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A formalism previously developed within the framework of Anderson’s model for disordered lattices produces
convenient expressions for transport-related averages of the type < G*G >, (G is the Green’s function of the
system). Those expressions involve a probability distribution function that satisfies an integral equation. The
probability distribution function is obtained by solving numerically the integral equation for systems with
“rectangular distribution” type of randomness, and is subsequently used to calculate the corresponding
transport-related quantities. The results, which provide detailed information about the eigenfunctions at
different energies and degrees of randomness, are analyzed and discussed.

I. INTRODUCTION

In a previous paper,! hereafter referred to as I,
we developed and presented a formalism suitable
for the study of transport-related problems in one-
dimensional (1-D) disordered systems. Such a
study is important both from a theoretical point of
view and in view of the existence and ongoing ex-
perimental and theoretical study of a whole class
of metallo-organic materials exhibiting quasi-one-
dimensional behavior and, in some cases, peculiar
transport and magnetic properties.2~* The diffi-
culty of the problem is considerable, and little has
been done for its study from first principles.*® The
formalism developed in I makes possible for the
first time the numerical calculation of quantities
of the type (GG*),,, where G is the Green’s func-
tion of the system and ( ),, denotes average over
all configurations. A wealth of information, re-
lating to localization of the eigenstates and trans-
port properties of the system, is directly obtain-
able from such quantities.

The formalism presented in I expresses those
(GG*),, quantities in terms of the joint probability
distribution of the real and imaginary part of the
Green’s function. The said probability distribution
is obtained as solution of an integral equation. The
integral equation is also derived in I and the form
of the solution is studied analytically, and ex-
plained qualitatively in terms of the mathematical
properties of the Green’s functions and their prob-
ability distributions. Finally, in Sec. Il of I a
number of quantities of physical interest are intro-
duced and defined. Those quantities relate to the
localized character of the eigenstates of the system,
have mostly the form of “characteristic” or “lo-
calization” lengths, and are directly related to the
(GG*),, quantities. The knowledge of the localiza-
tion lengths, apart from revealing the form of the
eigenstates of the system, is also essential to most
phenomenological studies of the transport proper-
ties of the system. For example, in the phonon-
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assisted hopping conduction” theory the overlap be-
tween localized eigenstates is required. Then that
overlap is expressed through a characteristic
length which is assumed to be the same as the
length R, that characterizes the rate of decay of
the eigenstates at infinity. In fact, the length R,
exclusively determines the overlap when the two
eigenstates are so far apart that only their extreme
tails overlap, i.e., when their eigenenergies differ
infinitesimally. However, when considering tran-
sitions between states with finite eigenenergy dif-
ference, the eigenstates may be much closer and
their overlap should be determined by a length
characterizing the extent of their appreciable part
and not of their tails. This length may be in some
cases widely different than R;. Our results indeed
suggest such wide differences, mainly in the cases
of weakly disordered systems.

In the present paper we use the formalism de-
veloped in I to calculate numerically the transport-
related quantities introduced in Sec. I of I and
briefly discussed above. Consequently, in Sec. II
we present the basic formulas required for our cal-
culations, conveniently transformed to facilitate
numerical solutions. In Sec. III we study the case
of a system with a rectangular distribution, or
Anderson, type of disorder; in Sec. IIIA we obtain
the corresponding joint probability distribution
function by solving numerically for different ener-
gies and degrees of disorder the integral equation
it obeys. Then in Sec. IIIB we use the obtained
numerical solutions to calculate the (GG*),, quan-
tities at the corresponding energies and degrees
of disorder. Finally, we use the calculated values
of the (GG*),, quantities to calculate, in Sec. IVA,
the different localization lengths that characterize
the form of the eigenstates in a disordered system
and to study, in Sec. IV B, the diffusibility of a
particle placed initially on a lattice site of the dis-
ordered system. Our results are discussed and
physically interpreted.
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II. BASIC FORMULAS

We consider a 1-D Anderson model described by
a Hamiltonian of the form

(llH]m):s,G,m+ V(0 141+ Oy 1-1) (2.1)

where |1) is an atomiclike orbital centered around
the lattice point 7 (1=0,+1,+2, ...), €, are inde-
pendent random variables having a common prob-
ability distribution Py(¢;), and V is a positive con-
stant. The Green’s function Gy (z)={01(z — H)"110)
can be written

Goo(2) =z~ €= 89(2)]7,

which relation defines the so-called self-energy
Ag(z) at site 0. Then Ay(z) is in turn expressed
through the quantities 75(E), 63(E), 75(E), and 6;(E),
in the form

(2.2)

AG(E +is) = T(E) + T5(E) — is[03(E) + 65(E)], 2.3)
as s—=0. The quantities 7 and 9 are defined and
the above-outlined formalism is rigorously pre-
sented in Sec. IV of I where the formalism pro-
ceeds to the derivation of two integral equations.
The first is obeyed by the probability distribution®'®
f(r)of the random variables7*(E)or 77 (E), andthe
second isobeyed by the joint probability distribution
DP(7, 8) of the pairs (7*(E), 6*(E)) or (r°(E), 6 (E))
[see Sec. IV of I, relations 4.15 and 4. 17 there].

Explicit expressions for the quantities (GG*),,
can be obtained involving the joint probability dis-
tribution P. Therefore it is necessary to solve
the integral equation and obtain P. An analytic
solution of the integral equation seems unfeasible.
Consequently, and in view of the importance of its
solution, a numerical-solution approach was taken;
for that purpose the integral equation was properly
transformed, by a change of variables, to facilitate
the numerical procedure. The transformation
7=A+ Btan¢ (A and B appropriate constants) has
been successfully used® to obtain numerically the
probability f(7) mentioned above. The same trans-
formation is made here for 7, while for 6 different
transformations have been tried; finally the trans-
formation 6 = (tanw)? was chosen. Therefore by
transforming (7, 8) = (¢, w),

7(¢)=A+ Btang,  6(w)= (tanw)?,
¢ (1) =arctan[(r - A)B!],

the integral equation for f(r) is transformed to

(2.4)

~T/2
£(9)=Bleos(@)T@)* | Py(E=x =7 @) /(0)d,

(2.5)
with the normalization condition
-T/2

f((p)d(b:l,

-T/2
where from now on we set V=1 in order to simplify

(2.86)

the forms, since V only defines the energy scale.
The integral equation for P(r, 9) is also trans-
formed to

P(¢, w) = B[cos(¢) cos (w) 7(¢)]2{8(w)
X[=14+8(w) T7%(0)] 7172
X fDD Py(E-1(x) - 77(0))

X P(x,arctan{[- 1+ 6(w) 72(¢)]""?}) dx ,

(2.7a)
where
D= {x[- 1+ 8(w)T3(d) )3, (2. 7b)
with the normalization condition
T/2
jo P(6, ©) dw=£9). (2.8)

As mentioned before, the probability distribu-
tions f(¢) and P(¢, w) can be used to calculate a
number of ensemble averages of quantities of in-
terest. For example, f(¢) has been used® to cal-
culate, among other things, the average density of
states per site p(E) of the system. Likewise,
P(¢, w) can be used to calculate quantities of the
type (GG*),, and more specifically

(0B = <1ir;1(s/n)GU,(E+ )Gy (E - is)> . 2.9
S= av

Such quantities can be calculated from P(¢, w) in

a fashion described in Sec. V of I [see relations

(5.5) and (5.12)—(5.14) there]. Of course those

relations also have to be properly transformed to

facilitate the numerical procedure, and we have

/2 T/2
(oo (E))y = f lzdcb’dqb“J; dw* dw”

XPy(E - 7(¢") = 7($7))P(¢*, w*)P(¢7, w)
X[1+6(w*)+ 6(w)]?. (2.10)
Also, the successive g, can be obtained from suc-

cessive Z,(¢, w), obtained by the following algo-
rithm for 71=1,2, ... :

T/2
Zo(<¢>,w>:j0’ Po, W1+ 0w+ 00y,  (@.11)

/2

Z,($, w) = Blcos (¢)7(9) ]2 j Po(E=7(0) - 71(9))

n/

X Zo(x, w)dx, (2.12)
/2
Z,(¢, w) = Blcos(9)7(¢) ] , PolE
-7(x) = 7740))Z,.,(x, arctan {77%(x)
x[1+8(w) M3 dx, 1>1. (2.13)

Then &, is expressed through Z, (1=1,2, ...) as
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coEn=5" [ a0 J Fawcost[6 (7))

xP(6, w)Z{¢[1/7(®)], 0}, 1=1,2,....
(2.14)
In Sec. III we present the results obtained in the
case of a random system with a rectangular prob-
ability distribution Py(e).

I1l. THE RECTANGULAR DISTRIBUTION CASE

A. Numerical solution of the integral equation

As discussed in Sec. II the type of disorder of
the system is introduced in the Anderson model
through the probability distribution of the set €,
the diagonal Hamiltonian elements [see relation
(2.1)]. Throughout the present work we have as-
sumed the €; to be independent random variables
having a common probability distribution P,(¢,);
therefore P, completely determines the type and
degree of disorder of the random system. We pre-
sent here the results obtained in the case of a rec-
tangular distribution P, defined as

= =<
Py(¢;)=1/2a for |¢;| <a, a.1)
Py(€;) =0 otherwise,

where « is a positive parameter solely defining P,.
Then, in the limit a —=0, Py(e;) —~56(€;) and

we obtain the periodic system, while in the limit

@ —~ o the system is so strongly disordered that its
eigenstates become the atomiclike orbitals |7)
centered around the lattice points i, Of course the
a - case is trivially understood; the limit & -0
is the extensively studied periodic case (although
it is very interesting to study the way this periodic
limit is achieved as @ —0). Therefore the inter-
esting range of values for « is where the width of
the distribution P, (being 2a) becomes comparable
to the bandwidth of the periodic system (being 4,
since we have assumed here V=1). Calculations®
indicate that there is a gradual change of character
in the system, from strongly localized to quasi-
periodic, around the value a=1,

In Sec. IV of I the behavior of the joint probability
distribution P(7, 8) was examined by studying the
properties of the integral equation that P satisfies.
It is shown there that P(7, 8) is nonzero inside the
parabola 6 =72, For a terminated distribution
P,(¢), the nonzero values of P(r, 9) are restricted
further and lie essentially between two parabolas
0= k,,,l,,T2 and 0= kem“‘r2 (where the constants % obey
Pmax” Bmin > 1) for [71 >0, while for 7=0 the solu-
tion is nonzero for 6 >0 and inside a finite portion
of the positive 8 axis. In Sec. IV of I it is also
shown that P(r, 8) <7™* as 7 and 9 go to infinity
along lines 6 =k7%. The above-described behavior
of P(t, 0) is easily translated into a corresponding
behavior for P(¢, w) introduced in Sec. II, by ob-

serving the transformations (2. 4) and the corre-
spondence

dTiiﬁ

P((b: w)""P(Ty 9)% do

(3.2)
The parabolas 6= k7% are also transformed into
lines

w=arctan(| A+ Btano | #'/?) (3.3)

in the (¢, w) plane.

With all the above in mind we proceeded to solve
numerically the integral equation (2.7) for P(¢, w).
For that purpose, the (¢, w) plane (- 37<¢ <3,
0<w<3m) was subdivided into (typically) 100 sub-
divisions along each axis and P(¢, w) became a
100 X100 matrix. Then the kernel of the integral
equation was properly transformed into a discrete
one, following the method used in Ref. 9, and a
numerical solution of P(¢, w) was obtained by a
converging iteration scheme,

P, =KyP,, P,-P,~0, asn—-=, (3.4)

n+l =

in a way essentially the same as that of Ref, 9.
Our numerical accuracy was estimated to be
around 10%.

The numerical solution requires the a priori
knowledge of the behavior of P(¢, w) as w— 37 (w
beyond the last subdivision) for a constant ¢ [the
equivalent in P(t, 9) of 8~ and constant 7]. This
behavior is qualitatively known from the extensive
analytic study of the solution P(7, 9) in I; moreover,
this qualitative knowledge suffices because the so-
lution proves insensitive to the exact form of the
assumed behavior at w~37. This behavior actually
influences only the negligibly small numerical val-
ues of P(¢, w) at a small percentage of points of
the P(¢, w) matrix, around ¢ =0, w =37 (this is a
region where the solution should be essentially
zero, as already pointed out).

The basic properties of the obtained solution are
shown in Fig. 1. The shaded area indicates the
appreciable values of P(¢, w). The obtained values
of P(¢, w) are exactly zero below the shaded area,
while they are almost zero (being several orders
of magnitude lower than the shaded-area values)
in the small region around ¢ =0, w=37. The trans-
formed lines 6 =k7° are shown on the same figure
(the transformation of 7 is in this case 7 =tan¢)
and the predicted behavior of P(¢, w) is exhibited,
with P(¢, w) essentially nonzero between two
“transformed” lines 8 = &,,,, 7%, 6= kmufz for 7 large
(I¢1>%m), while for 7~0 (¢ ~0), essentially non-
zero for 57 < w<wp, <37. The obtained solution
obeys the normalization condition (2. 8) involving
the probability distribution f(¢), which is itself
normalized to 1. f(¢) is obtained independently of
P(¢, w) by solving numerically the integral equa-
tion (2.5) as in Ref. 9. Finally, the probability
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w (RADIAN)

2 0 2
¢ (RADIAN)

FIG. 1. Joint probability distribution P(¢, w) (see
text) has nonzero values only in the shaded area of the
o-w plane. The variables ¢, w are related to the origi-
nal variables, 7, 6 in this case, by T=tan® and 6 =tan’w,

distribution of 6, P(§;E) defined in its transformed
form as

/2
M(w) = J L P(6,0)do @3.5)

was found to exhibit the predicted behavior at
w=37 (6~ =) as discussed in Sec. IV of I [P(§;E)
~03%) as g,

B. Calculation of (¢ (£),,

In Sec. IIIA we have given the formulas (2.10)—
(2.14) expressing (£qo(E)),, and the successive
(oi(E))y (1=1,2, ...) in terms of P(¢, w). It is
then straightforward to calculate (&g (E)),, from
(2.10) by numerical integration using the obtained
P(¢, w). In a similar fashion it is also possible
to calculate the successive (£y;(E)),, (I=1,2, ...)
from (2.14). Equation (2.14), though, involves
also some functions Z,(¢, w) which are obtained
from the relations (2.12) and (2.13). Equation
(2.13) is actually an iteration scheme, capable of
calculating the successive Z,, of the form

Z,=KZ,. (3.6)
1 1-1>»

with the kernel K qualitatively similar to the ker-
nel K, in (3.4), as one can see by comparing (2.7)
and (2.13); one should then expect that the iteration
converges in the form

Z,—uZ,,~0 as =, 3.7

where u is an eigenvalue of the kernel K. Careful
study of the properties of the kernel K is required
in order to obtain numerically correct limiting be-
havior of the iteration scheme as /-, basically
because here, too, as with the integral equation
(2.7), the behavior of each Z,(¢, w) as w—~371 (@
beyond the last subdivision) is required. Some
analysis of (2.13) performed in a fashion similar
to that used in Sec. IV of I reveals that

Z)(¢, w)~ ET-w), w=3zm, |$|>0, (3.8)

while

A®/2
Z;(¢,w)-(A¢)"f ’ 4o

oz 1+ koTz(‘p)(%Tf- w)®’
w=3m, ¢=~0, 3.9
where A¢ is the distance of two successive sub-
divisions and %, determines typically the line 6(w)
= kyT?(¢) along which P(¢, w) exhibits its maximum
values.

With all of the above in mind we proceeded to per-
form the iteration and obtained the successive val-
ues of (£y,(E)),, for the different values of energy
E and degrees of disorder «. In Fig. 2 we show
the obtained (¢y,(E)),, vs E for an @ =2 (on the “high-
disorder” side) for 7=0,1,2,5,10. We observe
the gradual decay of values as [ increases from
zero, the decay being much faster towards the
band edges. We also observe the resemblance of
the shape of {£,,(E)),,, for the first few [ at least,
to the typical shape of an amorphous 1-D density
of states. This behavior is qualitatively under-
stood because, as discussed already, at the limit
a - we have (£, (E)),, ~ p(E) (the average density
of states per site). The resemblance persists for
a=0.5 as well (on the “weak-disorder” side), al-
though there (£yy(E)),, is an order of magnitude
lower than p(E) as shown in Fig. 3, where we pre-
sent in a semilogarithmic scale values of {£g(E)),,
vs E for @=0.5and [=0,1,2,5,6, 16, 40, plotting
also p(E) for comparison. The important feature
in this figure is the presence of strong oscillations

T T T T T T T

- <€oo>
Q=20 —-oeeees <Co >
s LLop >
————— <Cos>
I <€o1o>

0.06

0.051

<L B>y
o o
o )
[ H
T T

o

[e]

N
T

001 -

E/V

FIG. 2. Quantities (£y;(E)),,, 1=0, 1, 2, 5, 10, vs
energy (V=1) for the degree of randomness o =2, Note
the decrease and the change of the shape as ! increases.
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FIG, 3. Quantities (L'OI(E))“, l=0’ 1: 2: 5’ 6! 16’
40, vs energy (V=1) for «=0,.5. The density of states
p(E) is also presented. Note that there is little but en-
ergy-dependent change from /=1 to =6, in contrast to
the case shown in Fig, 2.

of the values of the §,, in successive [ for energies
around the middle of the band, a feature absent in
Fig. 2, while towards the band edges the oscilla-
tions disappear and the rate of decay of the values
is much faster, causing again as in Fig. 2 a com-
pletely different shape of the curves of / small and
1 large.

The oscillations mentioned above are clearly
understood and interpreted as caused by the phase
correlation of the eigenfunction in successive
sites. This phase-correlation effect is naturally
strong for small degrees of disorder «; it is en-
ergy dependent and it is not wiped out by the aver-
aging process. In order to see that correlation
effect more explicitly, one should consider
{£01(E)),, as being qualitatively an average of
square amplitudes of the form (agcos?¢g a, cos?e,),,
with, say, the ¢, having a flat probability distri-
bution of values between 0 and 27. Clearly the
average value depends on the correlation of the
random phases ¢, and ¢,. If ¢, and ¢, are strongly
correlated, as in the case of small degrees of dis-
order and small /, then the energy-dependent phase
change in successive [ will appear in the average.
For example, consider [=0,1,2 and an energy in
the middle of a band with small disorder a. Then
we have ¢y ~¢o+2m, Gy ¢+ 3T=dg+ 7, and
<§00(E)>av = <a§ COS4¢0>av = <§02(E)>av = (aﬁaz cosquo
X c082(Pg + M) Vay> (€01 (E) gy = {@pa, cos?(dg+ 51
X cos®Pyd,,. Of course such oscillations will not be
seen towards the edge of the band where, even for
small disorder «, the phase changes so slowly be-

tween successive sites that the disorder wipes the
phase correlation out before any appreciable oscil-
lation shows.

In general there is a phase correlation length
which depends on the disorder and the energy. For
1 beyond that length (expressed in number of sites),
the disorder wipes out any correlation between ¢,
and ¢,, the average is simply a product {a, cos?,),,
X {a; cos®¢,),,, and the energy-dependent oscilla-
tions essentially disappear. The above-described
behavior is fully supported by our results and is
more clearly presented in Fig. 4. There we show
the values of (£,,(E)) vs [ for two different energies
and degrees of disorder.

IV. CALCULATION OF QUANTITIES OF INTEREST
A. Form of the eigenstates

In a 1-D disordered system all eigenstates are
exponentially localized, '° i.e., the modulus of
their amplitude behaves at infinity (I~ ) as
exp(-1/L,), L, (in number of sites) being the char-
acteristic length of decay. This length clearly
describes the behavior of the eigenstate in its ex-
treme tails, i.e., far from the region where it is

(a) Q@=20,E20
0020k -—--Q=05,E:0 1
Log™]
0015} e
0010} i
0005} .
. o 2 ‘ e
40 -30 20 -0 O 10 20 30 40
45 9 (NUMBER OF SITES)
w
5
(b)
\/ ©os| DU |
005} r
004
003
002
oot | ,"_’_rrr(
o f et N ..rf’fr- I N
20 15 10 -5 0 5 10 15 20

FIG. 4, Quantities (¢ (E)), vs I for E (a) lying at
the center of the band and (b) at the band edges for two
different degrees of disorder, &« =0,5 and =2, The
length Ly, (see text) is also shown, Note the oscillations
for =0.5, E=0,



13 EIGENFUNCTIONS IN ONE-DIMENSIONAL DISORDERED SYSTEMS. II. ... 925

appreciable, but it is an open question whether it
has any relevance to the length over which the
eigenstate exhibits its appreciable values. In a
system with weak disorder @, L, behaves as a™?, a
behavior well established from published calcula-
tions'! and from our present results (statements
to the contrary in the literature® are incorrect).
The a2 behavior is a direct consequence of inco-
herent superposition of amplitudes; one can arrive
at that'®=!* py a reflection-coefficient study or an
equivalent mean-free-path calculation. If inco-
herent superposition is assumed, then!?!3

L3 (| 7|2, 4.1)

for |71% small, where |7|? is the reflection coef-
ficient from a single impurity. Then for energies
at the center of the band (E =0)

lr|2=€2/(a+ €, (4.2)
which means!®
L} (E=0)xa® as a—0. (4.3)

In the above calculation the interference terms are
excluded from the beginning, the equivalent of a
mean-free-path calculation where complete phase
cancellation is assumed. The interference or
cross terms, though, have an |7|! dependence and
therefore behave as a™! when @ —0. Therefore if
they were not excluded or neglected in a calculation
like the above, some a™'-dependent terms would
survive even in the cases of strong phase cancella-
tion, Then o™, however small in weight, would
dominate at the limit &« —0. The above suggests
that the length L, is insensitive to effects involving
coherent superposition of amplitudes, while the
eigenstate in the region where it exhibits appreci-
able values may be strongly influenced by inter-
ference effects, the equivalent of resonating with
certain clusters of sites in the system. Therefore
the typical form of an eigenstate may be far more
complicated than the simple picture of a wave func-
tion almost regularly decaying at both sides, as
suggested by its behavior at infinity.

The need to describe in a more realistic way
the typical form of the eigenstate not in its ex-
treme tails is important, as already pointed out.
For example, often one needs to estimate the rela-
tive overlap of two eigenstates. When two eigen-
states are not very far apart, their overlap may
not be described at all by the overlap of their ex-
treme tails, which is governed by L,. To describe
the eigenstate more realistically we introduced in
Sec. III of I more than one characteristic length.
We consider here, therefore, apart from the decay
length L,, the following lengths (all expressed in
number of sites): (a) L. (E) as the effective num-
ber of sites that contain the eigenstate, and (b)
Ly (E) as the number of consecutive sites over

100 .
'/l \\\\
80L a@..5v ', N\ Ly ]
,’/ (a) N\ Leff
60+~ / \ -
Ay
’ AY
/ \
/ \
40 ; \\ ~
II \‘
20+ / \ A
[¢] T L L L N 1
sob aev ®  lg
Leff
301 .

n
[e]

o

o

LOCALIZATION LENGTHS (IN ATOMIC UNITS)

—=E/V

FIG. 5. Length Lo, , giving the total number of sites
participating in the eigenfunction | E), and the decay
length L, vs E(V=1) for three characteristic values of
the degree of randomness «; (a) small randomness, «
=0,5; (b) medium randomness, a=1; (c) large random-
ness, ¢ =2,

which the 90% of the eigenstate (i.e., of the square
amplitude of its eigenfunction) is contained. Both
lengths can be obtained from (¢y,;(E)),, and we have
calculated them. In Fig. 4 we plot (y,(E)),, Vs 1
for energies in the middle of the band as well as
for energies close to the band edge and for two dif-
ferent degrees of disorder, «=0.5 and «=2. On
the same figure we indicate how we define the

Ly (E) such that

Lgp/2
o oi(E))ay
1-%552  P(E) 0.9. (4.4)

In Fig. 5 we present L., (E) vs E and we plot L,(E)
also for comparison. We observe that L, (E)
stays considerably smaller than L,(E) as « de-
creases. In Fig. 6 we plot and present the maxi-
mum value of L. (Lg5), achieved for each « in
the middle of the band, versus 1/a. On the same
figure we also present an empirical fit of the data
over the entire range from o«=0.25to «=6.0. The
fitting curve is

LT =14 (64/6%) In(Ga+1), (4.5)
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FIG. 6. Length LYjF =L, (E=0) vs the inverse of the
degree of randomness @ (V=1), The points with the er-
ror bars show our numerical results, The solid line is
an empirical fit (see text).

and has the limits LT%¥~1 as ¢~ and L0%F - o™!
as o —~0. The limit LLF =1 is naturally correct
because when the degree of disorder in the system
goes to infinity the particle is localized on just one
site, since with probability 1 its energy differs by
an infinite amount from those of the neighboring
sites. Also, as a—0, LgF—=, of course, and our
data suggest an a™® (with & <1) behavior for LI

as ¢ -0. Numerical accuracy versus computing
expense unfortunately did not allow further numeri-
cal exploration of the limit « =0. Nevertheless,
aquasi- o 'behavior is clearly suggested for o< 2,
whichindicates, as was discussed at the beginning of
this subsection, that L, unlike L,, is strongly influ-
enced by interference effects present in the region
where the eigenstate exhibits its appreciable values.
The presence of interference effects is also indicated
independently from a comparison of L, and Lg,.
In Fig. 7 we plot Ly vs L, for different values of
E and «. It is remarkable that the points seem to
fit on one line instead of spreading around as is
expected for quantities depending on two indepen-
dent parameters E and «. We observe that Ly,
stays much larger than L, (about four times
larger) for values of L, larger than 10. Recall-
ing the definitions of Lg and L., we deduce that
the form of the eigenstates in the case of weak dis-
order (a small) has many vacancies, and the
eigenstate extends over many more sites (Lgy)

than it is actually present on (L.;,), which again
indicates the significant role of strong interfer-
ence effects. In other words, the appreciable part
of the eigenstate seems to be composed of clusters
of sites where the eigenstate is boosted, as in the
case of resonance scattering in elementary quan-
tum mechanics,'® separated by clusters of sites
where the eigenstate has only a minimal presence.

A feature of L, (E) worth special mention is ex-
hibited in Fig. 5. That is a turn upwards of L. (E)
as E approaches the tails of the band. Probabilis-
tic arguments first proposed by Lifshitz!? suggest
that eigenstates in the tails of the band should be
associated with deep and extensive fluctuations in
the potential. The more we approach the extreme
tails, the deeper, rarer, and more extensive these
fluctuations should become. As a result the densi-
ty of states should decrease very fast (a feature
already verified) and the extent of the eigenfunc-
tions should increase, approaching infinity, at the
exact band edges. The present results for the
first time confirm directly this expected increase
of the extent of the eigenfunction as we approach
the extreme band edges or Lifshitz limits.

We conclude this subsection by discussing the
length R, which was introduced in Sec. III of L.
This length is representing the extent of the region
of the fluctuations of the eigenfunction before it
starts decaying in its tails; as was remarked there,
it is indirectly related to the behavior of (&y;(E)),,
in the sense that (£y,(E)),, —~ exp[—21/L,(E)] for
1> R, (expressed in number of sites). The ob-
served behavior of the (¢y,(E)),, is characterized
by a weakly /-dependent decay length L’(E) (in num-
ber of sites also), and for [ around L., (E), L'(E)
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FIG. 7. Length Lg; vs Log. The points obtained for
various energies E and degrees of randomness @ seem
to follow a single curve which is close to a straight line.
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remained always close to L (E) rather than to
%Ld(E). Numerical accuracy or expense did not
allow a study of L’(E) for 7> L in order to ob-
serve its 3L,(E) behavior and obtain, at the same
time, some estimate for R,. The only estimate

we have for R, relates to the discussion about some
“phase-correlation length” given at the end of Sec.
III, and in the following sense:

We solve the integral equation by an iteration
procedure as already explained. This iteration
procedure essentially produces successive func-
tions P, starting from an arbitrary P, [see rela-
tion (3.4)] and converges to some function P (which
we accept as the solution) after a number of itera-
tions, or steps. We argue that the number of steps
necessary to obtain convergence should be closely
related to that phase-correlation length (expressed,
of course, in number of steps, or rather, sites)
and indeed we have found this number of steps to
be a characteristic number for a given E and a,
with little sensitivity to the numerical details (as,
e.g., the number of discrete points on the ¢ axis
and the convergence accuracy). If one assumes
that this number of steps describes how far we
should go to eliminate any phase memory, then it
is natural to relate that length with R,, because
R, the exponential tail of the eigenfunction starts
and, as already pointed out, the decay in the tail
is a result of complete loss of phase memory of
the eigenfunction. We have found the said number
of steps to be of the same order, and a little longer
than L, for a range of L, values in the middle of
the band between 10 and 3000, while it remained
larger than L, (of the order of L) as L, ap-
proached zero.

In summary, four different localization lengths
were studied and their implications for the form
of the eigenstates discussed. The main result of
our analysis is that the decay length L,, in all
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FIG. 8. Probabilities Py, (see text), I=0, ..., 5, Vs
the degree of disorder o (V=1),
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FIG. 9. Probabilities Py, (see text) vsl for «=0.5
and @ =2, The diffusion length Ly, is defined such that
0.9 of the area under the dashed curve (o =2) lies be-
tween —3 Ly and 3 Ly;.

cases but that of extreme localization, has little
relevance to the actual extent of the appreciable
part of the eigenstate, and one should be cautious
when estimating overlaps of eigenstates.

B. Particle diffusibility

A quantity concerning particle diffusibility in a
1-D disordered system was also introduced in Sec.
III of I. This quantity P,, represents the (time-
averaged) probability of discovering the particle
at the state |7) after an infinite time has elapsed
from the moment we placed the particle at the state
|0). This quantity has therefore a clear physical
meaning and can be straightforwardly calculated
from the {£y,(E)),,. In Fig. 8 we present Py, vs «
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FIG. 10. Diffusion length Ly vs the inverse of the
degree of randomness o (V=1),
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for 1=0,1,2,3,4,5. We observe the expected be-
havior Py;~0as a—~0, [=0,1,2,..., while Py,~0
as a—o, 1=1,2, ... and pyy~1 when o~ =, as the
limit of extreme localization is approached. It
seems that Py,(a) < & as & —~0; in particular Py,
seems to follow a linear dependence on « up to
a=3 and bends only slightly at & =6.

In Fig. 9 we present Py; vs [ for «=0.5 and
a=2.0. We observe the change of character from
“extended” to “localized” and since

IZ POI =1 ’
we define a diffusibility length L,,; (in number of
sites) as the length inside which we have a 90%
(arbitrarily chosen) probability of rediscovering
the particle initially placed in the middle of that
length. That length, of course, goes to infinity
as o —~0 and becomes 1 at a very high value of a.

This behavior is shown in Fig. 10 where we plot
Ly vs 1/a for a range of o from 0.5 to 6. A be-
havior a® (with & <1) for small « is suggested by
our data.

In conclusion, we have studied here for the first
time various lengths characterizing the shape and
extent of the eigenfunctions in 1-D disordered sys-
tems. Depending on the eigenenergy and the de-
gree of disorder, the eigenfunctions have different
shapes as well as extent. The case of low disorder
and with F lying well within the band deserves par-
ticular attention because of the rather complicated
form of the eigenstate. On the other hand, for
high disorder or F lying in the tails of the band,
the eigenfunction has a much simpler shape which
agrees with intuitive pictures proposed in the past.
We have also obtained results for the probabilities
Py,.
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