Zew] H,(0)’ ®)

where [,(0) is defined in Eq. (2). The temperature
dependence of A, is approximately 1 — {2 like that

observed in the data from wide bridges. However,
for b~1, the coefficient in Eq. (6) is approximately

a factor of 4 smaller than that observed in the data.

This suggests that the current distribution is too
sharply peaked at the edges, in this approxima-
tion.

To solve the general theoretical problem exactly
within the Ginzburg-Landau theory requires the
simultaneous and self-consistent solution of two

coupled nonlinear second-order partial-differen-
tial equations: one for the spatial variation of the
magnitude of the order parameter and the other

for the spatial variation of the vector potential,
where within the superconductor the vector poten-
tial is directly related to the pair momentum.

It is necessary also to consider the variations of
the vector potential outside of the superconductor,
so that the current distribution and corresponding
magnetic fields are self-consistent. This formula-
tion in terms of nonlinear partial-differential equa-
tions is very difficult to solve. In particular, even
for simple geometrical representations of wide
bridges, the two-dimensional problem does not
reduce to a simple one-dimensional one because
the transverse and external variations of the vector
potential contain essential information about the
magnetic field.

Therefore, the standard approach is to separate
the problem of determining the current distribu-
tion using linear electrodynamics from the prob-
lem of determining the nonlinear limits in the
region of peak current density. Within this ap-
proach, we have extended previous work by exa-
mining (i) the effects of nonlocal electrodynamics
on the current distribution, and (ii) a related one-
dimensional nonlinear problem to test whether it
is accurate to equate the peak current density with
JE to determine the critical current.

IV. NONLOCAL ELECTRODYNAMICS

As has been previously noted,?”*''7 the easiest
way to formulate the linear electrodynamics is in
terms of integral equations. The integral rela-
tion between the vector potential A and the current
density J derived from Maxwell’s equations is
given by

- o =, A4m J(F)
A=+ [ o

adr’, )

where ¢ is an arbitrary scalar function. In the
absence of an externally applied magnetic field
and with the gauge choice div A =0, the term V¢
is reduced to a constant C,.

In the geometry of our bridge, shown in Fig. 3,
J and A take the form J(x,v)2 and A(x,y)2, and
are symmetrical about x =0. Equation (7) then
takes the form

A(x,9)=C, - %—fJ(T')lnlr—r’ldx’dy’. @)

Since our bridge is thin in the § direction, we can
assume that the current is uniform across the
thickness of the bridge, and can perform the y’
integration explicitly for y =0. Finally, if we con-
sider a symmetrical grid of 2N +1 points x .,

i =0, N, with the associated values J(x,;,0)=J;
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FIG. 3. Geometry of nonuniform current flow in a
microbridge of rectangular cross section.

and A(x,;,0)=A;, the integral equation (8) can be
approximated by a set of N +1 linear equations of
the form

N
A+ J,G, A%, =Cy, i=0,N @)
i=o

where the contributions from both symmetrically
disposed intervals are included in G;;. Here Ax;
is the length of the interval around x;.

At this point one could assume the London rela-
tion

J(r)==(c/am2)A(r) (10)

to reduce Eq. (9) to N +1 unknowns, and then solve
the set of equations directly to obtain the current
distribution J;. The constant C, serves as a nor-
malization constant which allows the integral of
the current density to be adjusted to the total
transport current /. Such a calculation has been
carried out by Marcus,® and Likharev.* The cur-
rent distribution peaks up at the edges, as ex-
pected.

The relation assumed in Eq. (10) is strictly
local, in that Jis proportional to A at that point,
not to an integral over values in the neighborhood.
Since the critical current depends sensitively on
the maximum value of a sharply peaked current
distribution, such averaging could affect the re-
sult.

To incorporate nonlocality explicitly, we have
assumed a nonlocal relation between J and A of
the Chambers-Pippard form:
3c f R[R-A(")]

- e~ R/E asr'
(4mPENS R* ’

J(F) =

11)

where R=|T -T'| and £' =£;! + (al)"! with @ a
constant of order unity. We again assume that J
and A do not vary in the § and 2 directions, and
again direct our attention to the values J; and A;
at the set of points (x,;,0). The y’ and z’ integra-
tions are carried out numerically. The integral
equation (11) can then be approximated by a set of
N +1 equations of the form

N
Ji+jZA,.K“ij=O, i=0,N (12)
=0

SKOCPOL 14

T T T T
W=1lum
Neft = 2A = O.lum
= 0.3um
° A

1 | 1
(o] 0.1 0.2 0.3 0.4 0.5

CENTER X (um) EDGE

FIG. 4. Theoretical current distributions. Curve A:
Bowers analytic approximation. Curve B: “Local”
solution with A =A¢s. Curve C: ‘“Pseudolocal” solution
with small £ j and A =A¢gr. Curve D: “Nonlocal” solu-
tion with real £;and A .

similar to (9). Then the 2N +2 equations in 2N +2
unknowns J; and A; contained in Eqgs. (9) and (12)
can be solved. Again C; serves to normalize J to
correspond to the total transport current.

One of the well-known effects of nonlocal elec-
trodynamics is to introduce the mean-free-path
dependence of the penetration depth. Thus Eq. (9)
starts explicitly with the London penetration depth
A, (0), but the calculated distributions fall off with
the characteristic length Aer. Thus the use of Aesr
in any local approximation already includes much
of the effect of nonlocality.

In Figs. 4 and 5, we show the current distribu-
tions calculated from these various theories, nor-
malized so that the total current carried in each
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FIG. 5. Theoretical current distributions for a wider
bridge. The curves are identified as in Fig. 4.
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FIG. 6. Peak current density as a function of A, for
various widths. The solid curves are the nonlocal
theory and the dashed curves are the Bowers approxi-
mation, taking the parameter b =4 for best agreement.

case is the same. We have used the values §;
=3000 A, al=d=1000 A, and J(0, T) =1, so that
)\eff =2)LL'

Figure 4 is for a bridge 1-um wide with d =g
=0.1 um. Curve A is the Bowers approximation
(4) and (5) for =1, using A =A.s. Curve B is the
“local” solution of Eqs. (9) and (10) also using
A =X to include the major effect of nonlocality.
Curve D is the nonlocal solution of Egs. (9) and
(12) using £,=3000 A and A;, so that the effects
of nonlocality due to the restricted mean free path
are directly computed from Eq. (11). Curve C is
a “pseudolocal” result calculated using the theory
of Egs. (9), (11), and (12) with a small coherence
length £,=30 f\, but compensating by using Aefr
in place of A, in Eq. (11). Although the Bowers
approximation is too strongly peaked, the local,
pseudolocal, and nonlocal calculations B-D are
really quite comparable, because the principal
effect of nonlocality has been inserted via Aesr into
the local calculations. The other effect of averag-
ing over a neighborhood is to force the current to
half the value it would otherwise have at the very
edge of the bridge. However, the rounding induced
in the current peak does not greatly affect the
maximum value reached.

In Fig. 5 we show the Bowers, pseudolocal, and
nonlocal current distributions for the same pa-
rameters as Fig. 4, except that the bridge is eight
times as wide (W =8 um). Again there is very
little difference between the pseudolocal and non-
local results C and D. Although the Bowers result
A is still too sharply peaked at the edges, it gives
a very good account of the current distribution
inside the strip for this wider bridge. Although
the peak current is important in our critical-cur-
rent problem, it has very little effect on the mag-
netic field outside the bridge, and the Bowers ap-
proximation has been shown to give adequate
agreement with the measurements of such fields
by Roderick and Wilson.!®

Using the nonlocal computation, we have com-
puted the enhancement of the peak current Jpax /Juy
for several widths as a function of A,, as shown
in Fig. 6. In this case we have assumed §,=2300
A and al=d=1000 A. The dashed curves are the
results of the Bowers approximation, with Aetgr =2X,
and taking b =4 to reduce the peak density for
better agreement. We see that for Wd > A2 the
computed results approach the results of the
Bowers approximation, when b is adjusted to re-
duce the sharpness of the current peaks.

When the results of Fig. 6 are used to compute
1,(T)/1,0), again assuming that [ (T) occurs when
the peak current density reaches JSL, we obtain
the results of Fig. 7, which are to be compared
with Figs. 1 and 2. The theoretical results still
show too strong a correction for the nonuniform
current flow, apparently overestimating the cor-
rection by a factor of 2.

V. NONLINEAR PEAK CURRENT DENSITY

‘In order to check the validity of the assumption
that the critical current is reached when the peak
current density reaches JS, we have analyzed
a related one-dimensional problem in which the
y variations of the vector potential are ignored,
which results in an exponential falloff of the cur-
rents toward the center of the one-dimensional
distribution. Thus, physically, this problem is
related to the falloff of the Meissner screening

08— T T T
L NON - LOCAL THEORY
\\ A (0) = 350 A
05 N\ € = 2300 A .
\ §€=750R
\\ d = 1000 &

FIG. 7. Theoretical scaled critical currents using
nonlocal peak current density andJ, =JSL. The dashed
curve is the simple GL theory.
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FIG. 8. Enhancement of J, above JS' from the one-
dimensional nonlinear GL equations when the coherence
length ¢ exceeds the penetration depth A.

currents from the surface of an infinite slab in
parallel fields.

In this one-dimensional case the GL equations
can be written

azQ

2
N ge =fR=378,

Zdzf_ 2 2
poE=fl- 12— QY.

Here f is the magnitude of the order parameter
normalized to the spatially uniform value in the
absence of currents and fields, Q =V¢ — e*A /iic

is the dimensionless gauge-invariant momentum,
g is J/JS, A is the penetration depth, and £ is the
GL coherence length. These coupled ordinary
differential equations can be solved numerically,
assuming symmetry with respect to the center of
the bridge and that d f/dx =0 at the edge of the
bridge. The value of @ at the center of the bridge
is related to the total current carried.

These equations describe an exponential varia-
tion of the momentum with a characteristic length
scale set by the penetration depth, and a depres-
sion of the order parameter at large momenta with
the spatial variation of the order parameter limited
to the scale of the coherence length. If the co-

herence length exceeds the penetration depth, it is
possible for peak current densities larger than
JSL to be achieved, since the magnitude of the
order parameter is held up in the region of peak
momentum by the coherence-length effect. Figure
8 shows the results of numerical calculations of
the magnitude of this enhancement for various
dimensions and coherence lengths.

Similar enhancements should be expected in real
bridges where the current density peaks at the
edge, but does not get exponentially small in the
center of the bridge. If the coherence length ex-
ceeds the penetration depth, then the full depairing
effect should not occur at the sharp peak in the
momentum distribution. Since our clean bridges
generally have a coherence length at least twice
the penetration depth, it is reasonable to assume
that the additional factor-of-2 correction needed
to account completely for the observed magnitudes
of the critical currents of our wide bridges can
be attributed to this enhancement of the peak cur-
rent density above JS,

VI. CONCLUSIONS

We have measured the critical currents of long
uniform superconducting microbridges ranging in
width from 0.3 to 10 pm. In the narrowest bridges
the magnitude and temperature dependence of the
critical current density agree with JSL, In wider
bridges the current density becomes peaked at the
edges of the film and the temperature dependence
and magnitude of the critical current are altered.
We have based our approximate solution of the
theoretical problem on separate calculations of
the linear electrodynamics assuming nonlocality,
and of the nonlinear peak current density assuming
spatial variation of the order parameter governed
by £(T). The primary effect of nonlocality is to
introduce Aer. The linear electrodynamics together
with peak current density JS* explains the tem-
perature dependence of I, for the wide bridges,
although the correction is approximately a factor
of 2 too large. Our nonlinear calculations show
that enhancement of the peak current density above
JSL should be expected when £(T)>X\(T) and may
explain the residual discrepancy.
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