
P HYS ICAL R E VIE W B VOLUME 13, NUMBER 2 JANUARY 1976

Eigenfunctions in one-dimensional disordered systems. I. Formalism*
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Within the framework of Anderson's model for disordered lattices, an integral equation for the joint
probability distribution of certain quantities directly related to ReG and Im G is obtained: G is the Green's

function of the system. The properties of this probability distribution are examined and physically interpreted.
Finally convenient expressions for transport-related averages of the type ( G~ G)„are obtained. ( G~ G)
provides detailed information about the eigenfunctions.

I. INTRODUCTION

The problem of electron or phonon propagation
in a one-dimensional (1-D) random potential has
been given considerable attention recently in view
of the discovery and extensive experimental study
of a certain class of organic or metallo-organic
materials. ' 4 These materials exhibit strongly
anisotropic, quasi-one-dimensional behavior at-
tributed to the fact that they consist of long chains,
weakly interacting with each other. In many of
those, the presence of random potentials has been
proposed in order to explain their behavior. 5

The 1-D character allows mathematical simpli-
fications which in the case of random systems have
permitted the derivation of many exact results.
In the problem of disordered systems we are
studying an ensemble of all possible configurations
of the system; to each configuration corresponds
a Hamiltonian. We assume that we know the prob-
ability of each configuration or equivalently the

probability distribution of the matrix elements of
the Hamiltonian. Usually the results are derived
in the form of statistically averaged quantities
(i. e. , averaged over all configurations). It is not

always possible to calculate such averages directly.
In some cases the averages may even diverge or
may be deprived of certain very important informa-
tion. It is then necessary to examine the more
difficult problem of determining the full probability
distribution of the physical quantity under consid-
eration. This situation arises when one attempts
to calculate quantities of the type (G*(z)G(z)),„,
where ( ),„denotes average over all configura-
tions, G(z) —= (z —H) ' is the Green's function of the

system, and H is the (random) Hamiltonian of the
system. Note that quantities of the type (G*G)„
are very important physically, because (i) they
behave differently depending on whether the eigen-
states are localized or extended, and thus can be
used to clearly distinguish these two cases, and

(ii) they are directly related to transport proper-

ties. For these reasons many attempts have been
made to calculate quantities like (G+G) directly.
The problem has proved considerably more diffi-
cult than the calculation of (G),„. The latter is di-
rectly related to the average density of states, but
unlike (G*G)„, cannot distinguish between extended
and localized eigenstates.

In a particular case, "(G),„can be calculated
exactly and directly (without knowledge of the

probability distribution of G) not only in the 1-D
case but for higher dimensionality as well. In the
1-D case methods have been developed '" for the
calculation of the probability distribution of G but
very little has been done" for the calculation of
(G~G)„. The latter requires for its calculation
the knowledge of the joint probability distribution
of ReG and ImG. In this paper we develop a for-
malism which gives this joint probability distribu-
tion as a solution of an integral equation. Results
obtained by solving this integral equation numeri-
cally are presented in Paper II of this sequence.

The structure of this paper is as follows: In
Sec. II the mathematical properties of the Green's
functions of an n-dimensional system (n = 1, 2, 3)
and their probability distributions are reviewed
with particular emphasis on distinguishing the lo-
calized or extended character of the eigenstates.
In Sec. III we discuss briefly the quantities of phys-
ical interest and in Sec. IV we develop a formalism
which allows the derivation of an integral equation
for the joint probability distribution of certain
quantities directly related to ReG and ImG. The
mathematical properties of the solution are ex-
amined and a physical interpretation is given. Fi-
nally, in Sec. V quantities of the type (G~G) are
expressed in terms of the solution of the integral
equation and a recurrence relation.

II. PROPERTIES OF GREEN'S FUNCTIONS

We consider here a finite N-site system (of one,
two, or three dimensions) which is described by a
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other hand, if I v) is localized as N-~ [i.e. , (il v)
is appreciable for a finite number of states I i)
only, as N-~] then, when N-~, f(~,„-f,&, „,
where f»& „ is independent of ¹ However, the
magnitude of the (luantlties f, ~ „varies widely de-
pending on where the eigenfunction is localized.
If the eigenfunction is localized far away from the
states I i) and I j) and decays exponentially away
from the region of locahzation [i.e. , as R-~,
I v)-const. exp( —IRI/RG)], then

The maximum value of f»z „is obtained when i =j
and v is localized in their vicinity; then f,, „is of
the order of (but less than) l. ln Fig. 1 we sche-
matically show the magnitude of the residues and
the position of the poles for the cases of extended
and localized eigenstates.

As N-~ the enexgy bands of the system become
lines of singularities for G„(z}(which means that

E (ARBITRARY UNITS}

FIG. 1. Position. of poles of &»»(E) on the energy axis
& and the magnitude of their residues f»» „, are shown
schematically for (a) extended states and (b) localized
states.

complete set of local states I j), j=1, . . . , N, each
one associated with a certain site j of the system.
In the limit N-~ the system becomes infinite.
The Hamiltonian of the system His a random op-
erator, i.e. , its matrix elements (ii H I j) are ran-
dom variables. We examine the Green's function
G(z)—= (z —H} ' and in particular its matrix elements
G„(z}where

(2. 1)

fI& „=(il v)(vl j) and I v) is an eigenstate of H with
eigenvalue E„. G, ~(z) is analytic everywhere on
the complex z plane, except at the eigenvalues of
H where a simple pole behavior is exhibited. The
residues at these poles are related with overlap
matrix elements, as can be seen from Eq. (2. 1).
We are actually interested in the limiting case N

Then the distribution of the poles of G(, (z)
becomes dense over certain portions of the real
axis which by definition are the energy bands (or
energy spectrum} of the system. Note that in the
present case the quantities f»~ „and E„are random
variables since they are functions of the random
variables H, &

=—(il Hl j ).
If the eigenstate I v) is extended as N- ~ [i.e. ,

(il v) is relatively appreciable for an infinite num-
ber of states li) as N-~] then, as N-~, f(&, „-a/N,
where )al is of the order of or less than 1, owing
to the normalization of the eigenfunction. On the

lim lnnG„(*))
N ~ S~Q+

does not exist, where z = E+ is and E belongs to the
energy bands) How. ever, due to the different be-
havior of f», „as N-~, these lines of singularities
are of different nature depending on whether we
have localized or extended eigenstates. It is easy
to show that these parts of the spectrum associated
with extended eigenstates become branch cuts as
N- ~ the limits

lim 1'mG, q( ))
s Q+ N-&

exist and, as a matter of fact,

limlm limG„(n)) =nm, (E),
pk N

where p, (E) is the contribution to the density of
states from the site i. On the other hand„ the
parts of the spectrum associated with localized
eigenstates become natural boundaries as N- ~,
because even the limits

1 m llmGG(n))
gw Q N~ao

do not exist. This is due to the fact that the resi-
dues f;;,„remain finite as N- ~.

This basic distinction between extended and lo-
calized states is wiped out if one averages G,J(z)
over all configurations. Then

(2. 2)

where the average in (fI~ „/(z- E„)) is over the
random variables f;& „and E„. Assuming that the
probability distribution of E„ is a smooth function,
it follows that (fI& „/(z —E„))„will exhibit branch
cuts coinciding with the energy bands of the sys-
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tern. Consequently (G;&(2)),„will show a branch
cut for both extended and localized states. Taking
the limit N- ~ will not change this analytic be-
havior of (G;;(2))„.

If, instead of taking the average of G;,(2), we

consider its probability distribution, the distinc-
tion between localized and extended states is re-
tained. We examine first the diagonal matrix ele-
ment G;;(2). Each term f;;,„/(» —E„) in Eq. (2. 1)
is important as z- E, where E belongs to the

spectrum, only if lE-E„(&f;; „, i.e. , if Ec= P„,
where P„ is the interval [E„-f„,„,E„+.f~;,„]. Then
the contribution of all the terms with v & vo is im-
portant only if E belongs to the union II&0 of P„with
v& v, .

The sum ln Eq. (2. 1) can always be arranged m
order of decreasing f;; „. Then, for localized ei-
genstates, the number of regions P„(v) vo) in-
creases linearly with N, as N-~, while the ex-
tent of each region decreases exponentially with

N, as N-~ (since the extent is proportional to

f;;,„). Thus the extent of the union 11,2 approaches
zero as vo-~. Consequently the probability of E
belonging to II&0 is vanishingly small for vo-~.
This simply means that the terms of high v (v) v2)

make a vanishingly small contribution to the prob-
ability distribution of G;;(E), when E is associated
with localized eigenstates.

We can conclude that the probability distribution
of G;;(E) is dominated by the few largest terms of
the right-hand side of Eq. (2. 1) if E belongs to a
spectrum of localized eigenstates. As a matter of
fact, under certain conditions~3 the probability dis-
tribution of G;;(E) is equal to the probability dis-
tribution of the largest single term in Eq. (2. 1),
Certainly the probability distribution of the largest
single term behaves in a qualitatively similar way
to the probability distribution of G;;(2). We shall
use this property to examine certain qualitative
features of the probability distribution of G;, (»).
In the case of the off-diagonal matrix elements
G„(2) there is a complicating factor; for large
values of IR, —R; I there are many f;~ „of about
equal magnitude but of different signs. Thus there
is a natural tendency for cancellation. This fea-
ture is demonstrated in calculations of {G,~(E))„
where~4 G„(E) is not dominated by the largest sin-
gle term in Eq. (2. 1) but by the largest term f„„/.
(E —E„)with E„ lying in the immediate vicinity of
E. It seems that only when E= E„ the signs of
f„-,„do not create complete cancellations of terms.
Here we avoid the problem of finding the probabil-
ity distribution of G;, (2) by expressing G,&(e) in
terms of the diagonal matrix element G„(e), as
will be seen in Sec. V.

Let f„/(» —E„)be the largest term in the right-
hand side of Eq. (2. 1) for i =j. We argue that at
least the qualitative features of the probability

distribution of G, , (2) are the same" as the proba-
bility distribution of f„/(2 —E„). Let 2=E+is and

f. ( — .)f. (2. Sa)

F —I fv fv
8 ™E (E E )2 2

yP 8 V

s (E —E„)'+s2

Let P~,(X„F,) be the probability distribution of
F,' and P2(E„,f„) the probability distribution of

E„, f„. Then, using Eqs. (2. Sa)—(2. Sc), we obtain

(E E)f

One can easily show that lim, 2P„(X„F,')
=P,(X, F') exists. After some algebraic mampu-
lation we obtain

P, (X, F') =X'P,(E-X/F', X'/F')/F"
= f„P2(E—f„/X,f„)/F'2, (2. 5)

where f„=X2/F' is the residue of the largest term
on the right-hand side of Eq. (2. 1) for i =j. Note
that 0 ~ f„~l. By integrating P,(X, F') over F or
Xone can obtain the probability distribution of X
or F', P»(X) or Pr. (F'), which for large values
behave like X and F'" ', respectively. These
long tails are consequences of the simple pole in
X [X-(E-E„)'] and the second-order pole in F'
[F'-(E—E„) ]. A consequence of the long tails
in P„, Pr. (or equivalently the poles in X and F')
is that (X)„and (F')„do not exist. Of course
(X,}„and (F,')„exist for sv0 (the tails in P»„
P~. disappear for s 4 0 since the poles in X„F,'
disappear), but

lim(X, )„=~, lim(F', )~- A(E)/
~

s
~

-+~
0

as s-0, where A(E) is a function of E. Note that

lim( —s I",)„=—lim(Im[ f„/( E»„)]}„=+A(E),

as expected from the function (f„/(» —E„))„which,
as was explained before, exhibits branch cuts.

Equation (2. 5) is very useful because it expresses
the probability distribubon P, (X, F ) (which is es-
sentially the probability distribution of ReG;;(E)
and ( —1/s) lim, 2[1m G;;(E+ is)]) in terms of
P2(E„,f„), the probability distribution of the pole
and residue of the largest term on the right-hand
side of Eq. (2. 1). Because 0» f„&1and E„be-
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long to the spectrum, certain features of Pz are
known, which in turn provide information about the
behavior of P, (X, I").

III. QUANTITIES OF INTEREST

A quantity of great physical importance is the
average density of states per site & p;;(E))„which
is equal to

v (I/w) Im lim&G;, (E+ is)),„
s- O~

The latter requires for its calculation the knowl-
edge of the probability distribution of

B—lim[(I/s) ImG„.(E+ is)] = ——lim ReG;;(E+ is) .
BE

The quantity p; If;;„„I depends only on E„; con-
sequently we can write

Z ~(z-z.)I: f, . . . ')

=.(E)~ &lf;„., (E) I'&... (S. 5)

where p(E}= iV& O;, (E)),„is the total density of
states. Note also that &f, , ;„(E)&„de pendsonly on
I and as a result P, &f, ;„(E)&„=IV&go,(E)&„. Thus
substituting in Eq. (3.4) we obtain

In a 1-D case this problem has been solved by
calculating the probability distribution of a quan-
tity which is directly related with either ImG&; or
HeG;;.

Here we are interested in quantities of the type

In particular, for l=0 we obtain

g &If (E) I2&
&&Oo(E)&-

&ooo(E)&-
'

(3.6)

(3. 7)

&K„(E}&„=li m&( s/m)G;;(E+is)G~, (E —is))„,
(3. 1)

which in contrast to (G;,(E+is))„are directly re-
lated to transport properties' and thus can clearly
distinguish between localized and extended eigen-
states. The calculation of &K„(E)&„requires the
knowledge of the joint probability distribution of
both HeG;; and ImG;&. Since HeG;,. and ImG&& are
not; statistically independent the calculation of this
joint probability distribution is a much more com-
plicated problem than finding the probability dis-
tribution of each one separately.

Using Eq. (2. 1) we can rewrite (3.1) as

&«;(E)&.,=Q &If,.l'8(E —E.)&.,

By integrating Eq. (3.2) over E we obtain

The quantity 5 f„(E)is a measure of the total ex-
tent of the eigenfunction I v) with E„=E. To see
this, consider the fictitious case of an eigenfunc-
tion occupying equally L* sites; then on these sites
f«=I/L", since g( f;;=Lzzf;;=1. Hence L f2, =1/

Thus tbe quantity

(3. 8)

provides a reasonable definition of the number of
sites L* participating in the eigenstate ( v) with
E„=E, even when the eigenfunction is not uniform.
In the theory of lattice vibrations'7 an essentially
identical definition is used to characterize the ex-
tent of the eigenmodes. The so-called participa-
tion ratio p(E} is introduced and defined as the
number of sites participating in the eigenmode ) E)
divided by the total number of sites

¹ Thus

P;)—= dE g;; E (S. 3) j(E) =- L~(E)/Iv. (S.8)

One can easily show that P„(lf;, „I ),„is the.
(time-averaged} probability of finding a particle in
the state I j) as I- ~, if initially (f =0) the particle
was in the state li). In particular P;, gives the
probability of rediscovering after an infinite time
lapse a particle at the initial state I i). It is ob-
vious that extended eigenstates do not contribute
to Pq; since for them ) f„.„~

- 1/N as +-~. On
the other hand, localized eigenstates make a non-
zero contribution to P, &. Thus &g„(E}&z„doesor
does not vanish when the eigenstates at E are ex-
tended or localized, respectively.

I.et us write j=i+I and then sum Eq. (3.2) over

Z&«, , (E)&., =Z«(E-E.)Z lf;. . ..I'&., (3 4&

(
&&oo(E)&.,

L'(E) - &poo(E)&-

We define the quantity L,«by the relation

& coo(E)&;'"")=(z (z) ..= «,(z)).".

(3.10)

(3.11)

L,,ff is a measure of the average number of sites
over which an eigenfunction (of eigenenergy E) is
spread. Note that the quantity L*(E) is expected
not to have so sharp a probability distribution and
consequently L„,(E)e &L~(E)&„. In most cases we
expect L,«(E) «L+(E)&„. The quantity L,«(E)
should not be confused with the decay localization
length R~(E} defined from the exponential decay of

L~(E) is defined as in Eq. (3.8). Using Eqs. (3. I)
and (3.8) we obtain
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the eigenfunction I v) (with E„=E) far away from
the region where the eigenfunction is appreciable,
i.e. ,

f&f f
v) f, =exp[ —R;/R, (E„)]. (3.13)

The quantity Ro(E) is no more difficult to calcu-
late in 1-D systems than the average density of
states. It, can be calculated either from the proba-
bility distributiono''4 of BeG;,(E) or from numer-
ical solutions of Schrodinger's equation in random
samples. ' Both approaches give identical results.
Thus the values of Ro(E) are well established. Al-
though we are not primarily interested in Ro(E)
here, we calculate this quantity (as well as the
average density of states) for completeness.

One can easily convince himself that

(E)fo g &oi(E)
poo(E)

(3.13)

The above relation allows the definition of yet
another characteristic length Lp such that within

Lp consecutive sites, p% of the squared modulus
of the eigenfunction I E) is located, i.e. ,

FIG. 2. In a one-dimensional disordered system every
eigenfunction is exponentially localized with a decay
length R& outside a region of fluctuations of length R&.
In the eigenfunction shown above, four regions contribute
mainly to the length I-*, which characterizes its total,
extent. The length L go, within which 90% of the squared
modulus of the eigenfunction lies, is also shown schemati-
cally.

over all sites i, weighting each contribution ac-
cording to l (E( f& I

o.

In the practical calculations we have arbitrarily
chosen p/0=90/o, defining thus the length Lgp. One
should clearly distinguish between Lp and L,«. Lp

gives the number of consecutive sites where most
of the eigenstate lies; L,«counts only those sites
at which the eigenfunetion is appreciable. If be-
tween sites where the eigenfunction is appreciable
there are many sites where the eigenfunction is al-
most zero, then we expect that Lgp»L

In Fig. 2 we present schematically an eigenfunc-
tion in a 1-D disordered system; we denote ex-
plicitly the various characteristic lengths. Out-
side a region of fluctuation~ of length R~, it decays
exponentially with the decay length R&. Inside the
region of fluctuation the behavior of the eigenfunc-
tion varies widely, depending on the details of this
region. There is no reason to expect that in gen-
eral the eigenfunction will be smooth within the
region Rz. As a matter of fact, the eigenfunction
may look as in Fig. 2. In this case the total ex-
tent L* will receive contributions mainly from the
four regions shown in Fig. 2. We expect that the
quantities 8&, L*, and Lgp are not sharply distrib-
uted and that the lengths Lgp, L*, Rf, and R„are
not simply related. We have already discussed
the question of calculating R„, Loo, and &1/'L~&„.
One can obtain what should be essentially &Rz&„by
considering the quantity

as a function of l for a given E. When l is consid-
erably larger than &Rz&,„, the quantity

should behave as e ". The reason is that

If, „,(E)l is equal to the squares of the amplitudes
of the eigenfunction I v) (E„=E)at two sites a dis-
tance l apart. If l » 8& both sites will essentially
sample the exponential tails of the eigenfunction,
thus giving the exponential decay e ' ~. In gener-
al the quantity

(3.14)
Since the eigenfunetion t E) is localized, every

set of Lp consecutive sites centered around a site
i will cover different percentages of an eigenstate
depending on its position relative to the site i. To
avoid this difficulty in the defining Eq. (3.14) we
have summed the quantity

studied as a function of l provides information
about the shape of the eigenfunction.

IV. DERIVATION AND PROPERTIES OF THE INTEGRAL

EQUATION

From now on we restrict ourselves to a 1-D
Anderson model described by a Hamiltonian of the
form
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where ( l} is an atomiclike orbital centered around
the lattice point l (l=0, + I, +2, . . . ), &( are inde-
pendent random variables each of which has a com-
mon probability distribution Po(e(), and V is a
positive constant. The Green's function Goo(z)
=(Ol(z —H) ((0) can be written

s(1 + Ho+ Ho )

(E —eo —~; —ro)'+ s'(1+ 8(I+ Ht( )'
(4. 8}

(4 8)lim ImGoo(E+ is) =v ((5(E —eo vo vo }
s-0'

Goo(z} = [z —zo —t(,o(z)]-', (4 2)

where ho(z) is the so-called self-energy at site 0.
Using the renormalized perturbation expansion"
we can write" for 4o(z)

goo(E} = lim(s/(()
~
G(I(I(E+ is)

~

s 0

= lim(1/(() s/[(E —zo —T('I —vo)'+ sz(I + Ho+ 8o)z]
s-0

b.o(z) = t;(z}+t o(z),

t', (z) = V'G,',„,(z) .

(4. 3)

(4. 4}

= 5(E —zo —To —7'o)/(I + 8('I+ Ho) .
We see from (4. 9) that the calculation of

lim Im(Goo(E+ is)),„
s«o

(4. 10)

are obtained where i = 1, 2, . . . . Thus the diagonal
matrix elements of G(z} ean be expressed in terms
of the quantities t,'(z) which are Green's functions
for a semi-infinite system (starting from +i + 1) and
satisfy the recurrence relation (4. 5). It turns out
that the off-diagonal matrix elements of G(z) ean
also be expressed~ in terms of t';(z) as follows:

1G.(. (z) =G"(z}~v J.l t;(z), (4. 6)

with a similar expression for l ~ —1. Since both
t,'(z) satisfy similar equations we consider the
quantities t;(z} and we drop the superscript+ ex-
cept in cases where confusion may arise. Since
t;(z) is a diagonal matrix element of a Green's
function (apart from a V' factor), it has all the
general properties of G;;(z) discussed in Sec. II.
In particular,

t((E+ is) = 7;(E) —isH;(E)' (4. 7}

to first order in s, where v;(E) is real. and 8;(E) is
positive definite. The joint probability distribution
of 7;, 0; should have the qualitative features of
P, (X, F'), v; being analogous to X and 8; to F'.

Substituting (4. 7) in Eqs. (4. 3) and (4. 2) we ob-
tain

E —«0 —7'0 —7'0
Goo(E+ is) =

(E —eo- 7(I —ro) +s (1+ 8('I+ Ho)
+ - 2 2 + - 2

The superscript zero indicates that the system
has been broken at the site 0 (i.e. , co =~) so that

G,~, ,~(z} is the Green s function for a semi-infinite
system starting from the site 1 (-1) and extending
to the right (left) of it. G,~, ,~ can then be expressed
in terms of t~(z} which in turn can be expressed in
terms of G', o, ,o(z} and so on. Thus recurrence re-
lations of the type

t', ,(z) = V'G",,."„(z)= V'/[z —z„-t', (z)], (4. 5)

Allowing s- 0' we have

r(-—V (E —e( ( —v q)
2 -1

8; = (T(/ V) (1+8(,() .
The last relation shows that 8i is obeying

8, = (r, / V)' .

(4. 13a)

(4. 13b)

(4. 14)

Applying standard mathematical techniques we can
use (4. 13a} to express the probability distribution
f(7„E)in terms of Po(z() as

2 w+ p2
f(&(, E)= —

I P(I E —X- —f(X;E)dX,
«OCI

(4. 15)
and therefore the variables 7; obey the same inte-
gral equation as the variable t, in Ref. 8 [Eq. (3.5)].
Applying the same mathematical techniques, one
ean use Eq. (4. 13) to express the joint probability
distribution P(r;, 8;; E) in the form

requires the knowledge of the probability distribu-
tion of 7'o. The quantities vo, ~00«are independent
statistically, since ro depends on J(z,j for i & 1 and
~, depends on (z() for i ~ 1, as can be seen from Eq.
(4. 5). Since all z( have the same probability dis-
tribution, the probability distributions of 70 and To
are identical. Equation (4. 10) shows that for the
calculation of (goo(E)),„we need the joint probability
distribution of To and 80.

In the rest of this section we derive and discuss
an integral equation obeyed by the joint probability
distribution of r(, 8, . Substituting (4. 7) in (4. 5)
we obtain

r( —ssH( —V [E+(s —z;„—(y( ( —(sH( q)]
(4. 11)

or by taking real and imaginary parts,

2 «i+1 ~i 1
w( = V — ')z o' ), , (4. 12a)

8 2 1+ L9i,1

)
'

)
. (4. 12b)
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(r', 8') and (r, 8 ).
We examine now the behavior of the solutions of

(4. 17). For simplicity we write P(r, 8) for
P(7., 8; E) leaving the energy dependence implicit
in P(r, 8). First we observe that P(r, 8) =0 for 8

((7/V) since, as discussed above, (8, r) should
obey relation (4. 14). This means that the nonzero
values of P(r, 8) (see Fig. 3) should be inside the
parabola 8=(r/V) . Let us then investigate the
values of P(r, 8) along a line 8 =k(r/V), where k
is a certain constant larger than 1. Equation
(4. 17) then becomes

7/V

FIG. 3. The solution &(&, ~; E) of the integral equation.
(4. 17) (see text) is nonzero inside the parabola & = T /V
(solid line) and exhibits appreciable values around a
parabola & =ko~/V (dotted line) for ~ not close to zero.
For terminating distribution &0(&;), I'(7, 6; E) is non-
zero between the parabolas 0 = kmfg7 /V y k~, ) 1 (dashed
line), and 6 = k~~ T /V (dashed-dotted line) for 7 not close
to zero. For T around zero these parabolas are deformed
so that P(0, &; E) is nonzero in a. region between a mini-
mum and a maximum value of 6.

P;(r;, 8;; E)

x 8(~i 1& ri&&i& i8&iE&) dpi&1 dri&i i&i & (4. 16)

( y 2

x Pi X, 8 — —1;E dX. (4. 17)
T

ip(&„i, r,.„8,,i; E) represents the joint probability
distribution of e;,i, r, ,i, 8;„. From (4. 13a) and
(4. 13b) we observe that a, is uncorrelated to r„
8„ the same holds for e;„,T„„O;,1. Therefore

ip(e;„, 7.;„,8...) = P,(e;„)P;„(r;,„8;„;E) .

Since all the sites E; have the same probability
distribution we can conclude that P;(r, 8; E)
=P,„(r, 8; E) =P(r, 8; E), meaning that the function-
al form of P(r, 8; E) is independent of the site; we
thus omit the indices. Performing the integrations
in (4. 16) we obtain the basic integral equation sat-
isfied by P(r, 8; E)

P(r 8) ~r~' -0 as r-o, for a&4,
(4. 22)

and since (4. 22) holds along the line 8 =k(r/ V)~,
7- 0 means 8- 0 and thus, assuming continuity of
P(r& 8) around (0, 0), we get the result

p(o, o) =o (4. 23)

for probability distributions Po(e) that fall off at
infinity faster than (Ej . This is a very wide
class of distributions Po(c) including the Gaussian
and all terminated distributions [i.e. , Po(e) = 0 for

I c I
& I &ol ]. We will restrict our analysis to the

latter class of distributions because among the
well-known distributions only the Lorentzian Pp(E)
= (1/v)[I'/(e +I' )] produces a P(r, 8) that diverges
at (T =0, (9=0). For the limit T- ~ we observe that

P(r, 8)

4 V(k-1) / +2
Po E —X- —P(X, k —1)dX .

T -V(k 1)1/2 T

(4. 19)
The last form is convenient for the study of P(r, 8)
both at the limit T- 0, I9- 0 and the limit T- ~, 0-~ along the line 8=k(r/V) . For the first limit
we observe that

Po(E —X- V /r)- Po(V /r) as r-0 (4. 20)

because I xl ( V(k - 1)'i from the limits of integra-
tion in (4. 19). Then from (4. 19) we obtain

y 4 y2 ~ V(k-1)
P(r& 8)- —Po ——

I

P(x& k —1)dx
" -v 0&-1& (4

as T-0. The T dependence of the last form is
r P, ( —V'/r) Assumi. ng Po(e)- lel ' as e-~, we
see that

The limits of integration are such as to satisfy
(4. 14) that requires P(X, y; E) =0 for (X/V) &y.
The above equation (4. 17) is consistent with the
relation

p'2
Pp E x Pp E x as T

and (4. 19) becomes

V(k-1)

(4. 24)

P(r, 8; E) d8 = f(r; E)
(&/V)2

(4. 18)
P(r& 8)- r V Po(E —x)P(x, k —1)dx

V (k-1 )1/2

where f(r; E) is the solution of Eq. (4. 15). We ob-
serve that relations (4. 17) and (4. 18) hold both for

as 7 -~, or for constant k

P(r, 8)- V o(E, k)r =k a(E, k)8 (4. 25)
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as r- ~, where v(E, k) is a function of E and k.
We can also take the limit k- 1 in (4. 19) to show
that [since P(0, 0) =0]

P(r, 8)-0 as V 8- r (4. 26)

which is expected since the line 8= (r/V) defines
the region of nonzero values of P(r, 8). Finally,
we investigate the limiting behavior of

P,(X, Y'), remembering that X- ~/V', Y' —8/V',
P, —V P, and f„—T /V 8—= 1/k. First, by glanc-
ing at Eqs. (2. 5) and (4. 19) we see, since 8/k
=(r/V), the following correspondence:

- v(n-1 )'/2
1P(E f„/X-, f„)—k3~ P E —x ——

"-v(a-1)1/2

xP(x, k —1)dx. (4. 33)

and

f(7'; E) = P(7; 8; E) dB
" (T/V)

v&1/2

P(8; E) = P(r, 8; E)dr
-V&1/2

(4. 27)

(4. 28)

for 7 —~ and 8- ~, respectively. Using Eqs.
(4. 15) and (4. 20) we see that

f(r; E)- r 'S(E) as ~ (4. 29)

where S(E}is a function of E. For P(8; E) we use
(4. 17) to express (4. 28) in the form

P(B; E)
v&1

/2
V 4 vf&(v/T)2 1j1/2

V2

xP x, 8 ——1 dx.

In the limit 8- ~ we can ignore the unit in front of
8(V/7) to simplify the form

v& V 2 v 8 /l V2
P}e;E}— d (

—
) }

P(Z —*-—)

xP x, 8 — dx (4. 30)

as 8- ~. Then changing variables k = VB" /7 we
have

vl kl VkP(8;E}-8 V k dk Po E —x-—
-vl&l- 8

Vk+P E O— x+ —P(x, k )dx (4 31)

as 8- ~. The double integral goes to a 8-inde-
pendent limit as 8-~. We can see this by carry-
ing the integration over k up to a very large num-
ber M; then Vk/8~~ - 0 as 8- ~ and therefore is
independent of 8. As for the remaining part of the
integral (from M to ~) one can easily show that it
is of order 1/M and is negligible comparing to the
first part of the integral.

Therefore we obtain

P(8; E)- 8 C(E) as 8- ~, (4. 32)

where C(E) is a function of E.
It is worthwhile to compare the above conclu-

sions based on examination of the integral equation
for P(r, 8) to those reached about the behavior of

The behavior of P(T, 8) as 7, B-~, or v, 8-0, with
k =const, can be deduced directly from Eq. (2. 5)
for f„=const. The asymptotic expressions for the
probability distribution of either w or 8 are in
agreement with those obtained for Xand Y', re-
spectively, by using Eq. (2. 5). Since 0& f„&1,
P2(E„f„)is equal to zero for f„outside the interval
[0, 1]. The behavior of P,(E„f„) near the boundary
f„-1 is controlled by the behavior of Po(c;) as e;

This follows from (4. 33}and the fact that
P(X, 8) for X, 8-0 depends on the behavior Po(e;)
as &;-~. Thus we expect for a terminating Po(e, )
that f„~f &1. The behavior of P2(E;,f„) as f„-0'
is probably controlled again by the behavior of
Po(c, ) as e, -~. The reason is that f„, being the
residue of the Green's function G', , '(z}, equals the
overlap of an appropriate eigenstate I v) with the
site i. This overlap can approach zero only if e,
—~, because the product a; f„cannot become zero.
The reason for the last statement is that all the
eigenfunctions contributing to G', ,'(z) have zero
overlap with the site i —1 (since by definition e; ~

=~} and thus if e& f„were zero the eigenfunctions
being solutions of Schrodinger's equation would be
zero everywhere. According to the previous argu-
ment one expects, for a terminating probability
distribution, that 0 &f„„,& f„. Hence for a termi-
nating distribution Po(e, ), 0&f „&f„&f ~&1 or,
equivalently, 1 &k „=1/f ~ & k & k ~=1/f „&~.
This double inequality implies that the function
P(r, 8) is nonzero essentially between the parab-
olas 8 = k r'/ V' and 8 = k „r'/ V' and exhibits ap-
preciable values around a parabola 8= kor~/V for
8&0, where ko' is the most probable value of f„.
These boundaries are modified around ~ = 8=0
where there is an additional region inside of which
P(r, 8) is zero. This modification comes from the
factor V /v inside Po in Eq. (4. 19). The behavior
described above is shown in Fig. 3. For a non-
terminating Po(e;) but without long tails, P(r, 8)
will still be appreciable inside the two parabolas
shown in dashed lines in Fig. 3, with a local maxi-
mum around the parabola 8=kor /V2 P(T, 8) will.
fall quickly as one moves away from the region
just described. It should be noted that the numer-
ical solution of the integral equation is in agree-
ment with the qualitative behavior deduced from the
integral equation (4. 17) and the general discussion
in Sec. II.
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V. CALCULATIONS OF THE QUANTITIES g'OI(E)&, „

As we have discussed before, the quantities of
interest here are (/01(E))av= (010(E)&„where

&„(E)= »m(s/Il)G„(E+ is)G„(E- is) .

Uslllg 'tile property Goi(E+ is) = [Gio(E —is}]+ [wlllcll
follows from Eq. (2. 1)] and Eq. (4. 6) for i=0, we
obtain

&oi(E) =»m(s/m)
I
Goo(E+ is) I'

tion of y~, 7&, , g', „8o in terms of known func-
tions we introduce tbe function PI(ro, 80; r„e,;.. . ;
rl „8, ,), which is the joint probability distribution
of the variables v', , 8';, i = 0, 1, . . . , I —1. Then me
can write

)& )

{z—a, —r,'- v, ) (~v')' (r,',)'

»,{eo)P(r„e,}P,(r;, e„. ";7', „e', ,)

xdeodzod80dv'Od80 ~ ~ ~ d7', j d8, ),
s 0

x „II ti(E+is)ti(E —is) .
j=o

From Eqs. (4. 7) and (4. 10) it follows that

(5. 2)
/=1, 2. . . . (5. 6)

The function P, can be expressed in terms of known
functions. For this purpose me first show that

5(E —&0 —&o —&0} ~&' '. . .
e;+e; v v

(5. 3)

&00(E}= 5(E- &0 - &o-ro)/(I+ eo+ eo} (5 4)

Equations (5. 3) and (5.4) express the general quan-
tity t'01(E) (/=0, 1, . . . ) in terms of the quantities

so, 80, v'; which have been examined in previous
sections. We are interested, of course, in the
average of /;0, (E), i.e. , (to, (E))„. For this pur-
pose me need the joint probability distribution of
the quantities ro, 80, e„r; (i=1, . . . / —1). By
repeated application of the basic iteration relation
(4. 5), one can easily convince oneself that tbe
quantity t;(z) (and hence tbe pair r„e;) depends
only on the random variables e;,&, j=1,2, . . . , to
the right-band side of the site i; similarly t, (z)
(and consequently the pair i, , 8, ) depends only on
&, z, j = 1, 2, . . . , i.e. , the random variables to
the left-hand side of the site —i. Thus the total
number of random variables entering in Eq. {5.3)
can be separated into the following groups, each
group being statistically independent from the
rest: eo; 80, vo; 80, v'„ i=0, 1, . . . . %e can then
write

(E)) ( 0 0 0)
1+8;+8;

xP0(eo)P(ro) 80)P(1~gq 80}«0 dro d8t) «0 cameo

(5. 5)

In order to express the joint probability distribu-

&pc(ri) ei&ri+I~ ~i+1~ Ti+R~ ciao~

= P,(T';, ei/ri, i, eI,I), (5. 7)

where the symbol {p,(fx&)/$ y;)) denotes the probabilty
distribution of the quantities (x&) under the condition
that the variables [y,)are kept constant. Using
Eqs. (4. 13a) and (4. 13b) we can write

6,(r', , 8/ ,7.„;8.„',r„, e',,„")

~

tt{:(«+I/rigel&

ei+I& }«I+I

%e have already shown that the quantities 7&,» 8&,&,

. .. depend only on &&,z, &„3, . .. . Consequently,
since the variables a& have been assumed indepen-
dent, me have

{p.(«.I/&i. i ei, i }-=Po(&..I) .
Combining Eqs. (5. 7), (5. Va), and (5. 6) we obtain

xPO E —7,', ~
——, . 5. 9)

The joint probability distribution P, can now be ex-
pressed as

Pl(rot eon ri& ell ' ' ' l ri-ls el-1} P(T)-Ix 81 1}-
{'(ri-o~ et 0/rl I) et-1) -{y{;(-ro~80/rl) 81}

(5. 10)

w'th each {p.(vt 1
8',./rt, „e';„)givenby(5. 9). In ob-

taimng (5. 10) we have used Eq. (5. 7). Substituting
Eq. (5.10) in (5.6) we obtain

&41(E))=
I 1 8. Po(&0)P(&0, 80) {y,(ro, et/rl, 81)( 5(E-~0 —ro'-ro) ~r' '

4I + 0+ O

"{yc(&Io~ 8-10&/' -I~I.I-I)P(T'I I~ 8'I-I)«0«0&80«o{feo "d&'I Idel »-- (5. 11)
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where always CI, is given by (5. 9). We observe that a simple algorithm permits the calculation of succes-
sive (f»(E))„. One can easily verify that (5. Ii) is equivalent to the following set of relations for I-I;

( )
"5(E—e, —v, —r)

1+ 8()+8

xPO(ao)P(vo& 8o) daodro d80, (5. 12)

x '
z, (~, e;N=fz, , l*, — p e);z)

+2
xP E —7' ——dx0 x

(f,(E)),„= ' Z, (r, 8; E) — P(7, 8) d7 d'8 .
(5. 14)

Equations (5. 5) and (5. 12)-(5.14) show that the
only functions required for the evaluation of the

(f~,(E)),„are Po(e), the probability distribution of
the independent random-site energies that define
the degree and type of randomness in the disor-
dered (1-D) system under consideration, and
P(7', 8), which is the solution of the integral equa-
tion (4. 17) discussed in Sec. IV.

In Paper II the integral equation (4. 17) will be
solved numerically and several quantities of phys-
ical importance will be obtained and discussed.
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