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Landau theory of the martensitic transition in A-15 compounds*
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Based on Gorkov's physical model of a Peierls-like charge-density-eave-driven transition, a Landau theory
has been formulated for the structural phase transition in the A-15 compounds. Pretransition elastic
anomalies, softening of the [110) transverse ([110]polarized) phonon, sublattice distortions, variation of
transition temperature with stress, and alloying and other effects have been accurately predicted, and a
detailed comparison is made with experimental results. Central peaks in neutron scattering are shown to be
nondynamic in nature and no pretransition forbidden (300}reflection is predicted. The I » optic mode does
not go soft at the transition, though its frequency is expected to be temperature dependent right up to room
temperature.

I. INTRODUCTION

The A-15 compounds have been of great interest
since 1954 when it was found that these compounds
became superconductors at relatively high tem-
peratux'es —V,Si at 17 'K and Nb, Sn at 1S K. Since
then, the superconducting properties of a wide
variety of these compounds and pseudobinary al-
loys have been studied in a search for materials
for high-field magnets and electrical power ap-
pl1cat1ons.

The A-15 crystal structure is shown in Fig. 1.
Subsequent to the discovery of their high super-
conducting temperatures, structural instabilities
were observed in many A -15 compounds. For
V,si, Batterman and Barrett' found a (martensitic)
transition from the cubic A-15 structure above
21 'K to a tetragonal structure with c/a = 1.002 at
low' temperature. Testardi et al. ' found that the
elastic constant (C»-C») softens with decreasing
temperature and approaches zero at the martensi-
t1c tx'Rllsltlon tenlperRtul e. S1IQllRx' behavior ls
found 1Il Nb3SQ.

Shirane Rnd Axe ' have determined the symmetry
and atomic positions of the tetragonal phase of
Nb, Sn. As shown in Fig. 2, there is a flattening
of the unit cell (tetragonal distortion), and a pair-
ing of transition metal atoms in two of the linear
chains. Shirane, Axe, and co-workers"' have
also measured the phonon frequency (versus wave-
number and temperature) for the [110]phonon with
transverse polarization [110], which shows con-
sldel able softeQlng right dp to the zone boundary.
Several other A -15 compounds and pseudobinaries
are known to exhibit martensitic transformations
or the precursor elastic softening; only Nb, Sn and

V,Si have been extensively studied. Several excel-
lent review articles exist on the martensitic tran-

sition and the superconducting properties of the
A-15's. ' '

Since the suggestion by Anderson and Blount'
that the structural transition is due to some hid-
den order parameter, theories to date have ex-
ploited the quasi-one-dimensional electronic band
structure of the linear orthogonal chains of tran-
sition metals in the A-15 compounds to explain
the transition as electronically driven, 9 1' 6

though soft optic modes" and the role of vacan-
cies" have also been proposed.

The first microscopic model of the martensitic
transition, due to Labbe and Friedel, ' assumes a
one-dimensional band structure for each linear
chain with no interchain coupling. The Fermi
energy is placed close to the bottom of one of the
empty d bands (the point I' in reciprocal space),
where there is a singular behavior of the one-
dimensional (1D) density of states [n(E)-E ' '].

FIG. 1. A-15 structure, AzB. (Nontransition) atoms
B form a bcc lattice, and the (transition metal) atoms A
form three orthogonal chains along the cube faces.
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FIG. 2. Tetragonal. phase in Nb&Sn (c/a & 1). Cell de-
forrnation is accompanied by a I'&2(+) sublattice distor-
tion.

The transition is regarded as a second-order
Jahn- Teller effect, where the degeneracy of the
1D bands is broken by the tetragonal distortion.
Subsequently, it was shown' that the essential
point of the Labbe-Friedel model is a sharp vari-
ation of the density of states near the Fermi sur-
face. By adjusting the position of the Fermi level,
reasonable agreement is possible with experiment;
however, Mattheiss's'~ augmented-plane-wave-
linear-combination-of-atomic-orbitals (APW-
LCAO) band-structure calculations show that
interchain couplings have effects of the order of
1 eV, which would wipe out any one-dimensional
character of the bands.

Gorkov~~ has noted that there is a degeneracy
in the A-15 band structure at the I point (at the
center of the zone face of the simple cubic Bril-
louin zone) in the cubic phase which is lifted by
pairing of the transition-metal atoms in the tetra-
gonal phase. The energy gap at the X point is
proportional to the amplitude of the optic-phonon
mode which pairs the transition-metal atoms. If
this portion of the band structure lies near the
Fermi energy, the electronic energy will be low-
ered as the energy gap opens up. Thus Gorkov's
model of the martensitic transition is analogous to
the Peierls transition in one-dimensional metals
and closely x elated to the charge-density-wave
transitions in the transition-metal dichalcogenides.

The Peierls transition refers to the instability
of a one-dimensional metallic (odd number of elec-
trons per atom) chain to a displacernent of wave-
vector v/d, where d is the spacing of atoms, in
the presence of a small electron-phonon inter-

action. This causes the neighboring atoms to pair
up, and a gap 6 opens up at the Fermi surface
(k =v/2d), resulting in a lowering of the electronic
energy. The size of the gap is proportional to the
atomic displacements, and the equilibrium dis-
placement at T = 0 is given by minimizing the total
energy, which is made up of the lattice part (pro-
portional to d, ) and the electronic part {which is
reduced by an amount (r '/4Er) [—,

' + ln (4Er/d. )] by
the opening of the gap at the Fermi surface). The
decrease in total energy at the minimum is equal
to the square of the gap multiplied by the density
of states of electxons of one spin at the Fermi sur-
face.

Such a transition is conceivable in the case of
weakly interacting 1D chains in a three-dimen-
sional (SD) lattice. Furthermore, while a correct
treatment of fluctuations in 1D systems shows that
a transition is only possible at zero temperature,
finite transition temperatures are possible in the
case of the quasi-one-dimensional chains in the
3D lattice, and a Landau-like mean-field theory
can work. This is the kind of picture that Gorkov
envisages for the structural transformation in the
A -15 compounds —a Peierls-like electronically
driven transition of the linear chains of transition-
metal atoms in the A. -15 structure which causes a
tetragonal deformation of the crystal (to which the
electron charge density is coupled via the I » optic
phonon).

Gorkov starts'" with a model of three noninter-
acting chains, in which case if the conduction band
is well separated from the s and p bands, then the
Fermi surface will pass through the midpoints X
of the faces of the cubic Brillouin zone, . where the
bands are double degenerate with a finite slope. If
overlap of different strings is taken into account,
perturbatively, the resulting spectrum is shown"b
to have a logarithmic divergence of the density of
states at the X-point energy, and therefore locating
of the Fermi surface near the X point could account
for the high density of states needed to explain the
properties of the A-15's. The elastic constants
are found to have a lnT behavior, as does the mag-
netic susceptibility. The structural instability and
superconductivity, both due to the instability of the
electron spectrum, are intimately related in this
model (as for the Peierls chain) and the transition
temperatures are predicted to be of the same order
of magnitude.

%'e believe that Gorkov's physical picture of the
martensitic transition is correct, and our Landau
theory is based on it. Unfortunately, Gorkov's
microscopic calculations use a one-dimensional
band structure, and can therefore not be applied
in their present for m to the A, -15 compounds. Our
Landau theory is free of this assumption of a one-
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dimensional band structrue; it therefore allows
us to test the model of an electronically driven
charge-density-wave transition without making
inaypropriate assumptions about the band struc-
ture.

The present Landau theory follows along the lines
of the theory developed for the charge density
waves in the transition-metal dichalcogenides. "
The transition-metal d-band electron charge den-
sity is coupled to the optic modes which yair the
transition-metal atoms, which in turn are coupled to
the dilatations of the lattice by a coupling analogous
to the one first included in Sham's lattice-dynami-
cal model. ' The theory predicts the softening of
the elastic constant (C»-C») while the bulk modu-
lus (C»+2C») and shear modulus C~ are tem-
perature independent in this approximation. (Gorkov
has shown that the variation of C~ can be explained
in terms of interchain electronic couplings, which
we have left out of our model. ) The higher-order
terms explain the pressure, uniaxial stress, and
composition dependence of the tetragonality. In
order to study the behavior of the phonon modes
at finite wave vector, a dynamical Landau theory
is formulated treating the electron charge density
and lattice displacement as independent dynamical
variables. The equations of motion in the cubic phase
are solved and the dynamic structure factor calcu-
lated for the (110) phonon with transverse (110)
polarization. The predicted k dependence of the
frequency is in good agreement with the neutron
scattering data. ' The central peak is shown to be
nondynamic, and the predicted temperature de-
pendence of a static impurity peak is in good
agreement with experiment. For the values of the
parameters appropriate for the A. -15 compounds,
no optic mode is found to go soft, though a reduc-
tion in frequency near the transition is indicated.
An extensive comparison of theory with the ex-
perimental results is done in Sec. VII after the
theoretical details (Secs. II-VI), and the relation
with superconductivity is discussed in Sec. VIII.

II. LANDAU THEORY

The central point of a Landau theory is an ex-
pansion of the free energy in powers of the order
parameter and its gradients. The order param-
eter in the present case is the d-band electron
charge density; in the 4-15 structure there are
three possible charge density waves [with wave
vectors (2w/a, 0, 0), (0, 2w/a, 0) and (0, 0, 2w/a)]
which open up an energy gap at the three X points.
These three charge-density waves (CDW's) are cou-
pled, respectively, to the optical phonons which pair
the transition-metal atoms in the linear chains run-
ning in the x, y, and z directions. The optical

r +&~ ~vlcc r

+[Vcp„(r)]' u„+(r) Q„(r)] . (1)

u& (r) represents the coupling to an external po-
tential or an impurity potential. The parameter
a„ is approximately linear in temperature near
the transition temperature

a„=a'(r —T ".), (2)

while the other parameters are temperature in-
dependent. The gain in electronic energy is the
greatest (and the martensitic transition tempera-
ture the highest) when the Fermi energy lies ap-
proximately at the X-point energy E». Expanding

yhonons are couyled bilinearly to dilatations of the
unit cell giving nine coupled modes. Each CDW is
locked into the lattice and its phase is fixed with
respect to the lattice. %he CDW peaks between the
transition metals which are paired fox'm a bond
charge. Thus only the amylitude of the CD% can
vary and one reyresents the CDW's by real order
yarameters y„(r) where p =x, y, w. (Throughout
this paper we will use greek indices to represent
x, y, and z and roman indices to represent 1, 2,
3. Further, since quantities with subscripts will
not necessarily refer to a comyonent of a tensor,
repeated induces will not be summed over except
where the summation is explicitly shown. ) For
definiteness, ia the static theory, one can choose
p, to be the amplitude of the (2w/a, 0, 0) Fourier
component of the charge density. In the dynamic
theory, we choose to factor out the % = (2w/a, 0, 0)
variation from p, (r), which thus contains only
long-wavelength variations. For purposes of com-
paring the Landau theory with the microscoyic
theory and with measurements of the band gap,
it is more convenient to write the free energy in
terms of the magnitude of the energy gap v„(r),
rather than Q„(r). In the static theory near the
yhase transition, the two are simply proportional
to each other so that one has a choice of which
to use as an order parameter. In the dynamic
theory, however, v„(r) adiabatically follows the
optical-phonon amplitude, whereas p„(r) is de-
termined by the electron distribution function
which has a characteristic relaxation time; in
order to present this relaxation process correctly,
one must use p„(r) as the order parameter. So
as to cause least confusion, therefore, we use
the CD% amplitude as the order parameter
throughout; the magnitude of the gay is used only
in Secs. VIID and VIIQ.

We choose the following form for the electronic
free energy:
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0
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(4)

about that maximum, we have

Tg. = T:"-a(S,-Z „)'.
The X-point energy is shifted by the lattice stain
&„„and me can write

In order to determine the coupling of the charge
density to the phonons, me consider the displace-
ments of the transition-metal atoms in the pres-
ence of strain. The positions of the transition-
metal atoms in the [100]chain can be written

8, =[-,'x+x Q„(H0)]+-,) z,

so that

s)) -8 (T —T~ ) +A g E)()) +A 2 Q e)) ), )

TO —Tmax fl(g @D)2

A, = 2az, (Z -Zo),

A, =2m, (Z, -Z').

(6a)

(6b)

(6c)

(7b)8,=[—,'x-x q, (520)]+-,'z,
where x, y, and z are the translation vectors of
the strained unit cell and Q (r) defines the optic-
mode amplitude at the position of the unit cell in
question. It corresponds to the pairing up of the
atoms along the (100) chain for the wave vector
k = (2v/a, 0, 0).

With similar definitions for Q„(r) and Q,(r), the
electron phonon coupling term becomes

Note that both A» and A~ change sign as the Fermi
level passes through E~ and the martensitic tran-
sition temperature goes thxough its maximum. The
sign of the tetragonal distortion (c/a —1) is de-
termined by the sign of A, and the pressure de-
pendence of T is controlled by A,.

E~= d& Qp r Qp r

Finally, the elastic free energy (in the harmonic
approximation) may be written in terms of the
strain tensor e„„and the optic-mode amplitudes
q) (r)

= —
JI d F Q K)~&)))) + Q (2K44e))„ f )))) +K)2t )))E(' ))))) +Q (K&)++)Q)) +G Q Q)) g))

p&v P p&v

The terms involving g„represent coupling to ex-
ternal stresses and permit calculation of the
elastic constants. Couplings of the off-diagonal
components of the strain tensor with external
stresses have been left out, as these variables
mill turn out to be irrelevant in the present theory
within the quadratic approximation.

The elastic constants K„, K„, and K~ are the
unrenormalized values of the conventional con-
stants C»»y C»2~ and C 44, respectively.

At this stage it should be pointed out that only
the three relevant optic modes and the acoustic
modes (described by the strain tensor} have been
included in the free energy; the other 18 phonon
modes have been omitted.

The usual Landau-theory restrictions apply. The
theory is valid only near the transition temperature
and predicts correct temperature dependences only
when critical fluctuations are unimportant. The
order parameters are assumed to vary smoothly
in space with wavelengths much larger than the
lattice spacing. In addition, because of the com-
plexity of the model, many terms which are per-
mitted by symmetry have been omitted. For ex-
ample, the phonon free energy is assumed to be
harmonic and only anharmonie terms appear in

the electronic free energy. Similarly, only the
A variation of the electronic free energy has been
retained; the optic modes have been assumed to be
k independent, while the acoustic modes are as-
sumed to have frequencies varying linearly with
wave vector (T.he latter seems to be valid almost
halfway to the zone boundary. ) We believe that
the omitted terms are unimportant, but one should
keep in mind that not all terms permitted by sym-
metry have been retained. This completes the
static Landau theory.

The dynamic Landau theory follows along the
lines of the dynamic theory for the transition-metal
djchalcogenjdes. In the dynamic calculation
it is convenient to work with the amplitudes
of the acoustic modes 6&(r) rather than the strain
tensor e»(r}. The strain tensor and the acoustic-
mode amplitudes are related by e» =-,' (8„6„+8,5„))
and that permits us to mrite the free energy in
terms of 6„. In addition, to do dynamics, me re-
quire the lattice kinetic energy

m Q& r +M Q& r

(10)
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where m and M are the mass densities associated
with the acoustic and optic modes, respectively,
and the dot indicates a time derivative. The dis-
sipative terms associated with the charge-density
wave are expressed in terms of the dissipation
function

D = d'~y

To compute the dynamic structure factor, we
need to consider the system in equilibrium with
a thermal reservoir, which pumps power lost by
the system because of the dissipative term back
into the system via a random thermal force. Such
a process may be represented by the term

(12)

lem.
In order to put the free energy into a block diag-

onal form, we define the linear combinations

e, =(e„„+~„+e„)/M3,

e, =(e„„-e„)/v2,

e, = (6„,+ E„-2~„)/v 6

(16a)

(16b)

(16c)

3

V,.M,.V, ,

where V,. are the three-component "vectors"

and similarly Q, and Q,. in terms of the Q„and Q„.
In terms of the new variables the free energy be-

comes

where g„(r, f) is a Gaussian-distributed random
function with a correlation function

(g„(r, f)g„(r', f')) =yhT6„„6(r —r') 6(t —t') .

(13)

V, = Q, V, =! Q, , V, = Q,

and M& are the 3 ~ 3 matrices

The dynamical equations are just the generalized
Lagrangian equations of motion. It is convenient
to Fourier transform the space dependence of the
var iables; after doing so, the equations of motion
become

M, = f Ko+3G

K„+2K,

(19a)

1 QD BR
~ +

slee skua

d eK 8E
df sg, 66„, '

(14a)

(14b)

(14c)

f 0

M2=,'f Ko —v3h

0 M3h Z„-Z„

(s f 0

M, = f Ko 43h

(0 v3h K„-K

(19b)

{19c)

III. STATIC THEORY IN THE QUADRATIC
APPROXIMATION

%e consider first the quadratic part of the free
energy in the absence of external stresses in the
uniform limit

g[af,'+K—»&' + (K, + G)Q„+2fQ,Q,]

2K E f „+K f E„„+Gpss„

+ 2h[e (Q, —Q,) + permutations], (15)

where a=a'(T —To) in this approximation. In the
above expression, the off-diagonal components of
the strain tensor (t„,e„„and a„) do not couple
with anything, and therefore do not take part in
the transition. Hence they will be omitted from
consideration until we discuss the dynamical prob-

T, = T'+f'/(K, + 3G)a',

f '/K, a'
1-3h'/K, (K„-K„)

with eigenvectors (unnormalized):

(20a}

(20b}

Thus, the modes break up into groups which are
decoupled from one another. The transition tem-
peratures corresponding to the three modes (orig-
inally p, ) are modified to different extents by the
electron-phonon coupling. The transition tempera-
tures are obtained by determining the tempera-
tures at which one of the eigenvalues of the M,. ma-
trices is zero. It is straightforward to show that
the transition temperatures corresponding to the
three cases and the eigenvectors corresponding to
the zero eigenvalues are given by
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I'' I
Ko+ 3G

0

Ko —sh~/(K» —K„)
—V 3 af

K,(K„—K„)—sh2

where r, =(t,+ f,- 2$,)/v 6. By minimizing the
free energy with respect to (t)„g„and e, for a
given g„we get a set of linear equations which

may be used to get &, as a function of f,

' K„-K„-sf '/(K , -f''/a)'

from which the elastic constant (C„—C») is easily
obtained

-f
K, sh'/(K„-K„) '

W3hf
K,(K„-K„)—sf '

From Eq. (20) it follows that unless G is large
and negative [G & —sh /(K» —K»)], the latter two

modes, which involve distortions of the unit cell,
have higher-transition temperatures, and are
therefore picked by nature. [In the other case,
[i.e., G & —sh'/(K» —K„)], the theory predicts a
Peierls-type pairing up of the transition-metal
atoms in each of the three orthogonal chains with-
out any change in the unit cell; this case is clearly
not identifiable with the A-15 martensitic transi-
tion, so we shall not discuss it any further. )

The quadratic theory thus predicts a transition
at a temperature T involving either a tetragonal
or an orthorhombic distortion of the lattice, but
cannot select either over the other. We shall have
to consider the effects of cubic terms to determine
which type of distortion actually occurs in the
crystal.

From Eq. (20b), the renormalized parameter a„
=a'(T —T ) is related to its unrenormalized value
a=a'(T- T') by

f '/K.
1 —sh'/K (K„-K„)

In order to calculate the elastic constants as a
function of temperature, we must include the terms
involving coupling to the external stresses. How-

ever, from the fact that off-diagonal components
of the stress tensor and its trace Z,e decouple
from the other modes, it follows immediately that
the bulk modulus —,(K»+2K„) and shear modulus
K«are not renormalized and are therefore inde-
pendent of temperature

C „(T)+2C„(T)=K„+2K„,

C~, (T) =K„.
To get the temperature variation of the other lin-

ear combination, (C„—C„), we consider the rele-
vant portion of the free energy

5 = g[ p' +aK,2Q' sf'+,Q, + (K„-K)e', »

—2MshQ, e, —2$,&,],

Bf~ 3h'
C»(T) —c i2(T) =

BE& Ko

sh'f '
Ko

sh'f'/K, '
'"'rc„rr„so*a-rr,) '-

C „—C,2
=K„-K,2

—sh'/Ko. (24)

(We shall use the convention that C,, without any
argument refers to the renormalized high-temper-
ature value. ) In terms of the renormalized quan-
tity (C» —C»), Eqs. (22) and (23c) become

f ' sh, 'f '/K'
Q„=O ——— (25)

C„(T)-C„(T)=(c„-C)

, K,'a„(C„-C„)
2 2

= (C„—C„)[1—(1+P8) '],

where

e = (T —T.*)/T (27)

is the reduced temperature and

P = (C „C„)(K2a'T„*/sh'f-')

is a dimensionless inverse coupling parameter.
Thus the static theory in the quadratic approxi-

mation predicts a tetragonal or orthorhombic dis-
tortion of the unit cell at the (renormalized) tran-
sition temperature T . Furthermore, it predicts
only a softening of the linear combination [C»(T)
—C»(T)] of elastic constants, which goes to zero
at T„; the other linear combinations [C„(T)
+2C»(T)] and C«(T) are predicted to be indepen-
dent of temperature near the transition.

where we have expressed a in terms of the renor-
malized parameter a„. Far from the transition a„
-~ and thus Eq. (23c) gives the limiting high-tem-
perature value of the elastic constant as
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IV. STATIC THEORY —II: HIGHERARDERTERMS

aQ„+bP +K»E + Eo+G Q +2 Q P

+ (2K„e,„+K22e e„„+GQ,Q„)
V

~ 23[2„(Q,—Q,)+pe tet' s]), (29)

where

In order to consider the nature and order of the
actual phase transition in the A-15 structure, we
consider the full expression for the free energy in
the absence of stresses in the uniform limit

F/V = c(QE3+ ape 3+ o(QE2. (34)

A free energy of the type [Eq. (34)] describes a
first-order transition at a temperature given by

=+V 3 e„which are all tetragonal distortions cor-
responding to the tetragonal axis along z, x, and y,
all three of which should be possible on the basis
of symmetry. Thus we see that the cubic terms
help decide in favor of the mode involving a tetra-
gonal distortion, along with a sublattice distor-
tion of the type Q, - (Q„- Q,). The tetragonal axis
may be along any one of the x, y, and z directions,
and for the rest of this discussion, we chose it to
lie a,long the z axis, i.e. , &2=0. With this, Eq. (32)
reads

a„=a+A& +A, (30) T = T + o(2/4&,'&Q.

Below T, the distortion is given by
Near the phase transition, the quadratic theory

showed that only the linear combinations e, and e3
defined in Eq. (21), whose eigenvalues go to zero
at the "Gaussian" transition temperature T, are
relevant. We first express Eq. (29) in terms of the

p, , Q, , and E, Putting the irrelevant variables fII) „
Q„and E, to zero, we have

F = —'V(a((t)', +Q,')+ —,'b(P', +(t)',)'

+-,' A, [e,((f"2 —@',) + 2e,p, (t 3]

+K.(Q', + Q3) + 2f(AQQQ+ AQQ3)

+ (K„-K)2)(&2+~3')+2@ 3 h(eQQ3 —QQQQ)).

(31)

Near T, according to the above discussion, only

e, and e, need be considered. Consequently, from
Eq. (21),

3n, 32n,'n, (T —T'))'n

3n, 3 32n,'n, (T —T))'n (36)

In particular, the distortions at the transition tem-
perature and far below the transition are given by

&,(T ) = —a,/2n„ (37a)

min min 2 3

m m

e, (T «T ) = —sgn(o(3)[a2'(T —T)/2c(, ]'~', (37b)

where in the latter equation we have assumed that
T —T» T —T*, so that the effect of the cubic
term can be neglected.

The transition entropy is given by

so that Eq. (31}becomes

F/V = o(2(ez+ e3}+ o(3&3(e3 —362) + o(2(f 2+ e3),

where

(32)

F „is the free energy at the minimum of Eq. (34).
Schematic plots of e,(T ), e,(T«T }, and bS as

functions of the Fermi energy are given in Fig. 3.
Since a, changes sign as the Fermi energy crosses
the X-point energy, we see that the position of the
Fermi energy relative to the energy at the X point
essentially picks out the sign of the tetragonal dis-
tor tion.

(c)
n, = n,'(T —T ) =-,'a, [K2(C» —C»)2/3h'f '], (33a}

c(3 = (Ah/2v 6 )[K,'(C„—C)2)'/3h'f ']2 (33b)

o(, = b[K,'(C „——C „)'/9h' f ']. (33c) e(T ) ~,E 2 (0)
m o~ ~F3

'x
0

E
EX F

Minimizing Eq. (32) withrespect toe, and&, we get
that for n, 0 0, e, = 0 implies E, = 0, i.e., it is not
possible to have an orthorhombic distortion with-
out the tetragonal one. In fact, the minima for
nonzero distortions correspond to a, = 0 and 62

x
E

FIG. 3. Plots of tetragonal distortion at (a) and much
below (b) the martensitic transition and of the entropy of
the transition (c) as a function of the Fermi energy.
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One more quantity of interest is the jump in spe-
cific heat at the transition. The specific heat C„,
is simply —Td'F, „/dT. ', and is easily shown to be

(To.',"/2n4}[1+ (1+32o.',n, /n, ') '], T & T
C„= (39)

0, ~~~m

This is, of course, in addition to the background
specific heat, which varies smoothly across the
transition. A plot of C„vs T is shown in Fig. (4).
While the jump at T is (2T a2'a, ), we see that for
a weakly-first-order transition, smearing of the
fluctuations near T will cause the jump to appear
to be only a quarter of that value, which is pre-
cisely the jump for a second-order transition

transition temperature much, but just serve the
purpose of picking out the nature and sign of the
distortion. Accordingly, in the dynamic theory,
T* will be assumed to be the actual transition tem-
perature, and fits to experimental data on ultra-
sonic velocity and phonon dispersion will be done
accordingly.

Next, we derive the (nonlinear) relationship be-
tween a (001) uniaxial stress and the transverse
strain near the phase transition. Neglecting vol-
ume changes (since [C»(T) —C»(T)] «[C„(T)
+2C„(T)] near the phase transition), the relevant
expression for the free energy including the ex-
ternal stress is

F/V = Q2E3+ Q3e3+ Q4e3 —$3E „.

(gC )ayyarent m 2 m

2n 2b4
(40)

[We need not consider e, as it does not couple to a
(001) stress. ] Minimizing F with respect to e„we
arrive at the desired expression

OJ

Al 4—
g Ol

E

0
V)

2

"1LATENT
)'HEAT

o I

FIG. 4. Specific heat at constant volume predicted by
the Landau theory for a weakly-first-order transition,
along with the Landau theory result for a second-order
transition (dotted line).

Thus we see that the presence of the cubic term
renders the transition first order, increases the
transition temperature somewhat, and helps pick
out the tetragonal phase over the orthorhombic
phase, which are equally likely in the quadratic
approximation. However, in view of the fact
that the transverse [110]acoustic wave (polarized
along the [1IO] axis), which corresponds to a (e,„
—e„)-type distortion, is found to go almost totally
soft at the transition, and the tetragonal distortion
at T is extremely small (at least for V, Si) we
shall assume for the most part that the cubic terms
are small, in the sense that they do not alter the

$3 2Q2E3+3Q3E3+4Q463p (41)

where the o', , are defined in Eq. (33).
Before going on to the dynamical problem, we

consider the effect of stress on the transition tem-
perature. For the case of unaxial (001}stress near
the phase transition, we can, as before, omit the
volume change and simply add on a term —P,E, to
the right-hand side of Eq. (32). If the signs of the
linear and cubic terms in &, are the same, as they
are, for example, for a. compressive (001) stess
in a crystal of Nb, Sn where the tetragonality is
negative (c/a & 1), then for small stresses the tran-
sition will take place at a higher temperature and
will be of the E, type. However, for the case of
V,Si, where the tetragonality is positive, a small
compressive (001) stress causes it to pick its long
axis along either x or y direction. For sufficiently
large stress the transition in both cases is sup-
pressed; if the cubic term were absent, it would
take an infinitesimal stress to smear out the tran-
sition and cause a smooth variation of the distor-
tion, and thus the stress needed to wipe out the
singular behavior is an estimate of the magnitude
of the cubic term. The change in transition tem-
perature caused by stresses is (as can be seen
from purely dimensional considerations) of the or-
der of (T —T*), the cha. nge in transition tempera-
ture due to the cubic term. For V,Si, this varia-
tion has been studied"' and found to be no more than
0.1', and so any fit involving the cubic term must
use values consistent with this result.

The pressure dependence of the transition tem-
perature is seen directly from Eq. (30). Since e,
does not couple to any other coordinate bilinearly,
the net effect of pressure is to change the transi-
tion temperature according to
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dT dT

dt's

3 A2
dP dE, dP C„+2C„a' (42)

Like A„A, changes sign as the Fermi surface
passes through the X-point energy; consequently
the sign of the pressure dependence of the transi-
tion temperature will be related to the sign of the
tetr agonality.

For studying the dynamics of the system in the
high-temperature phase, the cubic and higher
terms may be omitted. Further, it is convenient
to work with the acoustic mode amplitudes 5„
instead of the components of the strain tensor
[&„„=—,(8„5„+S„5„)].We write the quadratic part
of the free energy in terms of the space-Fourier-
transformed variables

1
g&(a+c,k'. +"»I&..-I'+(&.+G)IQ.gl'+f(A.*-Q.a+Q,*at.a)+[(+ -&-)k'. +& k']l~.;lq

l

+Z f(r +!r )~.!!!!!!:+~a:"'vI'+~!!!P'*!!*'W- c &+!'!!:!N!:c*')+~J! (6!* -v ")]+!!l).
(42)

z = -gg (M
I Q„„-I'+mls.-„1'), (44a)

Expressions for the kinetic energy, the dissipa-
tion, and the thermal force terms follow directly
from Eqs. (10)-(12)

z„=[a+ (c, + c,)k'] I!t'» I'+ (a+ c,k')(I tt'„I'+
I @„I')

+&„k'I &.,I'+& ~(l &„I'+
I &. I')

+ [tkk 5ea(Q» —Qaa) + c c ]+ (ufo+ G) Q Q!!aQ!!a

+fQ (@aaQaa+ 'Q!art !!a!)+ G Q Q Ill!Qvl! (45a)
il,gf:P

(441)

j
& =-p p (r.*;i.;+a.;0:;)

Since the r-space functions are real, gf = P g for
each of the Q„"„, Q„-„, 6„-„, and g„-„; consequently
wave vectors q a.re only coupled to -fl, and we
may write Eqs. (43) and (44) as a sum over half
of k space, treating each wave vector independent-
ly.

One may write down the equations of motion (14)
for arbitrary direction of the acoustic wave; this
leads to a set of nine coupled differential equations
which may be converted to nine coupled linear
equations by Fourier transforming all variables
in time. However, both in the calculation of the
frequency of the acoustic wave and the dynamic
structure factor, this is messy, and therefore
we shall restrict ourselves to two paxticular
directions of the wave vector —along the [100]
and [110]directions —for which extensive experi-
mental data exist.

A. Wave along [100]direction

In this case k„=k, k, =A, =O. Then, keeping
only the k and -k terms as explained above, we
have

Transforming to the variables

e, =(e„~.,)/~2 (46)

&.™(IQ.»I'+ IQ, I'+ IQ I')+ t Z I &.,I',

&.=»(14:I'+
I @.I'+ I + I')

fta=[&.*a@.,+(2) '"(Z„*,+r.*,)k.
+(2)-'"(r,', -r.',)@ ]+c.c.

(47a)

(47h)

(4 Vc)

The equations of motion are obtained easily;
Fourier transforming all variables in time, i.e.,

j.
g,(t) = — dec q,(to)e'"',

we obtain the set of equations

and Q, defined similarly, we get

r, = [a+ (c, + c,)e] I @„I'+ (a+ c,H)(l!t', I'+
I @ I')

+&,.k'I &:I'+&..k'(I &,.I'+ I &..I')

+ v 2 zkk(5„*aQ —Q*5»)+ (Ao+ G)
I Q.el'

+(Ke+2C)IQ, I +Eel Q I
+ v 2G(Q„*aQ,+Q,*Q»)

+f(rt!„„Q»+!t!,*Q,+ tt!*Q + c.c.). (45h)

Expressions for the other terms in the dynamical
equations are
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O C2

O Q O 0 O

+
Q' Q'

"3

0 0 0

5, and 5„ the transverse [100] waves, are found
to decouple completely, and therefore show no
pretransition effects. (Thus the shear elastic
modulus C,4 is equal to the unmodified K~, and
temperature independent, as in the static theory. )
The equation for the longitudinal [100]wave is
easy to decouple; the result is

((a+ c,k'+is&y) [(K»k' —m&o')(K, —M &a') —2h'k']

f'(K-„k ' —m (2)')}5„,=i hk f(g„g,~-) . (50)

Q
O O O 0

I

Q 0 0

0 0 0 0 0 Q 0 ' 0

The frequency of this mode is given simply by
the zero of the left-hand side of the equation. For
small values of k, we may assume that the zero
of interest is much below the optic frequency (K,/
M}' ' and so the term M(2)2 may be omitted in com-
parison with K, . If one further neglects the width
of the mode (which is not a bad approximation for
the longitudinal [100] mode, which does not go
totally soft), one obtains, for the acoustic fre-
quency, the expression

O 0 O + O

"3

Q
O O

(51)

+
0 0 0 0 4 0 N 0 0

+

where we have expressed the result in terms of
the physical constants C,~ and a„, related to the
unrenormalized ones K,&

and a by Eqs. (24} and
(26). The frequency far away from the transition
is simply &o~ =(C»/M)'~'k, as it should be. At
the transition temperature, in the long-wavelength
limit, Eq. (51}reduces to

+

O O O ~u O + O 0 O
+

+

C„, 2
2(C„—C„), ( 2(C, —C„)

)m SCx~ SC

(52)

"3

[Sa C2

I

O 0 O 0 0

0 0 0 0 0 0

Thus the frequency at long wavelengths is re-
duced by the presence of the additional factor,
which turns out to be 0.6-0.65 for both V,Si and

Nb, Sn.
The temperature variation of the [100] longitudinal

sound velocity (k-0) follows directly from Eq.
(51):

+
O O 0 O O 0 0

+

~(T) 1) 1 ( 11 12)/2C11
1+PH

(58)

where P is the coupling constant defined in Eq.
(28), and 8 is the reduced temperature, Eq. (27).
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8. Wave along [110jdirection

Here k, =k„=k/v 2, k, =O. We write the free
energy and other quantities in terms of the vari-
ables

'It'a+ 4a + 4~e
Fs

+

4~&+ 4a —24&~ .9'3 ~6

I ag')
Q"

Q Q Q

q, and g, defined similarly in terms of Q„~,

Qyg~ and @go~

5,=(6„+5„,}/v 2

Q
wicks

I

Q Q Q Q
I

l

mt Al

Q

and ~„. Then

+&~~'I 5.a I'+(a)'"f»(5'e, —5 qe)

—(f»/~a(6,*q, 5.q,*), (56a)

&.=M(l@, I'+ li. l'+ I@ I')

+~(l&.l'+ I&-I'+ I6 I')

D.= »(Ii I'+
Ii.I'+

I i, I'),

('+"'+ "u')
I & I'+('+'p'+-'"&')

I e. I'

+(a+e,k'+ —',g,p')
I @, I

a

+ (&/3&2)cP'(yey, y yey, )

+f(4x*ttix+ AaeQa + 43e@,+ &.c.)

+«.+2G) I@I'+&.(Ie. l'+ le I')

+ (E„+2K +x„)P'I—5, I' —,'(If, It )tt,

Q

I

+

+
N

+

4
+

+

rt($
+

+

Xk gyp g gp e g~y —g~p
P'++ ++

W3

gxk gpss ggp
W6

3+ ~ ~

The equatio», oi motion are

(56d)

+

Q Q Q

+
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The transverse [110] mode polarized along [001]
decouples and thus shows no softening at the tran-
sition, in agreement with experiment. The longi-
tudinal [110]phonon shows some softening, and

by just comparing the matrix for this case with
the longitudinal phonon, we can write down its
frequency (under the same assumptions}

C„+2C44+ C12 k2(d
2m

h2f 2

Ko(C„+2C,4+ C„)

(
3h2f'/K'—

a„+ (—,'c, + c,)k'+
ll 12

(56)

which predicts finite velocities at T = T„*, and a
softening even less than the [100] longitudinal case,
as found experimentally.

To deal with the transverse [110]phonon polarized
along [1TO] (6 ), we consider the case where the
wavelength is long enough to permit us to neglect
the off-diagonal (f)1/3 terms, which contribute
O(k') terms. Then P, and Q, drop out of consider-
ation and we obtain the equation

((a+ c,k'+ -',c,k + i(uy)((KO —Mar 2)

x[—,'(K» K»)k —me@ ] —~2h k ].

f'[~ (K„—-K„)k —m(u ])6

= '&hkf( gxa+ g.a 2g.d—

The sound velocity (k-0) is easily obtained by
dropping all the k- and (d-dependent terms except
[—,(K„-K»}k~ —m&u']. The result is

or

aP» = [(C,~
—C,2}/2m]k2[1 —(1+Pe) '],

v(T) = v.[1 —(1+Pe) ']'",

(60a)

(60b)

where

(61)

is the sound velocity far from the transition. Note
that v(T) and v„ in Eq. (53) refer to the [100]longi-
tudinal wave and should not be confused with the
ones in Eq. (60b).

It is tempting to write down an expression for
the frequency at somewhat larger wave vectors
in the manner we arrived at Eq. (51); however,
since this mode goes totally soft at T* in the qua-
dratic approximation, we cannot neglect the width
term iury, and in order to arrive at a correct ex-
pression for the frequency, we must compute the
dynamic structure factor, which is just the Fou-
rier transform of the correlation function (5*(t)
6 (t')). To do that we calculate the correlation
function for a particular random force g, using
Eq. (59), and then average over the ensemble of
functions g„according to Eq. (13). The result
1s

Sz(k, (o) = 6k'k'f 'ksT/[((a+ ~8 c k +c,k ) ([(K» -K 2}k' —m&aP](Ko-M&u') —3h'k')- f '[(K» -K») k2 —mug'])

+ sly'([(K» -K») k' -maP](KO-M&aP) —3h'k'}'] . (62)

We are interested in small k, when the acoustic
frequencies are much smaller than the optic ones.
For the region of interest (~ -~„, the acoustic fre-
quency), we may neglect M&@' in comparison with
K„and then the expression (62) may be put in the
form

Il = 3h2f '/Koy(C„—C„)

is a frequency characteristic of the coupling
terms;

u)~„= [(C„—C,2)/2m] ' ~'k

(64b)

(64c)

20ksT/(C» —C,2)k
6( & ) [(r )-&(I gQ) g/) 2+ ~2 /(I /)& ~

(63)

where

r, (T) = y/[a„+ (—-', c, + c,)k'] (64a)

is a relaxation-time characteristic of the dissipa-
tion process, which diverges like (T —T*) ' at the
actual transition temperature T* (in the quadratic
approximation) for vanishing k;

is the acoustic frequency far from the transition,
and x= co/sr~„ is the reduced frequency.

Equation (63) results directly from the equations
of motion, and is valid for x«(KO/Mm2~)'~'. For
small k, the term on the right-hand side is much
larger than unity, while the region of interest is
x-1, so this is not much of a restriction. The ex-
pression (63) is formally identical to the one ob-
tained by the authors for the transition-metal di-
chalcogenides; however, because the anomaly
here is at k =0, the results are qualitatively dif-
ferent. In the long-wavelength limit (k -0),
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S,(k, ~) exhibits a peak at the frequency given by
Eq. (60a), which vanishes at T = T„*. The attenua-
tion of the wave in this limit is easy to calculate,
and the resultant mean-free pa, th turns out to be

LOW k

Case a
HIGH k

A, = [(1+Ov,)"'/(o~p,'II]v „, (65)

where s is defined in Eq. (61) and vo= v~~(T)
The above expression is valid as long as the k-
dependent term in w~ is small compared to the
constant part, which translates to the condition
u2~«10258', where 8 is the reduced temperature
(27), using values obtained by comparison with
experiment (Sec. VII). This is satisfied by ultra-
sonic frequencies up to about ~0 of a degree from
the transition.

For higher wave vectors, the behavior of S,(k, &o)

is dependent on the various par'meters. . If we as-
sume that A~ terms are not important, then basi-
cally two cases arise

(a) (em~ &2Q/v~(T~)

(b) (u',„&20/v~(T„*)

(66a)

(66b)

At any given temperature T & T*, in ease (a),
S,(k, u&) has two peaks at the frequencies given by
Eq. (60a) in the long-wavelength limit. As k is in-
creased, the peak shifts to higher values of x= &u,/
~~, according to the relation

~a ~a 'da

which may be put into a form analogous to Eq. (51)
by expanding it in powers of k' and retaining only
up to 0(k'} terms

(o~=(u~[l —(I+P8+tik') '], (68)

Pc, + c,) —yv'/2A
y

and 0 are defined in Eqs. (61) and (64b). Com-
paring Eqs. (68) and (51) we see that the main ef-
fect of retaining the width of the mode is a modifi-
cation of the coefficient g. While Eq. (68) is ap-
proximate, its result is exact both in the small-k
and high-8 limit, and can therefore be used to fit
experimental curves instead of Eq. (6'I) in the
entire range.

In case (b} the situation is more complex. Near
the transition, as k increases from zero, the peak
moves to smaller x (negative dispersion) and
Q(k, u) has only a central (~ =0) peak for inter-

3

40

I I

x(=~/~ )
km

1 i.

FIG. 5. Qualitative behavior of the acoustic structure
function 8& (k, ~) for the [110]transverse mode, polarized
along 1IO for a given temperature T & T~~ for different
values of the wave vector, for the two cases (a) and g)
of Eqs. (66).

Case (a) Case (b).

k k

FIG. 6. Dispersion curves for the transverse f110]
phonon (polarized f.110)) for Eqs. (66).

mediate k. As 0 is increased further, additional
peaks develop forx' s 1, which increase in size with A,

and take away all the spectral weight from the cen-
tral peak which eventually disappears. At higher
temperatures, the height of the central peak goes
down roughly as (T —T*) ' and the integrated in-
tensity as (T —T*) '. For still higher tempera-
tures, depending on the extent of the inequality
Eqs. (66), the behavior changes to Eq. (66a) where
the central peak is absent for all k. The qualita-
tive behavior of S, (k, &u) in the two cases are dis-
played in Fig. 5 and schematic dispersion curves
ln Fig. 6.

While it is tempting to associate theA-15 com-
pounds with Eq. (66b) in light of the observed cen-
tral peak in Nb, Sn by neutron scattering, the net
experimental evidence seems to be in favor of Eq.
(66a). In fact, in Eq. (66b), the acoustic phonons
in ultrasonic measurements and neutron measure-
ments near the transition are different, and pho-
nons in the latter should show very little softening,
contra, ry to experimental evidence; also, the dis-
persion for ultrasonic yhonons is predicted to be
negative. The divergence associated with the cen-
tral peak is also not in accord with experimental
results.

The (Q,Qg correlation function may be calcula-
ted in an analogous manner and leads to the ex-
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pression

So(k, u) ={[2(K»—K,gk' —m&a&']'/ —', h'k')S~(k, &u).

(70)

Thus So(k, &u) exhibits basically the same behav-
ior as S,(k, &u), except that the acoustic peak is
suppressed at long wavelengths by a factor k',
while the optic peak is enhanced by the same fac-
tor. In the 4=0 limit, Eq. (70) leads to

4Q'I, T/yK,
[(vo) (1 -x') +Q -Q'x']'+ (vox'(I -x')' '

(71)

where v, (T) and Q have been defined in Eqs. (64a)
and (64b);

decouple as before, and we consider the case for
%. along the [110]direction, where the central peak
has been observed experimentally. The only rele-
vant mode near the phase transition is the linear
combine. tion of Q„Q„and 5 [e, of Eq. (21)], which
goes soft at T*. Omitting the off-diagonal $1(t)3
terms as before, the relevant portion of the free
energy (upto quadratic terms) becomes of the form
[notation of Eq. (57)]

&» =[n+(c.+ '.c )-I']]y.l'+K.Iq, l'+f (y,*e.+e.*e.)
1/2

+ (u. ,4.*+ua*.p.),
where

n' =0+f'~'Z, y (72a)

is another characteristic frequency of the system,

,~-, u, (r) +u„(r) —2u, (r)
Qp3= d Te

v6 (74)

&a&0
= (Ko/M) 'i

is the optic frequency far from the transition, and
x = e/z, is the reduced frequency [different from
Eq. (63)].

Far from the transition, So(0, w) exhibits peaks
at x'=1, as expected. As the temperature is low-
ered, the peaks shift to lower values of ~x~. In the
large dissipation case, (2 QQ' & +,'), a central peak
appears, and rises in height to a finite (nondiver-
gent) value at T~. For small Q', the optic peak
remains at a finite value of x. However, if Q' gets
close in value to &2(c&„so that (Q" —2uP)' &2(~',
—2QQ'), then the optic mode goes totally soft, and
merges into the central peak at a temperature
above T*; the same behavior ensues for all higher
Q, so long as the large dissipation condition is
satisfied. In the weak dissipation case (2QQ' & &uo),

the optic mode has a finite frequency all the way
up to T*, and no central peak is present for any
g)g4

VI. IMPURITY EFFECTS

Impurity effects on charge-density-wave transi-
tions are fairly well understood from the work on
transition-metal dichalcogenides. "' The impurity
potential creates a charge-density-wave cloud
around the impurity even in the normal state. This
cloud can be observed as a diffuse peak in x-ray
or neutron scattering and is one source of the
"central peak. " We compute the impurity contri-
bution to the correlation function (6(r)6(P)) by ob-
taining the result for a given impurity distribution
with potential u(r) and then averaging over an en-
semble. We write the free energy in k space as in
Sec. V; this time including the coupling to the im-
purity potential. Modes for different wave vectors

with k=(kk0)/v 2 in this case.
Minimizing I'~ with respect to Q,*, Q,*, and 6*

and solving for 5 we get

-&6 ihfu~, /k
K,(C„—C»)[a, + (c, +v' c,)k'] '

so that the structure factor is

6h'f '(u,*,ug, )

(75)

1 c,/6 +c,
Wi~ =const (T —T*)+ ' ' k' .m (77)

Regarding the attenuation of the transverse [110]
phonon polarized [ITO] due to impurities, one can
extract the dependence on temperature from the
following qualitative argument.

For a single impurity at the origin the perturba-
tion to the Hamiltonian is of the form

=Po ~I ~ + L3,E; xox) . 78
i ~8~ys

The temperature dependence of the attenuation for
both terms (for constant frequency) is the same,
as will be apparent later in the argument, so we
consider only the first term which is easier to deal
with. In terms of phonon creation and annihilation
operators, that term is of the form

(76)

While the ensemble average of u» vanishes,
(ug, u») does not, and so for small k, the structure
factor has a central (&u =0) peak due to impurity
scattering whose intensity diverges as (T —T*) '.

Equation (76) may be put in a form which facili-
tates comparison with experiment [I~ O'S, (k)]:



14 LANDAU THEORY OF THE MARTENSITIC TRANSITION. . 1021

aX,-Z (uq;, or~, )'~'(at, -a&Pa- -at, ),
a, a', q

(79)

impurities on the B sites. This is in fact the case,
and the martensitic transition has been observed
in B-site alloys like Nb, Sn, ,Sb, and Nb36ey AQ .

Ft;.-2 l(f I«, I»)l'6(~~ —~ 1;.),
f

(80}

if we consider only elastic scattering. The only
final states to be considered then are one-phonon
states and we get

q'dq d(cos8)dg (uk, (u 6(&ut; —(u- ).
~t

(81)

At this stage we use a model dispersion curve to
emulate the A -15 compound case. One suitable
choice is to take the transverse polarization with
g = [110] for 5 = [110]with a dispersion

(u, -q[si n8 (+T —T*)]' ',

where 8 is the angle with [110]direction as the
polar axis of integration, and the remaining &, ~

Ijy' 4g) are taken to be temperature independent.
Then the transformation of variables from q to
&u~ (g'og ) is temperature independent and thus
for constant ~&, the contribution to I k is also
temperature independent and uninteresting. For
g' =g, transforming to &~ as an integration vari-
able we get

(82)

d(cos8}
-~ [sin'9+ g(T —T*)]'~' '

Fk ~k /(T- T*}"
(83)

where 0,0' denote polarization.
From Fermi's golden rule, the rate of the trans-

ition (phonon of wave vector k, g - anything) is

VII. COMPARISON WITH EXPERIMENT

In this section, we compare the predictions of
our model with experimental results; as a conse-
quence of the fitting, we are able to obtain many
of the parameters of the Landau theory.

A. Elastic softening

According to our model, the only temperature-
dependent elastic constant is [C»(T) —C»(T)]. Ex-
perimental results on V,Si and Nb, Sn indicate that
this bulk modulus [C»(T) +2C»(T)] is only weakly
temperature dependent, while C«(T) does show
some softening (approximately 6% for V, Si and

30%%up for Nb, Sn), which can be explained" on the
basis of interchain electronic coupling which we
have omitted. Thus the results are qualitatively
in agreement with experiment. Quantitative fits
have been made to the transverse 110 sound velo-
city (polarization along 110), using Eq. (60b), and
the results for both V,Si and Nb, Sn are shown in

Fig. 7 (experimental data from Refs. 2 and 18).

Si

O
Qp

2-
E

e~0
1—

which leads to an attenuation equal to

F~, /v-„, -(u„, /(T —T*). (84)

I

100 200
T('K)

l

300

For the other term, by proceeding similarly we
can see that the (T T") ' depen-dence comes out,
though the & dependence is different. Also, the
essential point of the dispersion curve (82) is the
(T —T~)' ' dependence of &u-, for a [110]transverse
wave polarized [1TO]and the 8' dependence around
the [110]axis for the elastic constant.

In the CDW state in transition-metal dichalco-
genides, '" the impurities pin the iCDW and strong-
ly depress the lock-in transition. Impurities on
the transition-metal sites have a strong effect on
the CDW, whereas the nontransition atom site
impurities have only a weak effect. We expect
this experience to carry over to the A-15 com-
pounds-the martensitic transition is expected to
be strongly suppressed by impurities on the trans-
ition-metal (A) sites, but only weakly affected by

O
Qp
V)

E
O

O
1

Sn

1000 200 300
T( K}

FIG. 7. Fits to the transverse [110]sound velocity (po-
larization f110])in V3Si and Nb&Sn as functions of tem-
perature [Eq. (60b)] along with the experimental points
computed from the data of R~fs. 2 and 18.



R. N. BHATT AND %. L. McMILLAN 14

The agreement is quite remarkable right up to
room temperatures and shows that the experi-
mental data are got, conclusive evidence for a log-
arithmic dependence of elastic constants on tem-
peratures as claimed by Gorkov. The effect of
cubic terms which have been neglected is only
within a few degrees of the transition, and ex-
plains why total softening is not observed in prac-
tice. From the fit, we obtain the constants

C» —C» = 3.1& 10"dyn/cm',
P =(C„—C»)EP~'T*/3&'f'=0. 31,

C„—C» =3.03&& 10" dyn/cm'
Nb Sn

It is interesting to note that P is approximately
the same for both compounds, which says that the
"healing" temperatures and transition tempera-
tures are proportional.

Using the above-determined constants and the
(constant) value of the bulk modulus from Testardi, '
we fit the [100j longitudinal phonon velocities for
V,Si and Nb, Sn in Fig. 8. The agreement is again
very good, considering the fact that no additional
parameters have been adjusted. From Eq. (58)
we can compute the softening of the longitudinal
[110]phonontobeabout ling&& for both V, Si and

Nb, Sn; the experimental figure is close for V,Si,
but somewhat more than 15% for Nb, Sn, which is
due to the softening of C«, not predicted by our
model.

8. Phonon dispersion

12

10

E—8

C:

O

o 4
CL

295 K

120 K

60 K

We next consider the dispersion curves for the
transverse [110)phonon polarized along [1TO]at dif-
ferent temperatures, as determined by neutron
scattering. ' The approximate formula, valid for
small wave vectors, is Eg. (88). With P deter-
mined, we fit the curves with a single adjustable
parameter q, and the results are shown in Figs.
9. We see that the phonon-dispersion curves near
the transition bend upwards at small k', and asym-
ptotically approach the high-temperature curves
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FIG. 8. tl00] longitudinal sound velocity in V&Si and
Nb3Sn as functions of temperature [Kq. (53)] . Points are
computed from the data of Befs. 2 and 18.
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FIG. 9. Fits to the transverse tll0] phonon (polarization

tll0]) dispersion curves for (a) V&Si and (b) Nb3Sn, using
Kq. (68) vrith a single adjustable parameter, q.
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at high k. The values of q obtained from the fit
al e

12(a /Bv2) Nb3Sn,

25(uo/Bw') V,Si,

where ao is the lattice spacing (in the cubic state).
The result for V,Si is approximate, since no data
were available for temperatures near the trans-
ition. The correlation length $ is given by g

=(q/p8)' ', which, according to the Peierls model

should be,

dEp E~a0
r(T) dk + r(T)'

This implies q~ pa, (E„/A(0)}'or rpo T ', if the
band structures of V,Si and Nb, Sn were identical.
Actually, qa,'- T ' seems to be more in agreement
with the fits, showing that there are some differ-
ences in the band structrues of the two compounds
beyond just the effects of lattice size.

C. Ultrasonic attenuation

Equation (65) predicts an &u' and a (T —T~) '~'

dependence of the attenuation of [110]shear ultra-
sonic waves (with [110]polarization) near T,
which is in qualitative agreement with the ex-
perimental results in V,Si.' However, as shown

in Sec. VI, other means of attenuation such as im-
purity scattering are also enhanced near the trans-
ition temperature (simply because of the slowing
down of the velocity), and thus a quantitative fit to
experimental data does not yield any meaningful
results. If we try to account for all the attenua-
tion in terms of the dissipation term D, we obtain
estimates of fi [Eq. (64b)] and 0' which imply a
"central" peak in the optic structure function which

would show up as pretransition forbidden (300)
Bragg reflection above T, in disagreement with

neutron scattering results. In fact, we may ob-
tain an order of magnitude estimate for y from
resistivity data (Sec. VII J), and with that esti-
mate, the magnitude of ultrasonic attenuation is
much too low to explain the experiment, indicating
that the electron charge-density relaxation pro-
cesses are not the explanation of the high ultra-
sonic attenuation observed near the transition in

V,Si.

TABLE I. Static theory parameters for NQSn. Values
are expressed in terms of a number multiplied by a func-
tion of the dimensionless variable R =—13k /Ko(C&&
-C &2) j~/~, vrhere the function has a value unity for R = 1.

Quar tity Value

4.4xiO eV ' A 'K

Comparison of theory with the temperature de-
pendgnce of the central peak intensity for the
[110] phonon with [110]transverse polarization"
(Sec. VII H) gives an estimate (T —T*)= 2-3 'K.
Thus, precise magnitude of the cubic term is dif-
ficult to estimate; presumably it is somewhat
sample dependent too. However, its effect at low
temperatures is governed by the ratio (T —T")T
which is small. So we use the quadratic theory
to determine the constants from the tetragonal and
sublattice distortions at low temperatures. Ne
shall, in this section, work with the energy gaps
v„ instead of the charge-density wave amplitudes

P&, which are simply proportional to each other,
as explained in Sec. II. The corresponding para-
meters will beA' instead of a' and E instead of f.
Any quantity involving only the combination (a'/f')
will, of course, be the same in both cases.

The only coordinates to have nonzero values
below T are &„Q„and v„which are propor-
tional to one another in the ratio given by e, of
Eq. (21). At 4 'K, e, =0.0051, while Q, =0.023A."
The gaps v, and e, are approximately 4k~T =16
meV, which yields

'"'"--'-' -022 A-
1 + 3h'/K, (C„—C„)
&3hE/Ko(C„—C„)=0.23 eV '

~

Withthe value of P and (C„—C„}from Sec. VII A,
we can obtain all the relevant static theory param-
eters for Nb, Sn in terms of a dimensionaless var-
iable R = WSh/[K, (C» —C»}]' ~'. The results are
tabulated in Table I. As will be seen in Sec. VII J,
the parameter R may be determined from the var-
iation of the optic-mode frequency with tempera-
tures, though it is likely to be of order unity.

For V,Si, early measurements" put a limit on
sublattice distortions of Q„&0.005A which gives
a Q/e ratio close to that of Nb, Sn. Thus, higher
resolution work is necessary to obtain the static
theory parameters for VSSi.

D. Static theory constants for N13 Sn

For Nb, Sn, experimental data on the tetragonal
deformation' indicate a first-order transition.
The data yield a spontaneous deformation e,(T )
= 1.5X 10 ' and (T —T*)=4 K [Eqs. (33)and(35)].

(C&&
—C&2)

0.24j(i+R )/2R j eV A

O. i3 f(f. +R')/2R'] A 4

i.3 eVA 3

0.32[(f+R )/2R] eV A
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E. Nonlinear stress-strain relation in V3 Si

F. Heat-capacity data

Since the tetragonal deformation in the crystals
is small, anomalies in the heat capacity are tiny
and results are necessarily of limited reliability.
Consequently, only a rough agreement with ex-
periment is called for. For V,Si, assuming the
cubic term to be absent (parameters of Fig. 10),

N
E

4

N
N

I~Small cubic
term

I

Cubic
term
absent

2 4

(([O 4) ~
FIG. 10. Nonlinear relationship between uniaxial

stress and transverse strain in V3Si at 25 K calculated in
the absence of a cubic term and with a small cubic term
which would modify the transition temperature by 0.2
(dotted line), along with the experimental data (Ref. 17b).

For V,Si, measurements of the tetragonal dis-
tortion' indicate "a rapid but smooth" change in
the tetragonality near the transition, which im-
plies that the transition is either second order,
or very weakly first order. Putting 0,,= 0, one
can determine the ratio n,'/a, from the measure-
ment of the deformation at temperatures just above
the superconducting transition, and the resultant
(nonlinear) stress -strain plot at 2 5 'K obtained from
Eq. (41) is shown along with the experimental mea-
surements of Patel and Batterman"" in Fig. 10.
The discrepancy that exists between the calculated
curve and experiment may be resolved by the ad-
dition of a small cubic term which would cause
a modification of the transition temperature of as
low as 0.2 'K, and this explains the observed in-
dependence of the transition temperature'" on
unaxial stress to within that limit. The correspon-
ding spontaneous deformation (at T ) is somewhat
less than 3 of the low-temperature value for V,Si.
However, because of the proximity of the super-
conducting transition temperature, a quantitative
fit to the data is not very meaningful.

we obtain a specific-heat jump at the transition
[Eq. (40)] of 0. 7 J/mole deg, which compares fa-
vorably with the experimental value of 0.5 J/
mole deg. '" Including the tiny cubic term neces-
sary to obtain agreement with the nonlinear stress-
strain curve would not affect results to any no-
ticeable degree.

For Nb, Sn, using the estimates o,/o, -2.9
x 10 ' and (T — T*)-4 'K (Ref. 19), we obtainaheat-
capacity jump of 3 J/mole deg and a latent heat
of approximately 3 J/mole, compared to the ex-
perimental anomaly of a jump of about 3 J/mole
deg. "" No sharp latent heat peak is obtained ex-
perimentally; only a weak cusp, which indicates
smearing of the transition.

G. Magnetic susceptibility drop below the transition

According to the Peierls transition model, the
coefficient of the term quadratic in the gap in
the free energy at absolute zero is equal to den-
sity of electron states of one spin at the Fermi
surface which has been "pinched off" because of
the gap. Since there are two chains participating
in this case (v„and v„ for a tetragonal deformation
with c axis along z), the net change in susceptibil
ity is expected to be (apart from any enhancement
factors):

nX =2ps ~(Ez) =4ks'zA'T~,

where Ps is the Bohr magneton and N(E„) is the
density of states for both spins at the Fermi sur-
face for one chain.

With the estimate for A' from Table I, we arrive
at ny. = 2.4 && 10 ' emu/g for Nb, Sn, which is in
good agreement with the experimental value" of
y(T ) —y(0) = 2x 10 ' emu/g, considering the fact
that the calculated value is based on the guess
v~(0) =4ksT for the gap.

H. Intensity of central peak in neutron scattering

The results of Sec. VI predicted a (T —T*) '
dependence for the intensity I of the central peak
in the [110]transverse-acoustic structure function
caused by impurities. A plot of 1/vI vs T for
Nb3Sn is shown in

Fig�.

11 and the st raight —line fit
predicted by Eq. (77) is in good agreement with
the experimental data. " With the estimate for the
intercept coming from the fit tothe [110]transverse
phonon dispersion curve (Fig. 9), neglecting the
renormalization of (—,

' c, + c,) by the y-dependent
term (which is justified in lieu of the discussion in
Sec. VII J), we obtain an estimate for the modifica-
tion of the transition temperature due to the cubic
term

T —T*= 2.5'K,
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FIG. 11. Plot of the inverse half podex' of the eentral-
peak intensity seen in neutron scattering Qef. 3) for
Nb3Sn, vs the temperature. Straight line fit is predicted
for central-peak intensity due to impurities.

which is in reasonable agreement with the esti-
mateof 4 K fromfits to distortion curves. This
reduction of 40%%uo in (T —T„"}entails about 20/0

reduction in the spontaneous deformation at T,
which is within fitting accuracies.

I. Miscellaneous qualitative results: Effects of pressure, alloying

In this section, we give qualitative explanations
for some experimental observations on the basis
of our model. As shown at the end of Sec. IV,
theory predicts a correlation between the variation
of transition temperature with hydrostatic pres-
sure and the sign of the tetragonality. This is in
fact observed in V,Si and Nb, Sn. For the former
with positive tetragonality, T is found to decrease
with pressure'" while for Nb3Sn with negative
tetragonality, T is found to increase with pres-
sure. "" We have already shown that the small
variation of T with uniaxial stress is consistent
with the nonlinear uniaxial-stress-transverse-
strain data obtained near the transition tempera-
ture.

Our model also predicts the change in sign of
tetragonality as a function of alloying, observed in
the Nb, Sn, ,Sb„system" (c/a = 0.9948 in Nb, Sn to
1.0048 in Nb, Sn „Sb, »). As shown in Fig. 3(b),
the low-temperature strain jumps suddenly from
positive to negative as the Fermi energy crosses
the energy at the X point. This is because the
sign of the cubic term determines the sign of the
tetragonality, while it does not determine the
magnitude [Eq. (3'fb)].

J. Dependence of the optic-mode frequency on temperature

Another result one can infer from the theory,
for which no experimental data exists is a long-
range temperature variation of the optic-mode
frequency, though it does not go soft at T„. In
order to do so, one has to obtain an order of mag-
nitude estimate for the coefficient y of the dis-
sipative term. A crude estimate may be made
from the following argument.

If the electronic dissipation term D is respon-
sible for the resistivity of the system, we may
identify the dissipation per unit volume ,y(sg—/Bt)'
as simply the Ohmic term j'/2o, where c is the
conductivity of the material. This in conjunction
with the equation of continuity Sp/Sf+& j=0 leads
to the estimate of y as

y = p', /ca', (85}

where k is the wave vector of the charge-density wave
and po is the electronic charge density in the normal
state. Putting in estimates for various quantities
yields y-10 9 cgs for Nb, Sn, and in turn for a,

reasonable value of the amplitude at T =0(p(0)
-0.1-0.2) leads to Q- 10"-10"Hz which is much
higher than typical optic frequencies. For V,Si,
the estimate is smaller by about an order of mag-
nitude, but still much higher than the optic-phonon
frequency. This implies, for one, that the mod-
ification of the k' term by the dissipative process
in Eq. (69) is very small, i.e. , q= (—,'c, +c,)/Qy.
It also implies that the optic-phonon structure
function [Eq. (Vl)] has no "central" peak, which
is in agr'cement with the experimentally observed'
absence of the "forbidden" (300) reflection right
up to the transition in Nb, Sn. Furthermore, the
optic-phonon frequency is given essentially by the
vanishing of the first term in the denominator of
Eq. (71}.

Using the parameters calculated in Sec VII D,
and the estimate of twice the niobium atomic mass
per cubic unit cell for M (the reduced mass 2m»
multiplied by four, since Q is —, the difference
coordinate of neighboring niobium atoms on the
linear chains), we arrive at the expression for
the frequency of the optic phonon

(u„= (28 meV)[(I+R')/2R]{I -[(1+P&)R'+ I] 'j'",
(86)

R =W3h/[Zo(C„-C»)]'~'.

p=0.36, as per Sec. VIIA, and 8= (T —T*)/T*is the
reduced temperature. A plot of &g„(T) vs T for
three values of R is given in Fig. 12. Particularly
noteworthy is the long -range variation of the fre-
quency with temperature (healing temperature
-T /P for R & 1 and -T /PR' for R & I). While R
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is a measure of coupling of the optic phonon and
the dilatation of the lattice (R -~ corresponds to
an unstable lattice), it should be kept in mind that
the off diagonal component is also present in P
and the number 28 meV in front, and so that varia-
tion of &u„(T) with R shown in Fig. 12 does not
reflect the variation of up„(T) with off-diagonal
terms directly.

T('K)

FIG. 12. Predicted temperature dependence of the
I'&2 optic-phonon frequency in Nbssn for different values
of the dimensionless parameter R =W3h/[K0(C &&-C &2))

'/ .

ture when T, and T a,re equal. This is observed
in Nb, Sn, +l„alloys ' where the highest T, is
found at the cubic-tetragonal boundary. In V,Si,
T, and T approach each other at high pressure
and one expects a maximum T, at the intersection
at about 25 kbar. If it occurs first, the super-
conducting transition should suppress the marten-
sitie transition.

We expect that anything which enhances (sup-
presses) the martenistic transition temperature
will suppress (enhance) the superconducting transi-
tion temperature. The pressure dependence of
T and T, in Nb, Sn and V,Si (Ref. 22) are consistent
with these ideas. The model predicts that the
signs of (c/a —1), dT dP, and dT, /dP are governed
by the sign of (E~ E„'). For Nb, Sn, E~ is below
E'„[since (c/a 1) changes sign between Nb, Sn and

Nb, Sn, BSSb»,], and (c/a —1)&0, dT /dP&0. This
means that X, is positive while A., is negative. For
V,Si, the signs of (c/a —1), dT /dP, and dT, /dP
are opposite to those for Nb, Sn, and evidently E~
is above E~~ for V,Si. This correlation should hold
up for all the A-15 compounds.

Uniaxial stress also suppresses the supercon-
ducting transition by creating a CDW gap. Im-
purities, which a.re dressed with local CDW cloud,
affect both transitions. The local band gap su-
presses superconductivity in nontransforming sam-
ples in the same way that the uniform band gap
does in transforming samples. Impurities broaden
the martensitic transition and suppress it by crea, -
ting a CD% gap of the wrong phase to pair the
transition-metal atoms.

VIII. RELATIONSHIP TO SUPERCONDUCTIVITY

The martensitie transformation affects the
superconducting transition in two ways. Firstly,
a significant; fraction of the phonons soften as
one moves toward the martensitic transition and
stiffen after passing through it. The lattice soften-
ing increases the effective electron-phonon cou-
pling constant and therefore increases the super-
conducting transition temperature. This has been
appreciated for some time but the magnitude of
the effect is unknown.

Secondly, the cha, rge-density wave opens up a
band gap on a portion of the Fermi surfa. ce that
could otherwise have been used for pairing. This
reduces the superconducting transition tempera-
ture in the tetragonal phase, as has been observed
in V,Si." When the martensitic transition occurs
just above the superconducting transition, as in

V,Si, there is an interesting interplay as the CDW
gap and the BCS gap compete for the same piece
of the Fermi surface. Considering both effects,
one expects a maximum in the transition tempera-

IX. CONCLUSIONS

To summarize, we have put forward a Landau
theory for the martensitic transition in the A-15
compounds, using Gorkov's physical picture of a
Peierls-like instability, and have made an exten-
sive comparison of the results with experiment.

The theory explains the observed tetragonal
distortion with a I'»(+)-type sublattice displace-
ment, and the transition is expected to be wea, kly
first order. The elastic behavior (except for the
shear constant C„whose (somewhat weaker) tem-
perature can be accounted for in terms of inter-
cha, in electronic terms) is well reproduced with a
nonfogarithmic fit, as are the transverse [110]pho-
non dispersion curves. The central peaks in neu-
tron scattering and ultrasonic attenuation are
found not to be ascribable to electron dynamics,
and at least the former is in agreement with im-
purity scattering.

Experimental results for V,Si are consistent
with a rather weakly discontinuous transition,
while for Nb, Sn, the transition is somewhat more
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first order. The static theory constants for Nb, Sn
have been obta, ined from the measurements of the
low-temperature strain and sublattice displace-
ment.

The drop in susceptibility calculated on the basis
of a Peierls transition model using the constants
determined from the elastic behavior is in good
agreement with the experimental result for Nb, Sn.
From a determination of the various parameters,
the I'»(+ ) optic-mode frequency is predicted to be
temperature dependent right up to room tempera-
tures, though it has a finite frequency at the
transition and no pretransition (300) Bragg reflec-
tion is expected.

The variation of transition temperature with
pressure is shown to be correlated to the sign of
the tetragonality, and the observed dependence
of T on pressure, alloying and T, is in agree-
ment with the theoretical predictions.

We have thus verified that a model of the A-j.5
structural transition based on a GDW mechanism
with the Fermi surface lying close to the X point

in the Brillouin zone is capable of explaining quan-
titatively the different phenomena associated with
the transition.

A few of the predictions of the theory which may
be put to test are the temperature dependence
of the optic-mode frequency, the dependence of
T and [110]transverse sound velocity above T
in Nb, Sn on uniaxial compressive stress, and the
check of the observed correlation between sign
of tetragonality and pressure dependence of T„.
On the theoretical side, a detailed investigation
of the interplay between GDW and the BGS gap and
the effects of T and T, on one another, and a
derivation of the Landau free energy used in the
present calculation based on an actual 3D band
structure are two areas in which work is clearly
warranted.
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