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The mean force I’) on the electron gas due to the scattering on impurities is shown to account for the residual-
resistivity field which must be applied to a sample in order to keep a stationary current. The calculation of F
provides a means of estimating the driving force for the electromigration. It is also possible to obtain F by
calculating the net charge flux induced by the displacement of the impurity.

In a recent paper,! Landauer and Woo show that
the Bosvieux-Friedel calculation of the friction
force? ignores terms (due to residual-resistivity
dipoles) whose contribution is of the same order
as those they explicitly considered. In the Bos-
vieux~-Friedel paper, the charge polarization is
calculated within the Born approximation; the
friction force is then second order in A the
strength of the impurity potential and is compared
to the residual resistivity Ap calculated to the
same order. The contribution of residual-resistiv-
ity dipoles to the force on the impurity is of
order A* however, because it is proportional to
zAp[seeEq. (7) of Ref. 1], where z is the charge of
the scattering impurity. Therefore, a quantum-
mechanical calculation of the resistivity and of the
force to order A\* must be performed to account for
these effects. The residual-resistivity field how-
ever can be shown to be consistent with the Fiks®-
Huntington* relation for the friction force.

Let us consider a current density J flowing
through a pure metallic sample of resistivity po,
N Z conduction electrons per unit volume. The
external electric field EY, is defined by

Egnv:puj . (1)

Because of the residual resistivity Ap due to the
introduction of N; interstitial impurities per unit
volume, the external field must be increased by
the residual -resistivity field A}*Em in order to
maintain the same current J as in the pure sam-
ple:

AE 4, =2pJ =(ap/pg) B¢ (2)

As a result of electron-impurity scattering and
electron-electron interactions, a self-consistent
screening charge builds up around each impurity
and the conduction electrons are submitted to a
self-consistent “internal field” contributed by the
applied field, the bare impurities, and their
screening charges. As the mean acceleration of
the conduction electrons vanishes in the stationary
state, the mean force on the electron gas due to
the scattering on the impurities must exactly com-
pensate for the force - |e| Aﬁm. This effect has
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been analyzed by Kohn and Luttinger® in a system
of electrons interacting with impurities [see Eq.
(59) of their paper].

In order to obtain a quantitative expression of
the friction force on an impurity, it is possible to
use the formalism of Edwards® and Rousseau and
Stoddart and March” who determined the mean-
field necessary to keep a stationary current in the
sample. Assuming a concentration of N;=1 im-
purity per unit volume and using a density matrix
p normalized to unit volume, the condition that the
mean force on the electron gas vanishes is

Trp(¢’+¥)=0, (3)

where F=—|e|(E%, +AE,) and $’ represents the
gradient of the electron-ion potential. This equa-
tion provides the mean forces ('17‘0) on the electron
gas of a pure metal and (F) on the electrons of a
sample containing one interstitial impurity per
unit volume:

(Fo)==Trlpodd) , (4)
(F)=~-Trlpp’) . (5)

The effect of the impurity on the mean force
acting on the electron gas is accordingly

(F) =(Fo)==Trplo' -4 -Trlp~po) d5 . (6)

The second term in this expression describes
the change of force on the crystal lattice due to the
change of the density matrix induced by the impur-
ity. From a microscopic point of view this term
exhibits the influence of the interstitial impurity
on electron-lattice interactions and may account
for a part of the temperature dependence of the ef-
fective valence of the impurity.

The first term in (6), which is the force on the
electron gas due to the change in the potential ¢
brought about by the impurity, is the only term
relevant to the electromigration problem in the
jellium approximation. The friction force on an
impurity is then

F=Trp($’ -85 =Trp¢  , (7)
where 5(,,,, is the gradient of the bare impurity po-
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tential.
As

${on=(i/h) [Eﬂi’ion] ’ (8)

where 5 is the one-particle momentum operator,
(7) shows that F; is due to the momentum transfer
{dP/dt ), to the electron gas occurring in elec-
tron impurity collisions:

= ap dp
F.=~=T = - ) 9
! rp<dt )mm dt >lmp ( )

where P is the momentum operator of one unit
volume of the electron gas.
In the T representation, (7) can be written

= f @ n(F)9¢ 00 » (10)

where #.(¥') is the total change in the electronic
density brought about by the presence of the elec-
tric field. This charge density is made of two
parts:

ne(F) =y (F) +m,(F) . (11)

(i) ny(r), the bare polarization charge, is due to
the scattering of electrons which are displaced by
the field, on the self-consistent potential of the im-
purity; (ii) ne(F) is the reaction of the electron gas
to this external charge.

The expression (10), a consequence of the Feyn-
man-Hellmann theorem, has been used previously
by Bosvieux-Friedel,? Sorbello,® Gerl,® and Kumar
and Sorbello.' It shows that ﬁ arises from Cou-
lomb interactions between the self-consistent polar-
ization charge », and the bare ion charge. In a
free-electron gas, it is equivalent to write (10) as
the interaction between the screened impurity po-
tential ¢,.. and the bare polarization charge »,:

F,= fdsrnﬁd)“r. (12)

This equivalence can be demonstrated by writing
(10) in the reciprocal space: the integral contains
a product involving n.(q) and ¢,,,(q), where n.(q)
=ny(q)/€(q), €(q) being the dielectric function of the
electron system. This product can also be written
as ny(g) multiplied by ¢4..(q)= d,0a(q)/€(q). As
shown in Ref. 11, », can be easily calculated to
first order in A by summing up all contributions

from the waves scattered by the impurity, and it
is straightforward to relate F; to the residual re-
sistivity p; = NAp/N; of the impurity

F,=— Zlp/(po+ 8p) | |e|(E, +AE,,,) ,

or

-

F,‘:_Z(pi/po)ielﬁzxt' (13)

Then the force contributed by N; impurities per
unit volume on the electron gas

F=-N,F,=7(0p/py) | | E%, (14)

where #=ZN is the number of free electrons per
unit volume, can be interpreted as due to the in-
ternal field - (Ap/po)'ﬁgx,. This force cancels ex-
actly that due to the residual-resistivity field (2).
Another way of attacking the problem of the ef-
fective valence Z ¥ of an interstitial impurity is to
come back to the definition of Z ¥ given by the
thermodynamics of irreversible processes:

Z¥=2,- /)30 (15)

where z; is the true ionic charge and (J,/J;)p is
the fotal electron flux associated with a unit flux
of the impurity, in the absence of an applied elec-
tric field. The equivalence between (15) and the
definition in terms of a force follows from On-
sager’s relations. The electron flux 32 is made
of two parts: a convective flux 3; due to the per-
manent reconstruction of the screening cloud by
the electron gas and a flux J ¢ due to the scattering
of electrons on the screened impurity. In the case
of a slowly moving interstitial of velocity V,, the
flux J1=2,¥, (Ref. 12) compensates exactly for the
charge carried by the bare ion and the direct elec-
trostatic force on the interstitial ion vanishes,
This point is demonstrated in some details in Ref.
13. The flux J2 can be calculated through a linear
response formalism to first order in the velocity
v, and any order in the impurity potential, and the
usual relationship between the force f,. and the
residual resistivity of the impurity is recovered.
This way of tackling the problem of the friction
force and the direct electrostatic force as well
avoids some difficulties with the definition of the
fields and the charges on which they act.
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