Comments on the formation entropy of a Frenkel defect in BaF_2 and CaF_2

P. Varotsos

Department of Physics, University of Athens, Solonos Street, 104, Athens 144, Greece

(Received 6 October 1975)

The entropy for the formation of a Frenkel defect in alkaline-earth halides has been estimated using the defect's formation enthalpy and the temperature variation of the crystal's bulk modulus. The values obtained for BaF_2 and CaF_2 are in good agreement with the experimental results.

Several of the alkaline-earth halides such as CaF_2 , SrF_2 , BaF_2 , and $SrCl_2$ have been studied fairly extensively. It has become customary to interpret their point-defect-controlled behavior of anion Frenkel defects as the overwhelmingly¹ predominant defects. In this paper we attempt an estimation of the formation entropy S_F^F of a Frenkel defect using the formation enthalpy h_F^F and the temperature variation of the bulk modulus B.

We assume that the formation of a Frenkel defect causes a uniform dilatation of the crystal. Thus, the corresponding free energy g_F^F must be proportional to the bulk modulus²

$$g_F^F = aB,\tag{1}$$

where the coefficient a depends² on (i) the dilatation value and (ii) the "formation volume"^{3,4} of the Frenkel defect.

At absolute zero, Eq. (1) gives

$$h_F^F = a_0 B_0 , \qquad (2)$$

where a_0 and B_0 are the corresponding values at T = 0.

By differentiating Eq. (1) we have

- ⁴M. D. Feit, J. Mitchell, and D. Lazarus, Phys. Rev. B 8, 1715 (1973).
- ⁵H. B. Huntington, The Flastic Constants of Crystals

$$-S_F^F = \frac{\partial g_F^F}{\partial T} = a \frac{\partial B}{\partial T} + \frac{\partial a}{\partial T} B.$$
 (3)

By ignoring⁵ the temperature variation of the lattice parameter, i.e., $a \partial B / \partial T \gg (\partial a / \partial T)B$ and $a \simeq a_0$, Eq. (3) gives

$$S_F^F = -a_0 \frac{\partial B}{\partial T} \,. \tag{4}$$

A combination of Eqs. (2) and (4) gives

$$S_F^F = -\frac{h_F^F}{B_0} \frac{\partial B}{\partial T} \,. \tag{5}$$

Experiments show that at low temperatures the slope $\partial B/\partial T$ is not constant, i.e., as it was expected $\partial B/\partial T - 0$ when T - 0. At higher temperatures Gerlich's measurements⁶ show that the elastic constants C_{11} and C_{12} are decreasing linearly as the temperature is increasing and thus $\partial B/\partial T$ may be assumed as constant.

In the case of BaF₂ we have $h_F^F = 1.9 \text{ eV}$, ${}^7B_0 = 0.626 \text{ erg/cm}^3$, ${}^{6,8} \partial B / \partial T = 9.125 \times 10^{-4} \text{ erg cm}^{-3}$ K⁻¹.⁶ Inserting the above values in Eq. (5) we find $S_F^F = 10.7k$. Also applying Eq. (5) in CaF₂ we find $S_F^F = 12k$. The above values obtained in both cases BaF₂ and CaF₂ are in good agreement with the experimental results.^{7,9}

(Academic, New York, 1958), p. 118.

- ⁷E. Barsis and A. Taylor, J. Chem. Phys. <u>48</u>, 4362 (1968).
- ⁸C. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 149.
- ⁹R. W. Ure, Jr., J. Chem. Phys. <u>26</u>, 1363 (1957).

¹J. Crawford and L. Slifkin, *Point Defects in Solids* (Plenum, New York, 1972), Vol. 1, p. 87.

 $^{^{2}\}mathrm{P}.$ Varotsos, Phys. Rev. B (to be published).

³G. Martin, D. Lazarus, and J. Mitchell, Phys. Rev. B 8, 1726 (1973).

⁶D. Gerlich, Phys. Rev. <u>135</u>, A1331 (1964).