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The classical molecular-dynamics (MD) method was used to make a systematic study of the dynamical
structure factor S(Q, er) for systems of N particles disposed on an fcc lattice with periodic boundary
conditions and interacting with n shells of neighbors via a Mie-Lennard-Jones (12-6) potential. Calculations

were carried out for N(n) = 108(3), 256(3 or 5), 864(3), and 2048(1) at reduced densities and temperatures

corresponding to roughly the melting point of the model and one-half this temperature. Phonons of a
particular wave vector Q were identified by the peaks in S(Q, re). The one-phonon approximation to S(Q, ei)

was investigated, as was the Q dependence of certain phonons. The temperature shifts of phonons for both

constant density and pressure were studied along with their shifts with density at constant temperature. The
one-phonon S(ger) for certain zone-boundary phonons is compared with the predictions of a self-consistent

phonon approximation that includes phonon damping. Even at half the melting temperature the latter theory
is not totally adequate and possible reasons for this are discussed. Finally, as a by-product of the MD
calculations, certain equilibrium properties were also obtained and compared with perturbation-theory results

that use hard spheres as a reference system. Results of the latter procedure were very poor.

I. INTRODUCTION

The molecular-dynamics (MD) method, as de-
veloped for hard-sphere systems by Alder and
Wainwright' and for continuous potentials by Rah-
man~ and Verlet3 has been extensively used to
simulate the equilibrium and time-dependent prop-
erties of a wide variety of liquids and dense fluids.
The related Monte Carlo method developed by
Metropolis et gl. and by Wood' has also been
widely applied to the study of equilibrium (or
static) properties of liquids:and of solids. In par-
ticular the elastic constants of rare-gas solids
have been computed in this way and compared to
the predictions of self -cons is tent-phonon theor ies
including anharmonic corrections. However, the
dynamical properties of solids can only be simu-
lated by the molecular-dynamics method and one
aim of the present work was to provide a test of
the self-consistent-phonon theory dynamical prop-
erties in rare-gas solids over a wide range of
temperatures. The only previous computer simu-
lation of the lattice dynamics of rare-gas solids
was restricted to the computation of self-correla-
tion functions and to an indirect determination of
phonon dispersion curves from the response of a
crystal to external disturbances. However, lat-
tice vibrations are highly collective modes direct-
ly related to the spectrum of the density fluctua-
tions which in turn are related to the differential
cross section for coherent inelastically scattered
thermal neutrons. This spectrum is the dynam-
ical structure factor S(Q, err), the Fourier trans-
form with respect to time of the correlation func-
tion of the density operator

N

gerQ r;(ri

where the sum is over the 1V atoms of the system,
and

S(Q, rc) = e'"'F(Q, t)dt,
m co

F(Q, t) = (&/N) &p -(t)p -(O)},
where the angular brackets denote statistical aver-
age; F(Q, t) is frequently referred to as the "inter-
mediate scattering function" and can be calculated
"exactly" by the MD method for systems of sev-
eral hundred atoms. The first calculation of this
type was made by Levesque et al. for rare-gas
liquids near the triple point. Since then the dy-
namical structure factor has been computed for a
variety of fluid or liquid systems, including liquid
metals' and the classical one-component plasma. "
In the present work we apply essentially the same
technique to the case of crystalline rare gases.
A brief preliminary report of parts of this work
was presented elsewhere. '~ Extensions to the
case of solid alkali halides, solid nitrogen, and

solid alkalis will be published elsewhere. 13

The recent availability of experimental data on
inelastic neutron scattering from rare-gas single
crystals at high temperatures~ renders the pres-
ent work particularly timely. In fact, to allow a
direct comparison between experiment and com-
puter simulation, several calculations were made
for wave vectors and under density-temperature
conditions very close to some of the experimental
conditions. The simulation of dynamical proper-
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ties of solids at high temperatures is also rele-
vant for quantitative comparison with the recent
experimental spectra of depolarized light scatter-
ing from rare gas crystals, ~~ as has been done
recently for simple liquids. ~6 That part of the
work will be presented separately. ' Hex'e we re-
strict ourselves to a presentation and discussion
of the S(Q, ~) data.

The paper is organized as follows: Technical
details of our calculations are presented in Sec.
II. Section III deals with the equilibrium proper-
ties which have been obtained as a byproduct of
the MD computations. The results are compared
to the predictions of the thermodynamic perturba-
tion theory. 18 The S(Q, &o} data are presented in
Sec. IV and compared with available experimental
results. Section V is devoted to a confrontation
of our results with the prediction of self-consis-
tent-phonon theox'y. Some concluding remaxks are
contained in Sec. VI.

II. COMPUTATION

In the usual manner, the time evolution of a sys-
tem of N atoms was determined over a certain
time interval 7', by solving numerically Newton's
equatloQs of motions for the N atoms using Ver let s
finite difference algorithm. 3 The usual periodic
boundary conditions were assumed and the N atoms
interacted through the standard Mie-Lennard-
Jones two-body potential

This potential was usedy rather than xnore x'e-
alistic" potentials, because it yields satisfactory
results for the dense rare-gas liquids and because
it has been widely used in the self-consistent-
phonon calculations. Moreover, the results ex-
pressed in "reduced units, " i.e. , with 0, &, and

ro=(mo /48@)' chosen as length, energy, and
time units, can be easily converted to absolute
units for any one of the rare gases, by an appx'o-
priate choice of the potential parameters & and cr.

Our energy unit ro' corresponds roughly to about
18 cm ', 0. 54 THz, or 2. 23 meV for 8Ar, if one
uses o = 3.405 A and e/}i = 119.8 K.

Runs were made in the reduced temperature
range 0.28» T» = fIT/e» 1.2 and in the reduced
density range 0.QV» p» =No'/V» 1.031, for sys-
tems of 108, 256, 864, and 2048 atoms. %e re-
call that the triple point of a Lennard-Jones system
corresponds to T~ =0.68 and p*,«=0.96. ~ In
each run the initial configuration was chosen to be
a perfect fcc lattice and we used a time increment
of 0.0327'o in the finite difference algorithm; this
corresponds to -10 ' sec for argon. The integra-
tion of the equations of motion was carried out for
up to 40000 time steps in each run; consequently
7', the total time interval, was of the order of

4. 10 ' sec for argon. Fourteen independent runs
were made, some of them under very similar
p* —M conditions, but fox' different N, in order
to study the N dependence of various quantities.

In the various runs, each of the N atoms was
made to interact with a fixed number of shells of
neighbors n. The contribution of the remaining
shells to the thermodynamic properties (e. g. , the
equation of state) was accounted for by adding
static lattice sum corrections. Because the rms
displacement of the atoms from their lattice sites
is only a small fraction of the lattice parameter
(of the order of 14~/g at melting ) this procedure
introduces negligible erxors for n~ 3. For N =108,
256, and 864, n was chosen equal to 3 or 5 (42 or
78 neighbors}; however, for the largest system
(N = 2048), n was taken equal to 1 (12 neighbors}
in order to stay within reasonable limits for the
computer time (which is proportional to N&&n).

It should be stressed that the MD calculations
are purely classical and ignox'e all quantum effects.
In the temperature range considered here, this is
justified for the heavier rare gases. Their con-
fl'lllll'tloll to file eqlllllbl'lulll pl'opel'f les {111pRI'tlc
ular to the Hetmholtz free energy} can be esti-
mated by calculating the ha tex'm of the %igner ex-
pansions'; this expansion has been shown to be
strongly convex gent even in the vicinity of the
triple point of neona~ and will be used in Sec. III.
The most important result of the present work is
the computation of the dynamical structure factor
(2), as a function of 10, for several Q vectors.

The dynamical structure factor S(Q, &o) can be
computed in either of two ways. The first method
COQslsts ln coxnputing the intel mediate scattering
fullcflotl {3) t&y col'I'elRflllg tile I'eRl Rlld 1111RginRI'y

parts of the density operator (1) at different times
and finally taking the Fourier transform (2). Typ-
ical E(Q, f) are reproduced in Fig. 1 for two i/i
values (two different phonons) along the [100]di-
rection. Figure 2 shows the corresponding S(Q, to).
The difficulties of this method are at once appar-
ent from Fig. 1: for low-lpga phonons, the corre-
lation function decays very slowly (long lifetime)
and one has to numerically autocorrelate the den-
sity operator over a long time interval in order
not to introduce significant truncation erx'ors.

The second method has been described in Ref.
12 and consists in computing directly (in the
coux'se of the MD run) the Fourier-Laplace tx'ans-
form p@(&u) of the density operator, using the for-
mula

= lim e'" pg t dt e '"'
p g t' dt'
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TABLE I. Summary of equilibrium properties determined in the MD runs and comparison of selected quantities vvith

a perturbation theory that uses a hard-sphere reference system.

Bun n T* Pu ] 02 (f~+2 ) z"" C„
Kk

F{1)
(Ne)

256
108
256
864

2048
864
864
864
864

2048
864
864
256
256

0. 2814
0. 3185
0. 319
0.321
0. 3375
0. 501
0. 504
0.6364
0. 647
0. 726
0. 7326
0. 735
0. 735
1, 197

l. 031
1.031
l. 031
1.031
1, 030
1.003
l. 003
0. 98
0. 98
0. 97
0. 97
0. 97
1.031
1.031

0.477
0.494
0, 535
0. 556
0. 564
1.013
l. 056
1, 496
1.522
1.662
1.864

l. 200
1, 983

-2.933
—1.604
-1.600
—l. 595

—0.407
—0. 354

0, 100
0. 227

0. 693
0. 714
3.816
5.274

—1.386
8. 16
8. 21
8.47

—0.762
—0. 732

0.460
0. 656

l. 406
l. 443
4. 141
6.294

—8. 106
—8, 058
—8. 055
—8. 054

—7. 710
—7. 706
—7. 429
—7. 416

7» 23%3

7» 2o2
—7. 505
—6. 916

1.61
l. 74
l. 78
1.74

l. 95
l. 95
2. 11
2. 10

2. 34
2. 28
2. 33
2. 87

40. 75
41.82
41.73
41. 90

41. 12
41.20
40, 55
40. 81

41„32
41.37
42. 21
63. 26

—22. 36
—19.11
—19.07
—18.92

—10.42
—10.33
—7. 20
—7. 01

—5 72
—5. 68
—5. 52
—1.76

4. 66
3.67
3 ~ 67
3, 64

l. 468
1, 453
0. 897
0. 872

0. 690
0. 686
0. 866
0. 396

~c 3
Nk 2[1 —(3/2p*T*) ] [(T* ) —(T*) j

(8)

where

is the average of the I aplaeian of the total poten-
tial energy expressed in reduced units, and
A =k /oam« is the dimensionless de Boer quantum
pa, rameter. For neon A2-0. 896@103 if one uses
o = 2. 74 A and «/k = 35.8 K and for argon,
A - 0.874&&10 ' if one uses o = 3.405 A and «/k
=119.8 K. Thus the fir st-order quantum correc-
tion is seen to be ten times smaller for argon than

As is mell known, the MD and Monte Carlo meth-
ods do not readily yield the Helmholtz free energy
(or alternatively the entropy) directly, but this
can be calculated by integrating numerically the
equation of state~'; in this way the Helmholtz free
energy for rare-gas solids was computed for sev-
eral isotherms above the triple point, ' but be-
cause the primary aim of the present work is the
study of the dynamical properties of rare gas
solids we have not attempted to perform the sim-
ilar computations in the p* —T* range considered
here. %e have however calculated the Helmholtz
free energy per particle E/NkT, using thermo-
dynamic perturbation theory based on a hard-
sphere reference system. '8 This theory yields
reasonable results in the triple-point region.
%e have also calculated the equation of state using
perturbation theory and compared it to our "exact"
results in Table I listing the various equilibrium
properties mhich we have obtained.

The first quantum correction to the Helmholtz
free energy is given by3'23

for neon at the same p~ —T~ and it is even small-
er for the heavier rare gases Kr and Xe. In Table
I we list the values obtained for +a,(&V*) as well as
the corresponding values of E"'/NkT in the case
of Ne. Comparing this to the classical free ener-
gy obtained from perturbation theory, it is seen
that in the p~ —T~ range considered in this work
the quantum corrections to the free energy are
rather large for neon but they are only about 2/o

for argon.
Finally, we have computed the mean-square dis-

placement of an atom from its lattice site

( I) (Q 2)

where u, =r,- —R,. is the displacement and R; is the
lattice site of the fth atom. The results for (ua)
are listed in Table I along with the thermodynamic
properties. The strong N dependence of (ua) is
quite apparent by comparing the results in run
Nos. 2, 3, and 4; (u ) increases with N, in agree-
ment with the predictions of harmonic theory. Qn
the other hand the N dependence of the equation of
state and internal energy appears to be negligible.
Note that the relative statistical error on Z, (u )
and U/NkT is less than I/g, but of the order of 5'%

for C„/Nk. In the case of the 2048-particle sys-
tem, the thermodynamic properties a,re not listed
because, as we have explained in Sec. II, the cor-
responding runs were made for interactions with
one shell of neighbors only.

Comparison of the "exact" equation-of-state re-
sults and the predictions of the perturbation theory
clearly shoms the inadequacy of a perturbation
theory of the solid based on a hard-sphere refer-
ence system, especially at low temperatures.
This was already emphasized in Ref. 18; the pre-
dicted free energies agree within a few percent
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T =032
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Except at the lowest Q vectors, where the pho-
non peaks are very sharp, our numerical data
satisfy these sum rules to within 10%.

If Q, u, and S(Q, &u) are expressed in reduced
units, (13) can be recast in the form

1 Q+2~
(g4 2 SQ (~ (gQ ) d~

27T 48

In this form the sum rule will serve as a basis of
our qualitative understanding of our results.

!

1.0 2.0 4.0

FIG. 3. Dependence of S(Q, ~) on the system size.
The solid curve is taken from run No. 2 (108 particles)
while the dotted curve is from run No. 4 (864 particles).

with the computer results in the triple point re-
gion, but at lower and higher temperatures the
agreement becomes rapidly worse. The equation-
of-state results, obtained by differentiating the
free energy, are not surprisingly even poorer and
the data listed in Table I clearly illustrate the
complete failure of the theory at low temperatures.
This is in marked contrast with the situation in the
fluid, where the perturbation theory works re-
markably well. 26 The fundamental reason seems
to lie in the inadequacy of the completely anhar-
monic hard-sphere reference system. In Ref. 17
it is also shown that the hard-sphere solid is com-
pletely inadequate to describe the dynamics of
rare-gas crystals, as probed by depolarized light
scattering.

IV. DYNAMICAL STRUCTURE FACTOR

where pe(u} is the Fourier-Laplace transform of
N

po(t) =pe' '"&Q u, (t)
4=1

and 2W= & I Ql'(u2).
Except for large I@I, these results are essen-

tially identical with the full S(Q, u). This feature
is not unexpected in view of the sum rules which
must be satisfied by S and S1,

(12)

QP S(Q, (d) dI'd =1 '" kTQ2
27r m

(13)

For each of the 14 runs listed in Table I, S(Q, &u}

has been computed for selected wave vectors.
Moreover, we calculated the corresponding one-
phonon approximation

e-2w
S,(Q, (u) = lim —

gapa((o) ~s,

A, N dependence

Figure 3 shows S(Q, ~) for Q=(2w/a)(4, 2, -', ),
T* =0. 32, p*=1.031, computed with systems of
N =-108 and ¹ 864 atoms. Within the resolution
and statistical uncertainties of our data, the two
results are identical. For all other cases where
comparisons were possible, peak positions showed
no significant N dependence.

B Dispersion curves

Figures 4(a) and 4(b) show the dispersion curves
for the [00$] longitudinal phonons for T* = 0. 34,
p* = 1.030 and T~ = 0. 73, p* = 0.97. For Q vectors
close to the zone boundary, the peaks are seen to
broaden substantially, even at T* = 0. 32, in quali-
tative agreement with quasiharmonic perturbation
theory. 2~ As expected the higher T* phonons are
considerably less well defined. This explains
why recent neutron scattering experiments were
unable to give clear evidence of their existence
in solid Kr and Ar near melting.

C. Q dependence

In Fig. 5 we show the longitudinal phonon with
7I = Q —K = (2v/a}(—,, 0, 0), for two reciprocal-lattice
vectors, K=(2v/a)(0, 0, 0} and K=(2w/a)(4, 0, 0) a.t
T~ =0.337, p* = 1.030, and T~ = 0. 73, p* =0. 97.
For easier comparison S(Q, ur) for larger Q has
been divided by the ratio of the squares of the
wave vectors. The ratio of the peak height, is
close to the ratio of the respective Debye-Wailer
factors e 2w, as one expects for one-phonon scat-
tering. However, the larger Q phonons show en-
hanced background (multiphonon) scattering. This
background contributes a fraction (e~~ —1}of the
total scattering and is necessarily large when
(u ) is large and hence e is small. This phonon
appears to have a shoulder on the left of the main
peak which grows with T*. The same phonon but
with K = (2, 0, 0) 2v/a, has been studied experimen-
tally in Ar and exhibits a similar feature. The
large frequency shift of the main peak should be
noted. Temperature and density shifts of the
phonon peaks will now be discussed in more detail.

D. Temperature shifts at constant density

1 '
2w kTQ

(0 S(Q, (d) d(d = e (14) Figure 6 shows the transverse phonon at
Q = (2v/a) (2, ~, 0) for a f ixed density p~ = 1.031 and
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two different temperatures: T~ = 0.735 and T*
= l.20' this pl1onon exlllblts R sizable negRtlve
shift as T* increases. Figure 7 shows the longi-
tudinal phonon at Q = (2mla) (-'„0,0) under identical
temperature Rnd density conditions ~ This time
the shift is small and positive. The apparent in-
crease in intensity as T* is increased is governed
entirely by the sum rule equation (15).

0.04-

0.05

—- Q = 27T'(0.5,0,0)/a-- Q = 27T(4.5,0,0)/o
l~

t
T'=0.7Z

/ i «097P

I

E. Temperature shifts at constant pressure

Figure 8 shows the temperature shifts for trans-
verse phonons propagating in [00$] direction for
roughly the same p* —T* states studied experi-
mentally by Batchelder et gE. 4 As expected the
peaks shift to lower frequencies and broaden as
T* increases, and in addition the multiphonon
background grows. Tl1ls be11Rvlor ls RgRlll conl-
patible with the sum rule equation (15).

Figure 9 compares the MD percentage frequen-
cy shifts with the experimental resultsl4'~9 and
the results of a self-consistent-phonon calcula-

/
/ / x 'v'

/
8/

0.0 I

f63

3
ta

0.05

II

T'=0~~
! '. Z'= I Oao
i I

2-
ir, ,

I

j/ &I

~ I
II

IJ

I 5 2 0 2.5 3.0

S(Q, m)

5= 277 ((,0,0)/Ba I.O'

(a)

FIG. 5. Q dependence of S(Q, x) for the longitudinal
phonon. halfway to the zone boundary in the [OOL t direc-
tion. The upper curve corresponds to roughly the triple
point of the (12-6) potential while the lower curve corre-
sponds to about one-half the melting point at zero pres-
sure. Data taken from run Nos. 10 and 5, respectively.

(d T~
4

tion. ' The MD results are in better agreement
with the experimental data than the phonon calcu-
lRtlOns ~

3

(/)

f

!.0 Z.Q 30 4.0 5.0

T =034
p =

I 03

F. Density shifts at constant temperature

Returning to Fig. 7 we see the strong negative
shift in the longitudinal (-,', 0, 0) phonon peak posi-
tion on changing the density from 1.031 to 0.9V at
T* =0.735. The relative shift amounts to about
15% which compares well with predictions using

Q=27T ((,0,0)/ea

S{Q,u)) wo units

Q. I,

OPSsw— 7

I 2 3; 4 5

Q =277.{2,0.r,o)/0

97,p = I.03I)

T =0.726
p"= 0.97 O. l—

1.0 2.0 3.0 4.0 5 0 0

FIG, 4. (a) Dispersion. curve for longitudinal phonons
propagating in the [000] dix"ection taken from x'un No. 5.
(b} Dispex'sion curve for longitudinal phonons propagation
in the [00(] direction taken from run No. 10. Note the
Bayleigh-Brillouin triplet for the smallest wave vector.

FIG. 6. Temperature dependence of 8(Q, ~) at con-
stant density for the transverse phonon halfway to the
zone boundary in. the [00$] direction. Taken fx'om x'un

Nos. 13 and 14.
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0 I5"
Q =271 (0.5,0,0)/a

~(T =0.753, p =0.79)

has been graven earlier in Zqs. (11) and (12). For
a harmonic crystal [either quasiharmonic, or self-
consistent harmonic (SCHA)] the appropriate en-
semble average occurring in 9, is readily eval-
uated and one obtains

0.05-

II:
Il'

I I:.

II:
II:,

= I. I97, p = I.QSI)

= 0.735,p = I.

QADI

)

S,'(q, ~)=—, .-"g~(Q-q)+ ") ~,', ( ), (1'f)
qX qX

A,'„(ro) =2m[( „~+1)8(~—~,„}+n,„8(~+~,„)], (18)

where (d„and e,~ are the harmonic phonon frequen-

0 I 2 (T = 0 52 I, p
= 1.03 I )

FIG. Temperature dependence at constant density
and density dependence at constant temperature of
S(Q, ( ) for the longitudinal phonon halfway to the zone
boundary in the [Oop1 direction. Data taken from run
Nos. 13 (dashed) 14 (dots) and ll (full curve).

0.08-

0.07-

3. 0.05-
f2(

004-

(4,2,0. I7)/a
(4,2,0.53)/a

~t ~e Grunexsen approximation. The increase
tensity accompanying the negative frequency shift
is a consequence of the sum rule equation (15).

G. Rayleigh-Brillouin triplet

The lowest Q phonon studied was obtained with
2048-particle system and corresponds to Q = (2 / )W 0
(8» 0). This phonon is shown in Fig. 4(b) and
clearly exhibits a Rayleigh-Brillouin triplet. From
the width of the Rayleigh peak I'~=DQ~, one can
extract an estimate of the thermal diffusivity,
which is related to the thermal eonduetivity by
D=~/pC». We find D=0. 1ro' which compa. res
favorably with the value derivable from the experi-
mental value of I(: for Ar. Less-well-resolved
results were obtained with the 864-particle sys-
tem, for which the smallest allowable Q vector is
(2n'/a) (ie, 0, 0). The Brillouin peak position in the
latter ease agrees within statistical uncertainties
with the sound velocities obtained by the Monte
Carlo method for the same system.

V. COMPARISON WTH SELF-CONSISTENT PHONON
CALCULATIONS

A. Preamble
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Following the work of Maradudin and Fein33 and
Ambegaokar, Conway, and Baym3 we can write
the intermediate scattering function as a power
series in Q:

S(Q, f) =So+S&+S»~+S&+ (18}

These terms describe successively the elastic
(Bragg) scattering, one-phonon inelastic scatter-

thing, e interference between the one-phonon and
two-phonon scattering, and the two-phonon inelas-
tic scattering, ete. A detailed expression for S~

0.02-

O.OI-

I.Q 5.0

FIG. 8. Temperature dependence of S(Q, ~) at rough-
ly zero pressure. The FWHM of the Gaussian filter
function used to smooth the raw S(Q, u) data is also
shown. The data were taken from run Nos. 4, 8, and 9
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FIG, 9. Relative shift of the peaks in S{Q,cu} taken
from Fig. 8 (full circles) compared with experimental
data for Ar under similar conditions taken from Befs.
29 {open square} and 14 {open triangles}. The solid line
is taken from self-consistent-phonon calculation of Ref.
31.

eies and eigenvectors and n„ is the phonon occu-
pation number. The delta function n(Q —q) indi-
c3tes t at the n omentum transfer must be equal to
the phonon wave vector plus or minus a reciprocal-
lattiee vector K. The superscript 0 denotes the
harmonic approximation. S,(Q, u&) has 5-function
peaks at the appropriate phonon frequencies.

In the harmonic approximation S„,vanishes
while Sa gives rise to a broad (structured) back-
ground extending to twice the maximum frequency.

In an anharmonie crystal the 5-function peaks be-
come broadened and shifted and one can show that
(at least for the high-symmetry directions such as
[100], [110], and [ill] in the fcc lattice)

where

A,„((d) =(n„+l)a„(Iu), n„=(e~ —1) '
(2o)

(~)
8 +axFax(+)

&~/I
—2~qx+qx(Id)] + [2IdekFqx(aI)]

Thy rigorous derivation of this equation follows
from anharmonic many-body perturbation theory 3

and will not be discussed here. %e state only
that & and 1' are the shift and width (inverse life-
time) due to phonon-phonon interactions. The low-
est order contribution to 1 arises from the possi-
bility of a phonon decaying into two other phonons.
The first detailed calculations for a Mie-Lennard-
Jones potential that allowed for this effect were
those of Bohlin and Hogberg. 37 Applications using
self-consistent-phonon theory have been reported

by Koehler, Goldman et gl. , and others. 7 In
Koehler's w'ork only the lowest-order contribution
to & and I' are included and in our subsequent ap-
plication we will label such results by gr. Gold-
man et gE. included some addition contributions
to & and I' and in what follows calculations based
upon their approximation will be labeled g»x.
For details the reader is referred to the original
papers.

The interference term S„,which describes the
coupling of the one-phonon peak to the multiphonon
background was discussed by Maradudin and Am-
begaokar33 and more recently by Horners and
Glyde. 3~ The main point here is that such terms
are odd in Q and will oscillate in sign (growing
in magnitude) as Q increases. Since such terms
necessarily vanish at a Brillouin-zone boundary
we will for convenience restrict ourselves to
phonons such as these and hence not have to con-
sider S,.„any further. Furthermore, by eval-
uating S, in both the MD calculation and the phonon
case we need not consider S3, etc. The effect of
such terms can be estimated by comparing the full
MD results with the one phonon ones.

B. Self-consistent phonon calculations

Ne present a comparison of the phonon calcula-
tions based upon Eqs. (17) and (19) with the MD
results derived from Eq. (11) in Figs. 10 and 11.
Although calculations are in the one phonon approx-
imations the phonon calculation is quantum while
the MD one is classical. Ne have, therefore, re-
placed the factor (n„+ 1) occurring in Eq. (20) of
the phonon calculation by the factor kT/K&d while
leaving the factor B(u&) fully quantum. This pro-
cedure is essentially equivalent to applying Scho-
field's quantum correction~3 to the classical MD
calculations in order that they at least satisfy the
detailed balance condition [Eq. (5)].

Figure 10 shows the zone-boundary [100] phonons
for the nearest-neighbor (n = 1) 2048-particle sys-
tem and a (12-6) potential at about one-half the
melting temperature, Fig. 10(a), and the melting
point, Fig. 10(b). The calculated response using
self-consistent-phonon theory depends little on
whether one uses Koehler's self-energy g„or that
of Goldman et al. , /os„. There is fairly good
agreement with the MD data at the lower tempera-
ture except that the relative intensity of the two
peaks in the longitudinal response seems to be in-
correct. This is likely in part due to the fact that
phonon calculation is quantum, while the MD is
classical. At the higher temperature there are
larger discrepancies between the two calculations.
Figure 11 shows this effect more clearly for the
zone-boundary [100] transverse phonon of the 864-
particle system [(12-6) potentia, l with n = 3]. The
temperature and density correspond roughly to the
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VI CONCLUSION

We have demonstrated that it is feasible to cal-
t the dynamical structure facculate e y

D technique.solids using the computer simulation M
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dtial show many o e ef th features recently observe
in inelastic neutron scattering xpe eriments on
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