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Dynamics of a system of randomly distributed spins with multipolar interactions:
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A general first-principles method for the calculation of dynamical spin correlation functions in a system of
randomly distributed, strongly interacting spins with multipolar interactions is presented. The method is valid

in the high-temperature limit and is applicable at all spin concentrations c. As a numerical example, the case
of dipolar forces is treated and the magnetic-resonance frequency line shape is calculated for a variety of
values of c. The general trend of the change in line shape with c obtained agrees with phenomenological

theories and with experiment. The theoretical linewidth has the correct c dependence in both the c t 1 and

c~0 hmlts.

I. INTRODUCTION

There have been a number of calculations of
the spectral. functions for a system of randomly
distributed impurity spins arith pairwise inter-
actions proportional to r ", where x is the dis-
tance separating a pair. ' " Many of these treat-
ments are semiphenomenological in that they
assume a functional form for a spin correlation
function which is then averaged over some as-
sumed distribution. ' ' Also, many of them refer
exclusively to either the high-' "or the iow-
concentration' "" limit. In this paper we pre-
sent a first-principles method of calculation,
applicable at all concentrations and valid in the
high-temperature limit, which is based on a rig-
orously formulated theory of interacting spins
that has previously been used successfully to
calculate spectral functions for perfect lattices
of spins. "" We have previously presented a
brief summary of this theory" along with some
preliminary results. It is the purpose of this
paper to present a detailed discussion of the gen-
eral theory along with some numerical results for
the special case of dipolar forces.

Although radically different and sometimes
contradictory assumptions are made by different
investigators, most of them obtain theoretical
linewidths which have the experimental. ly observed
dependence on the spin concentration c in both
the small- (c-0) and the large- (c-1) concentra-
tion limits. The reason for this is that almost
any set of reasonable assumptions should give the
correct concentration dependence in the limiting

cases. For example, as c-l, one expects the
linewidth to be scaled as the square root of the
average of the second moment M, . Since the
RverRge of i@2 ls proportlonRl to c independent
of the interaction, "the linewdith should be pro-
portional. to e'~'. """Qn the other hand, as
c-0 one would expect the l.inewidth to be pro-
portional to r, ', where r, is an average interspin
spacing. ' Thus, since rotc '~', one expects the
linewidth to be proportional to c"~3.3 "

An exampl. e is the calculation in Ref. 8, where
it is assumed that each spin decays via a Gaus-
sian process which is scaled by the second mo-
ment it sees. The total spectral function is ob-
tained by averaging this function over an appropri-
Rte dlstrlbutlon. This method yields the correct
concentration dependence in the limiting cases
and is an excellent method to use with a moment
fit. However, there is no reason to believe that
al. l of the spins really decay via Gaussian pro-
cesses. In fact, even if c =1, the process is not
Gaussian, since NMR spectra of dipolar systems
show an oscillatory l.ong-time behavior. " Other
investigators, on the other hand, obtain a spectral
function for low concentrations by averaging over
the exact spectral functions of individual pairs.
Although this procedure also yields reasonable
results, the assumption taken literally means
that the system consists of an ensemble of pairs
that do not interact with each other. Thus there
can be no true spin decay, since each pair can
last forever in an excited eigenstate. In other
theories the physical nature of the approximation
is rather unclear and/or cannot be improved upon.
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One such theory is that of Sung and Arnolde; these
authors present a method for calculating spectral
functions self-consistently as functions of c.
Although their for'malism produces results which
are in agreement with experiment in several
cases, ' "we believe that the approximations made
in the derivation of their basic equations for the
average correlation functions are rather obscure
physically and do not easily lend themselves to
improvement. Furthermore, they calculate only
an autocorrelation function which, in the case
of NMR and EPR experiments, is not the physical-
ly observed functivi1. Rather, the observed func-
tion is the q=0 limit of a function like
(S,(q, t)S (q, 0)), where S,(q) are the Fourier-
transformed spin-raising and -lowering operators
and the brackets ( ) denote a thermal average.
For example, for dipolar forces the Fourier
transform of the correlation function

lim (S, (q, t)S, (q, 0))

should be a ~ function I frequency spRce no Dlat-
ter what the distribution of spins. This can be
clearly seen if one takes moments of this function
in the pl esence of the truncated dipolar inter-
action. On the other hand, in the cour'se of the
investigation presented in this paper we cal.cu-
lated the averaged correlation functions for the
case of the truncated dipolar interaction via the
Sung-Arnold method and found that the zz cor-
relation function is not a D function. Although
our own approximations are certainly not un-
assailable, we believe that they are physical. ly
well. motivated and are capable of being extended.

The r emainder of this paper is organized as
fo11ows: In Sec. II we derive the first-principles
method of calculating the spectral functions for
R rRndoDl dlstrlbutlon of splns %'hose pRlrwlse
interactions have an ~-dependence of the form

In particular, nonlinear integral. equations
are obtained for the average spectral functions.
Section III contains the solutions to these equa-
tions for several spin concentrations in the cRse
of a dipolar (n =3) spin-spin interaction, and in
Sec. IV may be found a critique of our method
and a summary. The Appendix presents a dis-
cussion of the probability distribution function
used in. the calculations of Sec. III.

II. METHOD

The method employed in our calculation is a
VRrlRtlon of R dlRgrRDlDlRtlc technique'we hRve

used in other spin problems. " " It has been
successful. in treating systems of perfect lattices
of interacting spins and involves no line-shape
assuDlptions or adjustab1. e par Rmeters. Following
Ref. 12 we define a set of diagonal. two-point cor-
relation functions as

where e(f ) is the step function, the angular brack
ets denote the average in the canonical ensemble,
and ital. ic l.etters denote lattice sites containing
spine. The irreducible multipole operators A „(i),
where o.'=(l, m ), for l~2s, form a complete
set of spin operators at the site i . These opera-
tors and their relationship to the usual vector
spin operators are discussed elsewhere. ""One
of our basic assumptions is that either the Zeeman
energy or the isotropic part of the spin-spin inter-
action is much greater than the anisotropic part
of the interaction. Although this restriction is
not necessary, it is convenient, since it allows
us to neg1ect the off-diagonal. Green'8 functions.

In this paper we consider the spin Hamiltonian

(2)

where uo = yIIO, y is the gyromagnetic ratio, and

Ho l8 an external magnetic field whose direction
defines the z axis. Dipole-dipole, quadrupole-
quadrupol. e, or other types of spin-spin inter-
actions can be described by this general Hara-
iltonian when the potential J q(i,j ) (multipolar
in nature} is specified. In this and all subsequent
equations, only occupied lattice sites are summed
over.

We will work in the high-temperature limit,
where a1.1. spin energies are much smaller than
kT. In this temperature regime it is convenient
to express the Green's function in terms of a
mass operator or self-energy Z (i,j; f) defined
by the equation'2

i ——m &u, G (i,j; f) -g dTZ (i, 0; f -7)G„(k,j; f) =i5, , 5(t).(
8

In earlier work'2 "we have used the "bubble approximation" for the self-energy. A straightforward
application of this approximation at T =~ with the Hamiltonian given by Eq. (2) yields
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The justification for the use of the bubbl. e ap-
pxoximation in this problem is that it is the low-
est-order approximation in a wel. l-defined hierachy
of self-consistent approximations and that it has
yielded results in good agreement with experi-
ment when applied to a variety of other spin prob-
lems. "" Since it is our contention that the
spectral line shape at al. l concentrations ii dom-
inated by interactions of a given spin with a group
of other spins, and not by a single other spin,
there is no a Prior reason why the bubbl. e ap-
proximation should be worse for the dilute spin
system than for the dense spin system. %e shall
use these concepts below, and discuss the validity
of our approximations further at the end of this
section.

Even though Eqs. (3) and (4) are nonlinear in-
tegral equations in four variables, " they can, in

px ineiple, be solved by computer for the case
of a perfect lattice. For a random distribution
of impurities, however, this is not a feasible
approach. As a first step toward the simplifica-
tion of these equations, whil. e still retaining their
basic physics, we define, as in Ref. 12, a local
correlation function G (i, f) and local self-energy
Z„(i, f) which satisfy Eqs. (8) and (4) if G„ is
entirely local, so that G (i,j; t) =G (i, t)5„:

d f Z.(f, t)G.(i, f —&) = f6(f }, (6)

(7)

It is shown in Ref. 12 that this local approximation
introduces errors in the solution for the correla-
tion functions which are of the order of 1/Z, where
Z is the number of spins in the interaction range
of a given spin. Since the bubble approximation
is itself in error by numbers of the same oxdex,
this additional appxoximation should not affect
the validity of the theory.

We next approximate the solution to Eqs. (3)
and (4) by substituting G„(i,j; t) =5„G~(i, f) with
G (i, f) obtained from Egs. (6) and (7), into Eq.
(4). This will yield a good "nonlocaL" correlation

function under the conditions just discussed. Note
that G „(i,f ) is itself not a good solution to Eqs.
(3) and (4), but it can be used to generate a good
solution.

For a perfect lattice, G (f, t) does not depend
on the lattice site i. However, for a distribution
of impurity spine, the local function G„(i, f) de-
pends on its immediate environment. In order
to solve Eqs. (6) and (7) for this case we make
the ansatz that it is reasonable to replace G&(j, f )
in Eq. (7) by the average local Green's function

G„(~),

G„(f)=& 'QG„(f, t), (8)

where N is the number of impurity spins. This
is an effective-medium approximation (EMA),
reminiscent of the coherent-potential approxi-
mation" (CPA). Physically, one can interpret
Eq. (7}as saying that the spin dynamics at site
~ depend on the other spins through their posi-
tions and through their fluctuation spectra
G„(j,f}. The EMA replaces Eq. (7) by

Pexhaps it is worthwhile at this point to mention
the reasons why the CPA and other related tech-
niques are probably not appl. icabl, e to the problem
under consideration. There are basically two
reasons fox' this. Fix'st of a.ll the CPA ls usually
used to cal.culate fluctuations about a mean field
as a function of concentration. In the present
ease, however, the mean field is zero, since
we are in the T-~ limit. Thus there are no well-
defined elementary excitations in the problem

(7')

which in effect says that the spin dynamics at
site i depend on the other spins through their
positions and through an average fluctuation spec-
trum. In other words, we are replacing the ftuc-
tuation spectrum seen by a spin at site i by an
average or effective fluctuation spectrum. Hence
the terminology "effective-medium approxima-
tion. "

With this additional approximation Eels. (6),
(7'), and (8) can be solved self-consistently to
obtain G (i, t) and G„(t). Using the local approxi-
mation for the G's and the EMA in Eq. (4) for
Z (f,j; f ), we find that it becomes

Z„(f,j; f) = f g (fl„»(i, k)(2G, (i, t)G„(f)6„
B.y, a

+f Q fl 8)(&, )flj~s(j, &)G8(&, f)G) (f).
S,y
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and the usual. CPA methods appear to break dozen

in this case. Second, the CPA as usually applied
treats systems edith short-range forces and site
diagonal disorder. On the other hand, in the
present case, the forces are longer ranged
(-r ") and thus the system displays off-diagonal
disorder. Thus it appears that the system we
are considering is in a totally different regime
physically from systems to @which the CPA can
be easily appl. ied.

Ultimately, since almost ail. experiments are
done at zero vrave vector, NMR or EPH experi-
ments measure the spatial average F„(t) of
F (i, t), where

(10)

By summing Eq. (3) over j, combining that result
with Eq. (9), and using the EMA once more, we
obtain

+ 0 ((8y (i,j )II *„& 8(j, i )G 8 (i; t t)G (t-—t )F ( t )] = i6 (t ), (11)

chere

and F„(t) is the physical function measured and
hence the function desired.

The basic equations of our theory, Eqs. (6},
(7'), (8), and (10)-(12), can be expressed in terms
of a probability distribution function which de-
scribes the distribution of the interaction strengths
squared For.simplicity suppose that (0 8&(i, j)('
and 0 8&(i,j )0*&8(j,i ) have the same dependence
on i and j, say g(i, j). This is true for dipolar
forces. [In those cases for which it is not true,
the following analysis can still be made, with the
added complication of having to consider several

~as@ ~ ~~ =Baey Z

~ a8 y
& & exp 8 ~ y

'4 = @as y (13)

Now let p(f; c) df be the normalized probability
that f =f(i) lies between f and f+df. After
changing variables from i to f, the local equa-
tions (6), (7'), and (6) are replaced by

functions g, (i,j ), and consequently needing a
probability distribution of several variables rather
than of only one. ] Given just one g(i, j ) we may
write

i —-m„(()o G (f, t) —i dt QB„8&fG8(f, t)G&(t)G„(f, t —t)=i5(t)(
8

Bt v ey
(14)

These may be solved for the local correlation function G„(f, t) and the average local function G (t).
Similarly, the nonlocal equations (ll) and (12) now read

(16}

(17)

Once P(f; c) is specified, the local. equations (14)
and (15) can be solved self-consistently for
G„(f, t) and G„(t). The solutions can then be
substituted into Eqs. (16) and (17) to determine
F (t).

In the derivation of Eqs. (14)-(17)we have made

hvo types of approximations in addition to the
bubble approximation. Both of these approxima-
tions work best when each spin has a large num-
ber of other spins in the range of its interactions.
As e-i, these are clearly good approximations.
As c-O, the situation is not as clear. However,
if one thinks of a "superlattice" with spin spacings
increased to give the correct e, then the approxi-
mations are independent of c. Of course, this
picture ignores clustering effects. We note in
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this regard, however, that if one spin's environ-
ment is dominated by one very near neighbor,
then the spectral weight of these two spins is
pushed into the wings of the distribution. Thus
the approximations are best for those spins which
contribute to the center of the line, and these are
just the spins for which clustering effects can be
ignored.

III. SOLUTION FOR DIPOLAR INTERACTION;

MAGNETIC-RESONANCE LINE SHAPES

A. Discussion

Z, (f, t) = , is(s—+1)(u',f
x[G,(f, t)G,(t)+G,(f, t)G, (t)],

Z,(f, t) = —Z, (f, t),

and

(&i= J .&fl(f; )&.(f, t);
0

(24)

(25)

(26)

The theory outlined in Sec. II is applicable to
all interactions described by Eq. (2}; in this sec-
tion we solve as an example the dipole-dipole
interaction in a simple cubic lattice. Further-
more, since only the central peak of the line
shape is relevant for comparison with most mag-
netic-resonance experiments, we will consider
an interaction of the truncated dipolar type. "
Then the o. , P sums in Eq. (2) contain only terms
where n =(1,m) and P = (1, m'). Furthermore,
the only correlation functions of interest are those
with n =(1,m). Therefore, in what follows, when-
ever a quantity has Greed indices, those indices
will be abbreviated by their m values.

Use of Eqs. (5a) and (5b) for the truncated dipo-
lar interaction yields

1 1 1
1 i1 i0 -1 -1 0 1 0 1 Oi-1 i 1 Oi1 I-1

= ——,'0 . . .=,Iy'(1 —8cos'6„),1 s(s+ 1)

r&j

(18)

here s is the spin quantum number, while

(27)

and

~, -=y'tt /a'. (28}

Also, use has been made of the symmetry of the
equations in G, and G, to eliminate G „. hence
m is either 0 or 1. The probability distribution
function P(f; c) was introduced in Sec. II. The
explicit form this function takes for the truncated
dipolar interaction and the method we have used
to numerically compute it are discussed in the
Appendix; P(f; c) for various c is shown in Figs.
1-4, and these figures are discussed in detail
in the Appendix.

The procedure we have employed to solve the
l.ocal and nonlocal equations given above is es-
sentially the same as that which we have used
previously" ""for c =1 systems, except that
here we have the added complication of having

where the (i, j) has been suppressed for the 0's,
all 0's not shown are zero, and 8,, is the angle
rij makes with the magnetic field direction. The
expl. icit integral equations for this special case
can easily be obtained by the use of Eq. (18) in

Eqs. (14)-(17). The local and nonlocal equations
then become

0.8

I I I

C=0.8

I I I

(
a

i ——mu, G(f t)

dt's, t G, t —t =iot, 19 0.4

Z, (f, t ) = —,', is(s+ 1)u)iif
x[4G,(f, t)G (t)+G (f, t)G, (t)],

Z, (f, t) = —', is(s+ 1)a,'f G, (f, t)G, (t),

(2o)
0.2

~i
I)
I )

)')I) I )
)
1

0 l4

G.(t)= df P(f;c)G (f, t),
40

(22)
FIG. 1. p (f; c) for c =0.8, 0.5.
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C=O. I
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'o

I
I ]
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0 2 6
lO f

I I I I I I I

8

FIG. 4. p {f;c) for c=0.001 and the analytic p(f; c)
for c = 0.001 (see the Appendix).

0—
I I I I I I

0.0 0.5 I .0

Fro. 2. p(f; c) for e=0.1.

to solve integrals over fp(f; c). Because of this
similarity, for the sake of brevity, only a rough
outline of the method is given here.

%e begin by defining spectral representations
for the frequency-dependent correlation functions
and self-energies. These are

f" der g (f, &u)

u) —(d +Sf

similarly to that for Z (f, &u). After some ma-
nipul. ation it can be shown that the local. equations
(19)-(22) may be expressed in terms of these
spectral functions as

I' (f, ~)
[III —II„(f,(u)]'+[I' (f, (V)]' '

I z(f ~) = ~of
s(s+ I)

X 4' ~ go

+g,(f, ~)g, (~ —~ )], (32)

,

" der I"„(f,III )
7T CcP —(d + S&

r,(f, u)) = uP, f '

g, (f, &u )g, ((u - (u ),
s(s+I) ~,"" d~

1

(30)

the spectral. functions for G (e), F (f, &u), and
F (ur) are defined similarly to that for G (f, ~)
and the spectral function for Z„(f, u) is defined

I 1 I I t~ I I I
[

I I I I

(35)

Similarly, the nonlocal equations (23)-(26) can
be expressed in terms of spectral functions as

40

g (~)[l+S ((u)]+II ((u)T ((u)
[1+3 (~)]'+[T„(~)]'

h()=I il

0
000 0.02

f

FIG. 3. P (f; c) for c = 0.02.

—l'I (f, ~)II„(f, ur )],



ICS OF A SYSTEM OF RANDOMLY DISTRIBUTED

T-(~) =
J df P(f;c) [g.(f, ~)n„(f, ~)

+h.(f ~)j' (f, ~)], (38)

s(s+ l)
g (f, )g( --)

C =Q.Q5

l'.(f, ~) = —l,(f, ~),

"(f ) ~ "~~ (fi~)
(d —M

+go(f & hi(~ —~)l,

(39)

(40)

I.O—

& (f, ~)=&

0.6

~here & (&) is the spectral t'unct;on for g (~)
The procedure for obtaining solutions is as

follows: Choose c and compute P(f; c) (see Ap-
pendix); solve the local equations (3l)-(35) nu-
merical. ly to self-consistency as outlined in Refs.
12-15 and 21; and substitute these local solutions
into the nonlocal equations (36)-(42), and carry
out the indicated integrals to obtain the nonlocal
average spectral functions 3' (~).

0.0
0.0

FIG. 6. F (y) for c = 0.2, 0.1, 0.05.

I 0.0

8. Results for 0~«e C 1;experimental comparisons

Since I'0(f, e) = —I',(f, v), it can be seen after
a little algebra that

5,(~) = nb(&u) (43)

IO.O ——

0. I 8

O. I6

O. I 4

G. I2 IU
6.0—

008
4.0

0.06

0,00
0.0 4.0 8.0 I 2.0 I 6.0 200 24 0 28.0 32.0 36.0

FIG. 5. Average nonlocal. function F (y) (frequency
line-shape function) for c =1.0, 0.5, 0.4, 0.3.

0.0 0.2 0.4 0.6 0,8 I.O I.2 I.4 l.6 l.8

Y

FIG. 7. F (y) for c =0.02, 0.01, 0.005.



CHARI, ES Vr. MVI ES, C. EBNER, AND PETER A. FEDDERS

0.20 I.Q -„
I l l l l tlat

O. I—

0.!2

ILL.

0.08

O,QI—

0.0h

G.OOI
O.Q I O. I 1.0

r

FIG. 9. Linevridth I' vs c.

0.0

PIG. 8. F (y) for c = Q.001 scaled to be valid for a11
low concentrations.

independent of the solutions to the local equations.
This is a reflection of the fact that [H, , S,] =0,
where H~ is the truncated dipolar Hamiltonian.
Thus our theory predicts that all but the zeroth
moment of F,(~) is zero, a fact which is in agree-
ment with a Van Vleck moment analysis and with
other theories. In the Sung-Arnoldg theory, on
the other hand, no such moment preservation
occurs for the (S,S,) correlation function. There-
fore although it is. necessary in our theory to
solve the local equations for both g,(~) and gl(td),
the only nonlocal function that must be computed
is P, (ul). This has been done for a variety of c
ranging from 10 ' to 1; the results are sum-
marized in Figs. 5-8. In those figures, the func-
tions have been scaled to the dimensionless vari-
ables

y =&a/[ —,', s(s+1)]'~'(o, ,

E(y) = 5', (&u)[ —,', s(s+1)]'~'~, .
(44)

(45)

As can be seen from Figs. 5-8, the width of
the line shape dramatically decreases with de-
creasing c, while the amplitude increases cor-
respondingly. In fact, if one defines a linewidth
as

I' —= 1/E(0),

then we find that I' is proportional to c'~' for
0.5 &c ~1.0, while it is proportional to c for
c&0.1. Both the large-' "and"'" small-c be-
havior of the linewidth are in agreement with
phenomenol. ogical and semiphenomenological theo-

ries. Furthermore, the small-c behavior is in
agreement with the data of Grant and Strandberg~'
for EPR on low concentrations of the CR" ion in
ruby. The predicted behavior of the l.inewidth
as a function of concentration is summarized in
Fig. 9.

It is clear from Figs. 5-8 that not only does
the linewidth predicted by our theory change rap-
idly as a function of c, but so does the predicted
line shape. As Fig. 5 shows, for large c the
theoretical line shape shows a dip as y goes to
zero. The limit of c =1 is the only large-c case
for which experimental data are available. In
this limit frequency line-shape data exist for the
"FNMR in CaF, ." The predicted line shape and
the experimental line shape are in considerable
disagreement near ~ =0. In particular, the ex-
perimental curve is somewhat flat on top before
tailing off toward zero and does not display the
dip produced by our theory. Detailed theoretical-
experimental comparison for this case will be
deferred to Sec. III C. However, it is worthwhile
stating now that we believe the reason for this
discrepancy lies in the intrinsic limitation of
the bubble approximation itself. In particular,
the bubble approximation gives the correct second
moment for the line shape but does not preserve
the fourth and higher moments. Because these
higher moments, particularly the fourth, are not
preserved, the line shape will not have the cor-
rect behavior except at times near zero. The
only method we see for removing this discrepancy
is to include higher-order diagrams in the dia-
grammatic expansion of the self-energy. One of
us (P.A ~ F.) is currently pursuing this pl'otllem.

As can be seen from Figs. 6 and 7, as c de-
creases the dip in the line shape gradually flattens
out into a shouldex, beginning at about c =0.3,
and finally disappears altogether at about c =0.01.
At the same time, the center of the line rises
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and becomes increasingly Lorentzian in shape.
We would like to emphasize that although we believe
this general trend is correct the positions and
amplitudes of the shoulders and tail.s of the line
shapes depend on the details of P(f; c) and, owing
to numerical limitations, to some extent on the
actual grid in f space that we chose in order to
solve the integrals over that function. For eco-
nomic as well as practical reasons, we had to
limit the number of f points used in these in-
tegrations. We have found that varying this f
grid does not affect the shape of the l.ine at the
center, but it can affect the positions and ampli-
tudes of the shoulders and the amplitudes of the
tails by a few percent for reasonable f grids. For
a given c, however, if a shoulder is present for
one such choice of the points in f space, it was
found to be there regardless of how we varied
the f grid. We believe then that the variations
just mentioned are due to numerical uncertainties
caused by practical limitations in going the f in-
tegrals and are not the result of defects in the
basic theory itself. A more detailed discussion
of P(f; c) may be found in the Appendix.

As can be seen from Figs. 7 and 8, at extremely
small c the line shape becomes more Lorentzian.
This is in agreement with the observed EPR line-
shape for small concentrations of Cr" ions in
ruby~' and is also in agreement with phenomeno-
logical and semiphenomenological theories. "
The reason that we obtain agreement with ex-
periment for the line shapes at small c and are
in disagreement at c =1 is probably that at small
c the higher moments do not contribute to the
central peak, so the fact that the theory does not
preserve them does not matter.

In the small-c region, the line shape scales
with c. The line shapes at c =0.001 obtained from
the numerically evaluated p( f; c) and from the
analytic form of P(f; c), which is exact as c-0,
are virtually identical. , as expected. The l.ine
shape at this low concentration, shown in Fig. 8,
looks rather Lorentzian over most of the region
of appreciable spectral weight. However, the
tail of the actual line shape falls off slower than
the tail of a true Lorentzian until far out in the
wings.

To summarize this subsection, the theory out-
lined above, although imperfect, has yielded the
first first-principles prediction of the magnetic-
resonance line shape in the dipolar lattice for
the entire range of spin concentration c, and is
the first to obtain the c dependence of both line
shapes and linewidths at all concentrations. The
linewidths predicted by this theory have a c de-
pendence, which is in agreement with previous
theories in both the high- and low-c limitsi-xo and

is in agreement with experiment at small c."
Finally, the line shapes obtained at small c are
also in agreement with experiment, "while the
large-c line shapes show considerable deviation
from experiment. The line shape at c =1 is dis-
cussed in detail in Sec. IIIC.

C. Results for c=1;comparison with experimental free

induction decay for CaF2

0.6 —i s

0.4—
h

I~
0.2—

0.0
I.O

I
I I

I.5

-0.2—

04—
FIG. 10. Free induction decay F (7') for the dipolar

lattice. Solid curve is the present theory and the trian-
gles are the data of Englesberg and Lowe Qef. 17).

Since the case of c =1 is of particular experi-
mental interest, "we feel that it deserves special
attention. The most common experiments done in
this case are measurements of the free induction
decay of "F in CaF, ." Thus, in order to quantita-
tively compare our c =1 results with the latest
experimental data, "we have Fourier transformed
the c =1 line shape shown in Fig. 5 to obtain the
free induction decay (FID) for the dipolar lattice.
Our results are shown in Fig. 10 (solid curve)
along with the data of Englesberg and Lowe (tri-
angles). The data were taken at temperatures such
that 77-T ~4.2 K and with the magnetic field in
the [100]direction. In the figure, the dimension-
less time v =~~ t has been used.

We believe that this theoretical FID curve rep-
resents the first published'4 entirely first-princi-
ples calculation of the FID function for the di-
polar lattice. Blume and co-workers" have ob-
tained similar results, but have not published
them. Others"'" have obtained FID curves which
are in better agreement with experiment than
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ours, but they have used phenomenologica12' and
semiphenomenologicap6 theor ies. Our function,
however, was obtained self-consistently using a
theory which contains no line-shape assumptions
or adjustable parameters. As is evident from
Fig. 10 the best agreement at short times, before
the first zero of the FID function. The discrep-
ancy between theory and experiment" with regard
to the positions of the zeros ranges from 5.65%
for the first zero to 22.6/g for the eighth zero.
On the other hand, the amplitudes of oscillation
are clearly not in good agreement with experi-
ment; the theory and experiment differ by factors
of' 1.75 and greater for peaks beyond the initial
one.

Again, we believe that the discrepancy is due
to the limitations of the bubble approximation it-
self. In particular, the discrepancy in peak ampli-
tudes is a reflection of the dip the frequency line
shape has as p goes to zero. As discussed in Sec.
III B, we believe that the dip, and thus the too-
large oscillations in the FID, are caused by the
nonconservation of the fourth and higher moments
by the bubble approximation. W'e feel further,
and phenomenological considerations indicate, "
that including higher-order diagrams in the self-
energy diagrammatic expansion will correct the
discrepancy. One of us (P.A.F.) is currently
pursuing this problem.

IV. SUMMARY AND CONCLUSIONS

We have developed a general, first-principles
method for the calculation of dynamical spin cor-
relation functions in a system of randomly dis-
tributed, strongly interacting spins with multi-
polar interactions. The method is valid in. the
high-temperature limit and is applicable at all
spin concentrations c. As a numerical example,
we have treated the case of dipolar forces and
have calculated the magnetic-resonance frequency
line shape for a variety of different values of c.

Although the theory does have its weaknesses,
the general trend of the change in line shape and
linewidth with c for the truncated dipolar inter-
action is correct, with the theoretical linewidth
having the correct c dependence in both limiting
cases (c-1 and c-0). The line shapes are also
in agreement with experiment at small c.

Although the theory is applicable for any inter-
action which may be written in the form of Eq.
(2), the only case which has been considered
quantitatively thus far is the truncated dipolar
case. From a qualitative analysis of the general
tensor ~r " interaction, however, "it is apparent
that this formalism will give, at the very least,
reasonable results for the c dependence of the

linewidth in the general ca,se. In particular, such
an analysis shows that in the limit c-1, the theo-
ry predicts that 1"-c' '1 -c"~'. This is in agree-
ment with the phenomenological theory of Hama
et al. ,

' and is also in agreement with experi-
p o ' ' o q

polar systems (n =5).
The quadrupolar case is especially relevant for

the study of magnetic resonance in solid H, .'*""'
In fact, this system was the original motivation
for the development of the general formalism pre-
sented in Sec. II. Unfortunately, the formalism
for this system is so much more complicated than
the (already complicated) formalism for the di-
polar system that at the present time it is not
economically feasible to carry out the computer
work necessary to solve this problem. In fact,
the computational complexity of the formalism is
perhaps its greatest practical limitation. We be-
lieve, however, that this is an unfortunate but
necessary consequence of the physical complexity
of the problem,
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p(f c)= e'"~Q (1 —c+ce '"'&&) (Al)
dp,
2'

where the product is over all lattice sites )4 i
and, given the truncated dipolar interaction,

g„=(1 —3 cos'8„.}'(a/ ) r, ,~)'; (A2)

6,, is the angle between the applied magnetic field
and r,-~=r,. —r~.

In general, P(f; c) must be evaluated numerical-
ly. However, for 1 —c«1 and c«1, it is possi-

APPENMX: PROBABILITY DISTRIBUTION

FUNCTION p(f; c )

The probability density P(f; c}for the squared
interaction strength f at concentration c is found
under the assumptions of an infinite crystal and
a random distribution of the spins, so that the
probabilities of having the various lattice sites
occupied by an impurity are independent of each
other. Then the probability of any given site being
occupied by a spin is just c and, for the case of
one function f (i) as in Eqs. (13), it can be shown
t at"
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Some representative results for P(f; c) are
shown in Figs. 1-4. Starting at c =1, this func-
tion is just &(f-f, ). As c decreases, the peak
broadens into a. Gaussian centered at cf, . This is
a reasonable description of p(f; c) for c ~ 0.95,
although some structure begins to appear in the
peak even at larger values of c and, also, addi-
tional peaks start to emerge at smaller f. By
c =0.8, these peaks are well established, as shown
in Fig. 1 (solid line). Note that the peaks at larg-
er values of f tend to be larger in magnitude than
those at smaller f, although there is not a mqno-
tonic increase of peak height with f even at this
rather large concentration.

As c decreases further, the peaks at small and
intermediate f grow steadily in magnitude at the
expense of those at large f; by the time c reaches
0.5, the distribution is completely altered in ap-
pearance, with the central peak at f= ,' f, being-
the largest and six peaks being symmetrically
arranged on either side. The case of c =0.5 is
shown in Fig. 1 (dashed line).

For @&0.5, the distribution continues to shift
to lower values of f; at c =0.2, for example, it
is very nearly the mirror image of the distribu-
tion at c =0.8 reflected in f space through the point
f=-, f, . In Fig. 2 we show the first two peaks that
remain at c =0.1; the other peaks have become
quite small by this concentration. Note in this
figure that structure is beginning to appear in

each peak. This effect increases with decreasing
c as may be seen in Fig. 3, where a part of the
first peak at c =0.02 is shown; peaks beyond the
first are quite negligible at this and smaller con-
centrations. Finally, at very small e, the struc-
ture dies away and the computed P(f; c) becomes
smooth, approaching the analytic result, Eq. (A4),
which is expected to be valid for c«1. In Fig. 4
we see that these two functions are already quite
close to each other at c =0.001, although there is
still some structure present in the computed func-
tion, causing it to fluctuate a bit around the analy-
tic distribution. At this particular concentration
we have computed the correlation functions using
both distribution functions shown in Fig. 4; as is
shown in Fig. 8, the two sets of results are the
same for all practical purposes, and thus imply
that there is no need to evaluate P(f; c) numerical-
ly for v&0.001.

ble to find approximate analytic expressions which
are exact in the appropriate limit in each case.
For 1 —c«1, the distribution function may be
approximated by

p(f; c) =[ (1 — )f.j " p[ (f —-f,}'l(I — )f,l,
(A3)

where f, =+~ g, , and f, =Q, g', , Note that for
c-1 this Gaussian becomes a 5 function, p(f;1)
=5(f -f,), which is exactly correct. For c«1,
on the other hand, one can show that p(f; c) is
well approximated by"

p(f c)=b(vf') ' e '" (A4)

where b = (—,
'4 v'c')'~

Thus we find that P(f; c} is a function exhibiting
a single, simple peak at both high and low c; for
c = 1, the peak is located at a large value of f= cf, ,
while for small c the maximum value of P (f; c)
occurs at f =—,b' = ~~ v'c' and goes to zero as c2

does.
At intermediate c the behavior of p(f; c} is much

more complicated. From Eq. (Al) we see that it
is actually a sum over an infinite number of &

functions whose arguments have zeros distributed
between f=0 and f = f, . We have determined this
distribution by computing the weights and argu-
ments of the & functions arising from as many as
300 lattice shells surrounding the point r, . As c
decreases from unity, more and more shells must
be included in the sum to obtain good convergence;
the maximum number of 300 was required at the
minimum value of e for which results are pre-
sented here, specifically, at c =0.001.

For purposes of integrating P(f; c) over f, we
have converted the sum of & functions to a less
singular function by dividing f space into many
small segments, each of width Cf. Then the
weights of all of the & functions having zero argu-
ment in a given increment b, f are summed and the
sum is divided by C f. The result becomes the
value of p(f; c) at the center of the interval in

question. By taking 4f sufficiently small (hf'
=10 ' for c =0.001 and c f =0.005 for c =1) on the
scale of variations of the envelope of P(f; c), we
guarantee that this smoothing has a negligible
effect on any of the calculated correlation func-
tions.
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