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Transition temperature of proximity-effect thin sandwiches*
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We study the effect of an interface barrier on the T, of a superconducting-normal (S-N) metal sandwich in

the Cooper limit. The calculation is based on the diffusion approximation of de Gennes and the barrier is

accounted for by appropriate boundary conditions at the interface. In contrast with the original de Gennes

result, it is shown that for finite thicknesses T, does not depend only on the N to S thickness ratio but also

on the absolute value of the thickness. An analysis of experimental data obtained on Pb-Cu sandwiches shows

that this finite-thickness correction is important even at very small thicknesses and for rather transparent

barriers. Assuming that the penetration probability 0 shows only random variations in a series of samples

prepped under the same nominal conditions, the best fit between theory and experiment is obtained for a
BCS coupling parameter in Cu equal to 0.015.

I. INTRODUCTION

The Cooper limit of a superconducting-normal
metal (S-N) sandwich is attained when both slabs
are thinner than their respective coherence
lengths. In this limit the superconducting prop-
erties do not vary essentially across the metals.
This eliminates the problems associated with

space dependence of the pair potential and thus
this limit is amenable to a rather complete solu-
tion, which may be used to study the BCS inter-
action parameter of the normal side.

Neglecting the effect of the barrier between S
and N, de Gennes' obtained

ln(1. 14k&us/ksT J = (1 +R)/(A, +R&„). .

Here TDG is the transition temperature when the
barrier effect is completely neglected, and

R = N„d„/Ns ds i

where d„, ds are the thicknesses of N, $, respec-
tively, N„, Ns are the respective densities of
states at the Fermi level, and

"s.) =Ns.~Vs, ~ y

where Vs, V„are the respective BCS interaction
potentials. The result (1) was derived in the dif-
fusion approximation in which it is assumed':
(i) both metals are "dirty, " i.e. , their mean free
paths are much smaller than the respective co-
herence lengths, (ii) the superconducting proper-
ties vary slowly over distances of the order of the
mean free path. The second condition should be
modified when the effect, of the barrier is studied.
An expression similar to (1) was obtained by Sil-
vert and Cooper' as an upper bound for ln(1. 145&@0/

ksT,).

The result (1) of de Gennes does not depend on
the absolute values of the thicknesses but only on

R. Thus T, measurements of Cooper-limit sand-
wiches seem to be a simple tool to investigate ~~.
However, in T, measurements done on thin Pb-Cu
samples we found that T, (in the Cooper limit) de-
creases when ds, d„are reduced at constant R.
The arguments in the articles by Silvert and
Cooper' and McMillan, ' suggest that the disagree-
ment with the de Gennes formula is due to the
neglect of the barrier effect. As was pointed out

by de Gennes, ' the barrier can be accounted for
by generalizing the boundary conditions at the
interface. In this article we derive an expression
for T, using the generalized boundary conditions.
They introduce an effective length L, roughly of
the order of d„/o, ' where v is the penetration
probability of the barrier. We show that T, is
always higher than TDG and find a condition, involv-
ing a, under which TDG is approached.

In our thin Pb-Cu samples this condition does
not hold even assuming a =1, although the films
are in the Cooper limit. We use our T, data to
calculate a for different values of ~„. Assuming
that all samples have the same v, or at least that
e varies randomly among them, the correct ~„ is
the one for which o does not have any systematic
variation as a function of thickness. In this way
we find that ~„of Cooper is 0.015.

Interestingly enough, our equations for the pair
potentials in N, S are of the same functional form
as the ones which can be derived from McMil-
lan's' tunneling model. In McMillan's model the
barrier effect is described in terms of o' and the
average path length L„between collisions with
the barrier. Comparing our equations with those
of McMillan, we relate the effective length L to
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II. TRANSITION TEMPERATURE

To find the transition temperature, we first
determine the pair potenbals 4» b ~ in the two
films. At T„h(x) is given by a linear integral
equation'

a(x)=t'(x) f dx'a(x')a T QH(**', a). (4)

The interface between the two slabs is at x =0.
Here K(i) =rhsT(2n+I) and the sum runs over all
integers n The.kernel H(xx', (d) satisfies the
sum rQe

(5)

where N(x) is the local density of states.
In the dirty limit H(xx', &u) satisfies a diffusion

equation, with two boundary conditions at x =0."
One of them is Obtained from the sum rule'

I„. McMillan treats the tunneling through the
barrier in second-order perturbation theory. Thus
his model describes a barrier with low penetra-
tion probability. On the other hand, de Gennes'
approximation is applicable to a transparent"
barrier. Our theory links the two cases and is
suitable for comparison arith experimental data,
where a may have intermediate values.

In Sec. II we derive the expression for T, in the
Cooper limit. In Sec. III we apply the theory to
our experimental data, and Sec. IV includes the
cone lus lons

1 d 1 dg
H(XX ~ ())) dX ~-0+ t)))((()) $N((())

, H(xx', ~) = tanh

where

p„((u) =D„/M
~ ~~

N

C(~} ' (6)

(9)

and d„«4(ru) in the Cooper limit. Thus for 6 —l
(o» 1/g), the second term on the right-hand side
of (V) is of the order ld„/42 compared to the first
term, and therefore negligible.

To account for a barrier with low and inter-
mediate values of &r, we retain the L term in (V).
To solve for H(xx', (d}, we assume that in the
Cooper limit H(xx', (d) is essentially constant when

x, x' are varied in one of the slabs. Thus we have
to find three values: H(NN, u&) (x,x' in the N side),
H(SS, (()}, and H(SN, ())) =H(NS, (d). From (5) we get

d„H(NN, (d) +d ~ H(NS, m} = ((N„/h [())(,

d„H(SN, (d)+dz H(SS, (()) =XNAN/I i(di,

and from (V}-(9}

(10)

(12}

gg ——A, q Q+ I A~+A. ~ A —E h~,
8 8

H(SS, ( ) =(N, /N„) H(SN, ~)(1 +L,d„/P ). (11)

Solving (10)and (11) and inserting into (4}we obtain

A+ F 6„+&„(A—F)b~,
8 1 1

x =0D(x'}, H(xx', ()))
dx p

(6) where ft, )(z, A, z are given by (2), (3), and

where D„, D~ are the diffusion coefficients. For
the other boundary condition, de Gennes' writes
down the general form

1
A —w sT,

F =vt, T, g [g[~[+(I+It)D„/2f.d„] (. -

(13)

(14)

H(xx', (u}(, 0+

H(xx', (d}+L, H(xx', (d)
N dx f

(V)

The result (1) for Too is obtained when the second
term on the right-hand st is neglected. The
effective length L, involves o' and is discussed as
follows. De Germen argues that when o» 1/5 (l is
the mean free path and ( the coherence length),
then I- "l. %hen the film is much thicker than the
coherence length {[dH(xx', &u}/dx']/H(xx', &u)]~, =,—
= g ', @md the second term on the right-hand side
of (V} is of the order 1/( compared to the first
term. Thus it is negligible in the dirty limit.
When the film is very thin

Using the BCS frequency cutoff (do we write (13),
(14) as follows:

1
A. = d(u —tanh(br'/2&sT, ), (15)

0 QP 1
(u'+[(I+R)D /2I. d ]' (u

(16)

D„/2Zd„= r„=k/2r„, (IV)

Equations (12}, (15), and (16) are of the same func-
tional form as those which can be derived from
McMillan's' equations (11) and (16). [Note that
Eqs. (3V}-(39)in Ref. 3 are derived for A.„=O.]
They will be identical if we make the identification
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where v„ is the average time that an electron
spends in N before penetrating the barrier and
escaping into S. 7„ is given in terms of 0 and I„
(the average electron path length between colli-
sions with the barrier), E =~ in[1+ (keen/a)2]. (26)

and we used hu&, =ks8n. Now since 8~/T, »1, the
tanh-,'x in the integrand may be approximated by 1
and consequently

Using D~ =0v~E we find

L =(&/d. )(L./o).

L„ is given in Ref. 3 by

L„=2d„R(I/d„),

(19)

(20)

d„/ 4

en P„(T,) (1+R)vo ' (27}

From (1) and (23) it is seen that Too is ap-
proached when I" becomes very small. This oc-
curs for keen/a « I, which can be written as fol-
lows:

I/I =1/l, +P(1/d„), (21)

where l, is the mean free path as d~-~, and p
is a parameter that characterizes the scattering
at the boundaries (i.e., P =1 for a diffuse scatter-
ing and p =0 for a specular reflection). For per-
fectly clean film /0»d„, so that l is dominated
by boundary scattering and 8 will be a constant,
B-2.' In this case L„=4d„. On the other hand,
for l, «d„, L„=4lo. Thus in general

where R is a function of I/d„. In very thin films
with diffuse reflections at the boundaries the mean
free path is thickness limited

T A~ —A~
2 32A k~QD 2

2

Too Aq+RX~ (1+R)2 gvro (28)

Since in very thin films l-d„, TDG is approached
from above as a linear function of d'„.

where P„(T)=D„/2vksT. Thus it is seen that when
o is small, it becomes difficult to fulfill this con-
dition. In Sec. III it will be shown that (27) does
not hold, even for o-l, for our Cooper-limit
samples. In the case where (27) holds and E is
small we find [from (1), (23), (25), (26)]

L„=4l. (22) III. COMPARISON V(ITH EXPERIMENTAL DATA

where

a = (1 +R)D„/2Ld„= (I

+R)guano/8l

= (I +R)wv~o/8d„ (25)

The transition temperature is determined from
the requirement that Eqs. (12) have a nontrivial
solution

1.14h&u, 1+R —E(XzR+&„)
ksT~ A~ +RA» —E(I +R)X~X„

To investigate the dependence of T, on o' and d„
we have to consider the function E. We write (16)
in the form

eg»c X2 1 x
d» 2 ( /I )2

tanh

Samples were prepared by thermal evaporation
from tungsten boats onto glass substrates at room
temperature. High vacuum (better than 10 ' Torr)
was employed and the lead film was applied on
top of the Cooper film in ail cases (Pb and Cu
99.999/p purity}. Thickness measurements were
performed in situ by a quartz crystal installed
as close as physically possible to the substrate.
Care was taken. to keep a fixed geometry for aH
evaporations. The thickness ratio of Cu to Pb
was kept equal to 1.50+0.02 (i.e., R =0.85) for
the entire series. %ithin 5 min from prepara-
tion, samples were mounted in a 'He cryostat
where all subsequent measurements were taken.
These included I esistivity and transition. -tem-
perature measurements in a four-terminal con-

TABLE I. Experimental results for &~, d~, and the ratio of the resistance at room tempera-
ture (ART) to that at liquid-helium temperature (AH, ). The quantity 0'knez/a was calculated
from the last equality in (25) for A=0.85, D =100 K. The mean free path I was computed from
p~-6 x10 ' Qm, using resistance measurements at 4.2 K.

d~(10 6 cm) ~a~8~/a A =En(114/T, ) ART /8 He L(10 e m)

2.4
2.8
3.05
3.3
3.88

2.09
2.52
2.74
3.48
3.93

0.757
0.912
0.992
1.260
1.423

3.86
3.71
3.62
3.54
3.38

1.67
1.62
1.61
1.72
1.75

2.1
1.9
2.5
2.5
3
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TABLE II. F calculated from (23) and 0' calculated from (25) and (26).

~~= 0.05
F

A,g= 0.02
0'

~g = -0.01
F

~g = —0.02
F

~g = —0.05
F o

0.733
0.985
1.121
1.243
1.485

0.413
0.366
0.341
0.379
0.330

0.935
1.137
1.249
1.351
1.557

0.322
0.308
0.296
0.337
0.306

0.983
1.174
1 ~ 280
1.377
1.575

0.305
0,296
0.286
0.328
0.300

1.037
1.218
1.319
1.412
1.602

0.286
0.282
0.275
0.316
0.292

1.075
1.247
1.344
1.433
1.617

0.274
0.273
0.267
0.309
0.287

1.120
1.284
1.377
1.463
1.640

0.261
0.262
0.258
0.299
0.281

1.203
1.348
1.431
1.508
1.669

0.238
0.245
0.244
0.285
0.272

TABLE III. Slope of a' as a function of F for different
values of && (from a least-mean-squares fit of the values
in Table II).

0.05
0.02
0.01
0

—0.01
-0.02
-0.05

—0.093
-0.012

0.0096
0.029
0.039
0.056
0.087

figuration. The Cu thicknesses and the transition
temperatures of the samples are listed in Table I.
It is immediately apparent from Table I that T,
varies significantly as a function of d„. In order
to see whether T, approaches the de Gennes limit
Too, we calculated else's/a from (25) for ee =100
K. Results are listed in Table I. It is seen that
even for o-I condition (2'I) is not satisfied and E
is not smaller than 1. Thus expression (1}for
TDG cannot be used to calculate ~„, although our
samples are in the Cooper limit.

The value of F can be calculated from (23) as-
suming a given value for ~„. Then v can be found
from (25) and (26). We have followed this proce-
dure for seven values of ~„=+0.05,'~ +0.02,
+0.01, and 0. In these calculations ~~ =0.39,
8 =0.85, and l =d„. Results are listed in Table II.
Using the values of the measured l and equation
(21) one observes that l is thickness limited. This
is further supported by RR&/Rs, values which range
from 1.58 to 1.15 (Table I) while a Cu sample of
6000 A evaporated under the same conditions has a
R„~/R&, of -10. Thus we conclude that I-d„ is
the relevant value to use in the present calcula-
tions. With a relation of the form o =v, + nF me

used F, o, to calculate e by a least-mean-squares
fit. Values of e for the different ~„'s are listed in
Table III. Assuming that cr is independent on the
normal-metal thickness, i.e., can have only ran-
dom variations among the samples, me conclude

from Table III that the best value for ~„ is ~„
=0.015. There is strong experimental evidence
to support this assumption. Adkins and Kington'
have shown that their energy-gap measurements
in Cu-Pb sandwiches mere consistent mith a con-
tant o' 0 25 for 200 A+dcu 2000 A. Freakee

gives o =0.29 both from T', and gap measurements,
again independent of thickness for 200 A&dc„
&10000 A. Therefore, it seems to us that as-
suming o' independent of thickness is the best way
to analyze our results. It turns out (Table II)
that one then obtains an average value for o =0.3,
in very good agreement with the above estimates.

IV. CONCLUSIONS

An expression for T, of a proximity-effect sand-
wich in the Cooper limit mas derived. The pene-
tration probability of the barrier between N and S
was accounted for by generalized boundary condi-
tions at the interface. These introduce an effec-
tive length I, -I/o which is related to L„ofMcMil-
lan's tunn. cling model. '

We have derived a condition, E|I. (2'I}, under
which T, approaches the usual result T~ which
does not depend explicitly on the normal-metal
thickness. It mas found that thin. Pb-Cu samples
do not satisfy this condition, and the transition
temperature is quite higher than the one predicted
by de Gennes.

If one accepts that o varies only randomly among
the samples, a best fit to the data is obtained for
~„=0.015.

It appears that a fairly exact knowledge of o is
needed to calculate ~„. This can be extracted from
tunneling density-of-states measurements. " How-
ever, our procedure may yield information about
the sign of ~„ in other cases, e.g. , when an as-
sumed value of positive or zero ~„results with a
cr larger than 1. We hope to follow this point for
Pb-Ag sandwiches.
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