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The method of linear combinations of atomic orbitals has been applied to perform a first-principles calculation

of the electronic structure of the F center in a lithium-fluoride crystal. The one-electron Hamiltonian includes

the Coulomb and exchange interaction due to all atoms (or ions) in the crystal and the trapped electron.
Slater's approximation for exchange is used. Relaxation displacement of the surrounding lattice sites resulting

from the presence of the F center is neglected. The F-center wave functions are expanded as linear

combinations of localized orbitals centered at atomic sites up to the sixth (the seventh in one case) nearest

neighbors to the vacancy. The computational work is greatly facilitated by the Gaussian technique which

enables us to evaluate all the multicenter integrals associated with the Hamiltonian matrix elements

analytically or in terms of the error function. An initial crystal potential is constructed by assuming the

charge distribution of the Li+ and F ions in the F-center crystal to be the same as those in the perfect
crystal. The solution of this initial Hamiltonian is then used for an iterative calculation to take into account
the effect of electronic polarization. The energies of the ground state and the I 4 excited state have been

calculated and the energy difference agrees well with the experimental absorption frequency. The theoretical
values of the hyperfine contact-interaction constants are also in good agreement with experiments.

I. INTRODUCTION

The success of the application of the method of
linear combinations of atomic orbitals (LCAO), or
the method of tight binding, to band-structure cal-
culations for a variety of crystals, including the al-
kali metals, transition metals, group-IV element
crystals, alkali halides, and polyethylene in recent
years has established the usefulness and versatility
of this method for studying the electronic structure
of solids. Another class of problems for which
the LCAO method should be well suited is the elec-
tronic structure of localized point defects in crys-
tals such as F centers and impurity atoms. In fact
the concept of LCAO has been used quite extensively
to describe localized point defects on a qualitative
level. However, the difficulty of evaluating the
multicenter integrals, which had been the bottle-
neck of ab initio LCAO calculations of the energy-
band structure of perfect crystals, has greatly im-
peded the progress toward quantitative first-prin-
ciples calculations.

In the case of perfect crystals, the introduction
of Gaussian-type orbitals (GTO) has been mainly
responsible for the success of the quantitative ap-
plication of the method of LCAO. When the atomic
orbitals are expressed in the Gaussian form, all
the multicenter integrals resulting from the Hamil-
tonian matrix elements can be reduced to analytic
expressions. The same Gaussian technique can be
carried over to point-defect crystals; in fact, the
general scheme of calculation can be summarized
in a straightforward way. The one-electron Hamil-

tonian for the E-center crysta. l (Hz, ) is written as
the difference between the one-electron Hamiltonian
of the perfect crystal (H~) and a, term corresponding
to the point defect, i.e. ,

HJ; ——H~ —H' .
The wave functions of the F-center electron are ex-
panded as linear combinations of atomiclike orbitals
centered at lattice sites on different shells of atoms
around the vacancy and their relative weightings
are determined by the usual variational procedure.
Because of the localized nature of the F-center
electron, only a few shells need be included in this
expansion to reach convergence. All the basic in-
tegrals associated with H~ have been evaluated in
our previous work on the band structure of LiF.
The multicenter integrals connected with H' can be
evaluated by the Gaussian method.

Calculation of electronic wave functions for F
centers has been a subject of active interest for
many years. ' In particular, application of the
LCAO method for this purpose has been made by
Inui and Uemura and Kojima in the 1950's. More
recently Wood and Korringa' and also Wood have
used the LCAO method to calculate the electronic
structure of the F-center electron in LiCl. Be-
cause of the complexity of the numerical work, a
number of approximations, such as neglecting a
great deal of the exchange of the F electrons with
the neighboring ions and neglecting the finite size
of the C l ions, etc. , were made in Ref. 15. Wood
and co-workers' ' have subsequently developed
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methods for calculation of electronic structure of
E centers which are based on a Hartree-Fock-type
formalism but do not involve an LGAO expansion of
the E-center wave functions.

As in the case of the LCAO calculations of band
structure for perfect crystals cited above, the
Slater approximation for electron exchange is em-
ployed in this work. Furthermore we neglect re-
laxation (displacement) of the lattice resulting from
the presence of the E center. Under these assump-
tions the E-center problem is formulated in a
Hartree-Fock-Slater scheme. An initial approxi-
mation to the Hamiltonian of the E-center electron
is constructed by assuming the charge distributions
of the Li' and F ions in the E-center crystals to be
the same as those in a perfect crystal. The dis-
tortion of the ionic charge distribution due to the
presence of the E center is then taken into account
by means of an iterative approach. The LCAO ex-
pansions of the E-center wave functions include up
to orbitals of atoms in the sixth shells (and in one
case seven shells) from the vacant site. The
amplitude of the ground-state E-center wave func-
tions at the atomic sites of the first two neighboring
shells have been calculated and are compared with

the experimental results of the hyperfine structure
of electron spin resonance.

II. PRELIMINARY YORK

An E center in an ionic crystal is pictured as an

anion vacancy with a trapped electron. Although
the LiF crystal is generally regarded as ionic, the
crystal charge density computed by a superposition
of the individual charge density of the free Li' and

F ions at the appropriate sites does not differ much

from that generated by a superposition of the neu-
tral free Li and F atoms. The reasonfor the simi-
larity in charge density between the ionic and the
neutral-atom pictures is that. the 2s wave function of
the Li atom is so diffuse that it overlaps strongly
with the neighboring F atoms resembling a trans-
fer of charge from the Li to the F sites. If we

adopt the neutral-atom picture for the LiF crystal,
an F center would then be equivalent to a neutral
fluorine-atom vacancy. While the model of repre-
senting an F center in LiF as a neutral fluorine-
atom vacancy cannot be expected to be quantita-
tively valid, it does offer considerable simplifica-
tion for the LCAO calculation. For this reason
we shall adopt this simplified model for a pre-
liminary calculation to set forth the general com-
putational scheme, to develop numerical proce-
dures, and to obtain a zeroth order E-center wave
function for the calculation with a more realistic
model in Sec. III.

We divide the potential of the perfect crystal
V~(r) into the Coulomb and exchange parts,

V~,(r) = V~,(r)+ Vrx, (r) . (3)

If the E center is to be pictured as a neutral fluorine
vacancy, the two Coulomb terms in Eqs. (2) and

(3) differ only by the Coulomb potential of the miss-
ing fluorine atom (Vz), i. e. ,

[V~,(r)]~=[Vp,(r)]o„v —Vr(r) .
The subscript p under the square brackets indicate
that the above expression is intended for this "pre-
liminary work" only. Since the exchange potential
is not linear in the crystal charge density, a simple
additivity relation similar to Eq. (4) does not apply
to the exchange term. Instead we compute the val-
ues of the charge density of the E-center crystal
( p„,)~ near the vacancy by superimposing the in-
dividual atomic charges at all lattice sites except
the vacant one. Since [p~(r)]o„z, and[pr, (r)]& are
similar except in the proximity of the vacancy, their
difference can be fitted by a function localized at the
vacant fluorine site so that

[Vp.(r)]oAp [~E.(r)]p= n—E(r) ~

Accurate curve fitting can be accomplished by
choosing gz(r) to be spherically symmetrical about
the vacancy with the form

q (r) =Qq,.e"~'-"", (6)

where R„ is the radius vector of the vacant site, and

q; and y; are adjustable parameters. Combining
Eqs. (2)-(5), we have

(II&.)p = (&p,)o~r —[Vz(r)+ nz(r)] .
The quantity inside the square bracket can be iden-
tified with H' in Eq. (1).

The basis functions are generated by taking
LCAO's around the vacancy. Let us place the ori-
gin at the vacant site. We form linear combina—

V~(~) = V~(r)+ V~,(r) .
For this preliminary calculation, the overlapping-
atomic-potential (OAP) model is used as explained
in Ref. 4, i. e. , the Coulomb term is approximated
by the sum of the electrostatic potential of each
constituent atom in its neutral and undistorted form
and the resulting function is designated as
[V~,(r)]o„p The same superposition of free-atomic
charge distribution provides an approximate charge
density of the perfect crystal ( p&,)o„z, which in turn
gives [V~,(r)]o„v, through Slater's approximation,
as —3[3(p„,)o„v/Bv]'~ . For band-structure cal-
culations we have found it convenient to cast the
exchange potential in the form of a superposition of
localized functions centered at each lattice site. 4

The potential for the E-center crystal likewise can
be decomposed into its Coulomb and exchange com-
ponents as
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tions of the 1s, 2s, and 2p orbitals of the six Li
atoms at 200, 0-,'0, etc. (the 200 shell), in accor-
dance with the irreducible representations of the
O„group, and similarly symmetrized LCAO's of
the F atoms in the ~~0 shell, of the Li atoms in

the»& shell, etc. A typical energy matrix ele-
ment referred to this set of basis functions may be
decomposed into integrals containing the Hamilto-
nian with two atomic orbitals at different sites.
Such integrals for H&, have been evaluated previ-
ously for band-structure calculations of LiF.
Both Vz(~) and qz(r) are centered at the vacant
site, thus they give rise to a series of three-cen-
ter integrals. Since the atomic orbitals are written
in Gaussian forms, on account of Eq. (6), matrix
elements of qz(r) reduces to integrals of triple
products of Gaussians which can be evaluated ana-
lytically. The function Vz(r) itself is an integral
involving j r —r'I '. The double integrals evolved
from the matrix elements of Vz(r) are readily re-
duced to the error functions.

For the calculation of the ground state of the F
center, we select a basis set consisting of the
symmetrized (I"~ symmetry) Li ls, 2s, 2P atomic
orbitals at the F00 shell and of F 1s, 2s, 2p at the
—,'20 shell. The basis functions formed by the Li 1s
and F 1s, 2s, 2p orbitals are primarily responsible
for the occupied states of Li' and F which span the
core and valence bands of the crystal, and the Li 2s
and 2p basis functions serve mainly to reproduce the
wave function of the E-center electron. The Li 1s
and F 1s, 28, 2p wave functions were taken from
Table XI of a paper by Huzinaga. 0 The Li 2s
wave function given in that table is very diffuse and
extends beyond the 2-,'0 shell. Because of the com-
pact nature of the ground-state wave function of the
E-center electron, the very tail ends of the Li 2s
and 2p orbitals should not be important for this
calculation. Thus in order to reduce the numerical
work, we have shortened the range of the Li 2s and

2p functions by fitting the former as a linear com-
bination of eight s-type Gaussians of exponents
921.271, 138.730, 31.9415, 9.35329, 3. 15789,
1.15685, 0.44462, 0.076663 and fitting the latter
with six p-type Gaussians ' of exponents 31.9415,
9.35329, 3.15789, 1.15685, 0.44462, 0.0764918.

The four lowest roots of the secular equation are
identified as the levels of the filled bands (F-ls,
Li-ls, F-2s core and the valence bands}. Above
them is the ground state of the E center. The
ground-state wave function of the E-center electron
is plotted along the [100], [110], and [111]directions
in Fig. 1. The general shape of the wave function
near the origin reflects the flat-well nature of the
potential. The sharp spike at the —,'00 point is due
to the presence of the Li' ion or may be looked upon
as a consequence of the E-center wave function be-
ing orthogonal to the Li-1s core state. Similarly
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FIG. 1. VPave function (in atomic units) of the E-
center el.ectron along the [100]direction (solid curve),
the f1101 direction (uniform dashes), and the f111]di-
rection Qong-short dashes) obtained by the procedure of
Sec. II. Abscissa is in units of the lattice constant of
the crystal.

a spike is found at 220 because of the orthogonality
to the lower states corresponding to F 18, 2s, and
2P. In general one expects at each lattice point a
spike of diminishing amplitude as one moves away
from the E center. Finally we may point out the
isotropy of the wave function up to a distance of
r= 0. 35a, where a is the lattice constant of the LiF
crystal (7.594 a.u. ).

III. CALCULATION OF ELECTRONIC STRUCTURE

A. Initial crystal potential

For a more accurate version of H~„ the potential
of the perfect LiF crystal produced by the self-con-
sistent-field (SCF) calculation of Ref. 4 is adopted.

We now come to the main body of the calculation
of electronic structure of the E center. We still
seek to write the Hamiltonian of the E-center crys-
tal as the perfect-crystal Hamiltonian minus a
certain correction term and to expand the E-center
wave functions in terms of LCAO basis functions.
However, the model of treating the perfect crystal
as being composed of undistorted free Li and F
atoms introduced in Sec. II will be abolished here.
Specifically we will not adopt the OAP model for
H~, and the basis functions will be constructed from
functions other than the free-atomic orbitals. Also
the E center will be represented by the more rea-
listic model of a F vacancy with a trapped elec-
tron instead of simply a neutral-F-atom vacancy.
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The next step is to curve fit the SCP electron densi-
ty of the perfect LiF crystal, p~,(r), to a superpo-
sition of a localized density function pz„+(~) cen-
tered at all cation sites and another function
»„(r) at all anions sites with the constraint that the
total charge covered by each pL,,(r) and pr (r) be
two and ten electron units, respectively (T. his
curve-fitting scheme has been discussed in Ref. 4,
although no requirement on the total charge was
imposed on the individual charge-density functions
there ). To simplify numerical computation, both

pL„,,(r) and &&r (r) are taken to be spherically sym-
metrical with respect to their own origins in the
form of linear combinations of Gaussians. Accord-
ingly we can account for an F vacancy by simply
subtracting from p~, the I&r-(x) function associated
with the vacant site which is chosen as the origin.
To generate the Hamiltonian for an E center in the
ground state I „we need to have an approximate
representation of the charge distribution of the
trapped electron. For this purpose we use the re-
sults of Sec. II. The spikes in the wave function in
Fig. 1 are important to maintain orthogonality to
all the lower states but have little effect on the
crystal potential, thus we have smoothed them out
in order to simplify the charge-density calculation.
Furthermore because of the high degree of isotropy
of the charge distribution of the trapped electron
(Fig. 1), we replace it by its spherical aver-
age and express the latter, by curve fitting, as a
superposition of Gaussians centered at the origin,
designated as p„(l",I&"} The ch.arge density of the
E center crystal then becomes

p~", (F& ~ r) = p„(r) pF-(&')+ p„—(1"& I ~), (8)

Equation (8) represents only an approximate ver-
sion of the true charge density of the E-center
crystal with its trapped electron in the I', ground
state because we have assumed, in addition to the
approximation introduced to calculate p«, no
charge redistribution in the neighboring ions
brought about by the vacancy and the trapped elec-
tron. The superscript (0) in the left-hand side of
Eq. (8) signifies that this formula may be regarded
as an initial approximation toward an ultimate SCF
calculation of the electronic structure of the E-
center crystal. A simila, r relation holds for the
Coulomb part of the crystal potential if we replace
the symbol p by t/' . For the exchange part we
proceed in the same way as we did in Sec. II, i. e. ,
we curve fit the difference between —3[3p&,(r)/8w]
and —3[3p~@&(1";(r)/8w] ~ to a. function &(r) centered
at the origin in the form of Gaussians. As an initial
approximation to the Hamiltonian for the ground
state of the E-center electron, we obtain

(a„",&),;= a —V', (~)+ V'„(r,
~

~) —((& ) . (8

The computation of multicenter integrals for this

Hamiltonian follows the same procedure as out-
lined in Sec. II.

B. Solution for ground state

Since the solution of HE, gives, in addition to
eigenstates of the E center, all the lower states of
the full bands of the crystal, a more efficient choice
of LCAO basis functions can be made by using, in
place of the wave functions of the free atoms, a
set of modified Li Is and F ls, 2s, and 2P orbitals
which reflect more accurately the electronic struc-
ture of the full bands of the perfect crystal. Such
a set of "optimized orbitals" can be generated in
the following way. We take the SCF Hamiltonian
of the perfect LiF crystal and solve the secular
equation a't the I po&nf (k = 0) using a basis set con-
taining seven s-type single-Gaussian Bloch sums of
the Li atoms, eight s-type and five p-type single-
Gaussian Bloch sums of the F atoms. From the
relative weightings of the 8-type fluorine single-
Gaussian Bloch sums in the two eigenvectors cor-
responding to the F Is and F 2g bands, we obtain,
respectively, the F Is and F 2s optimized orbitals.
Likewise the weightings of the Li Bloch sums in the
eigenvector of the second lowest root gives the
Li 18 optimized orbital, and the eigenvector of the
I'-point valence band yields the F 2p. Because of
the narrowness of all the filled bands, the optimized
orbitals determined from the 1'-point solution of the
crystal Hamiltonian should provide a good repr e-
sentation of the electron distribution in the crystal.
The advantage of using such optimized atomic or-
bitals for band-structure calculations has been
discussed. The optimized orbitals are presented
in Table I.

For our initial calculation of the ground state of
the E center, the basis functions extend up to the
sixth shell of atoms. This basis set includes sym-
metrized LCAO's of the Li Is optimized orbitals
at the &00, &a&, and 12Q shells, of the F Ig, 2g,
and 2p optimized orbitals at the &~0, 100, and I&a
shells, of seven Li s-type and six Li p-type GTO's
(the exponents being the same as those listed in
Sec. II with the omission of the shortest-range
s-type GTO which is already contained in the Li Is
optimized orbital) at the —,'00 shell, of three s-type
GTO's (exponents: 0. 363 40, 1.207 75, 4. 368 85)
and three P-type GTO's (exponents: 0. 27329,
0. 938 26, 2. 995 86) at the 2 —,'0 shell. In addition we
have introduced four s-type GTO's of exponents
0. 36340, 1.20775, 4. 36885, and 12.2164 centered
at the origin (the vacant site}. Solution of the re-
sulting 36' 36 secular equation gives the ground-
state energy of the E-center electron as —0. 1602
a.u. The wave function is displayed in Fig. 2.
Aside from the sharp spikes arising from the re-
quirement of being orthogonal to the core states,
the envelop of the wave function in Fig. 2 is con-
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TABLE I. Optimized orbitals of Li and F expressed as linear combination of normalized
GTO s.

Li 1s state

GTO exponents: 921.271, 138.730, 31.9415, 9.35329, 3.15789, 1.15685, 0.44462

Coefficients: 0.001413, 0.010665, 0.052895, 0.166427, 0.359509, 0.390246,
0.186 976

F 1s and 2s states

GTO exponents: 9994.79, 1506.03, 350.269, 104.053, 34.8432, 12.2164, 4.36885,
1.20775, 0.36340

Coefficients (1s state): 0.001175, 0.008981, 0.042848, 0.146261, 0.357405,
0.456 990, 0. 142 022, —0.001 820, 0.000 793

Coefficients (2s state): —0.000 268, —0. 0o2 & & 9, —0.009 827, —0, 037 661, —0.096 796,
—0.202 097, —0.004 208, 0.543 858, 0. 560 380

F 2p state

GTO exponents: 44. 3555, i0.0820, 2.99586, 0.93826, 0.27329

Coefficients'. 0.018064, 0.108969, 0.318552, 0.451940, 0.374895

The order of the coefficients corresponds to that of the GTO exponents.

fined to a volume of less than one lattice constant
from the vacant site which is well within the 1-,'-,'

shell. Nevertheless to test the convergence of the
LCAO expansion for the wave function of the E-cen-
ter electron, we added to the basis set the F 1s,
2s, 2p optimized orbitals at the seventh shell 110
and repeat the calculation. The ground-state en-
ergy of the F-center electron is now —0. 1600 a.u. ,
practically the same as the previous value of
—0. 1602 a. u.

At this point it is important to mention certain
care which must be exercised in choosing the
basis functions. The Hamiltonian H~„ in principle,
has an infinite number of eigenstates below the ground-
state E-center level, because as we augment the
LCAO basis set to include the contributions from
more and more shells of lattice sites, the number
of roots corresponding to the core and valence-
band states would increase accordingly. When the
basis functions are limited to the first six shells,
only three out of each of Li 1s and F 1s, 2s, 2p
states (of I"~ symmetry) are anticipated and any
core and valence-band states corresponding to the
seventh and higher shells should be missing in the
solutions of the secular equation. Above the full-
band states we have the states of the F-center elec-
tron whose wave functions are composed of com-
binations of the single GTO's with some admixture
of Li 1s and F 1s, 2s, 2P functions. Suppose now

we introduce to the basis sets single GTO's of
considerable width in all six shells. If these GTO's
have significant overlap with the seventh and eighth
shells of the lattice sites, the former will try to re-
produce some of the full-band states of the seventh

and eighth shells resulting in some eigenfunctions
which are poor representation of such states.
Hence one may find some "extraneous" eigenvalues
which are well above the energies of the true full-
band states. Since the wave function of the F-cen-
ter electrons are always orthogonal to those of all
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FIG. 2. Wave function (in atomic units) of the E-center

electron along the [100]direction (solid curve), the [110]
direction (uniform dashes), and the [111]direction {long-
short dashes) obtained by the procedure of Sec. III B.
The abcissa is in units of the lattice constant of the crys-
tal.
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the lower states, the presence of some bad full-
band-state eigenfunctions may deteriorate the E-
center solutions. To safeguard against this com-
plication, the single GTO's should be chosen to
have virtually no overlap with the seventh shell of
lattice points so that they are orthogonal to all the
missing core and valence-band states.

C. Hyperfine contact interaction

Measurements of hyperfine structure of the elec-
tron-spin resonance of E centers in LiF have been
reported in the literature. The hyperfine in-
teraction between the electron spin and the nuclear
moments of Li and F in different shells may be
separated into tmo parts, one being isotropic and the
other having the form of the dipole-dipole term.
The isotropic term is attributed to the contact cou-
pling which is proportional to the absolute square
of the wave function of the unpaired electron at the
point of the nucleus. If the contributions from any
two spin-paired electrons to the contact term are
assumed to cancel each other exactly, one can de-
duce the absolute values of the ground-state E-cen-
ter wave function at the nearby Li and F sites.
Holton and Blum have given a set of "experi-
mental" absolute values of the E-center function at
the ~00, ~~0, ~~~, 100, 1~0, 1~a, and 110 sites for
LiF. The wave function described in Sec. III B
contains orbitals of the first six shells of atoms,
thus me can, in principle, obtain its values at
~00, p~0, . . . , 1&-,'. However, our basis set in-
cludes single GTO's only at the first and second
shells, and beyond the second shell, no additional
variational freedom is provided except the minimal
basis functions of Li 1s and F 1s, 2s, 2p orbitals.
Since the wave function has spikes at the points of
atomic sites and the peak values of these spikes
vary more sensitively with respect to addition of
basis functions than does the envelope of the func-
tion, me can reasonably expect our wave function to
give reliable values at & 00 and &20, but not in
general at site points further away. With the six-
shell calculation our theoretical values for
I $(~00, Li) l and Ig(a~ 0, F) I are 0. 166 and 0. 206
a. u. , respectively, as compared to the correspond-
ing experimental values of 0. 150 and 0. 158 a.u.
deduced from the results of Holton and Blum.
Upon augmenting the basis set to include the F 1s,
2s, 2p orbitals at the seventh shell 110, the new
values are lg(200, Li) ~

= 0. 170 and ($(~~0, F) I

=0.209 differing little from the old ones.
The agreement between theory and experiment is

very good for ~g(200, Li) [, but a somewhat larger
discrepancy is seen in the case of ig(2/0, F) I. It
should be emphasized that the experimental value
of ! Pl were obtained under the assumption that the
unpaired E-center electron is solely responsible
for the contact coupling. Homever, the unpaired

electron may polarize the atomic core so that the
s4 (arrow indicating the spin orientation) and sf
electrons have slightly different wave functions and
therefore offer a net contribution to the contact
term. Also configuration interaction may provide
another source of contribution. Discussion of the
core polarization and configuration interaction ef-
fects has been given in the literature. However,
in the absence of a quantitative estimate of these
effects, the agreement between theory and experi-
ment on the hyperfine contact coupling constants
should be regarded as quite satisfactory.

It is convenient to view the wave function in Fig.
2 as a smooth varying envelope function plus a num-
ber of spikes at the sites of the ions. If one mere
toallom for asmallrelaxation of the ions in the E-
center crystal, the envelope function at the dis-
placed sites mould differ only slightly from the old
values. The height of the spikes which may be as-
sociated with the requirement of orthogonality to the
core ion states, mould therefore be expected to
undergo only minor change due to lattice relaxation.

D. I excited states

One quantity of immediate interest in the study
of E centers is the absorption frequency or the en-
ergies of the I'4 states. To calculate their ener-
gies, me first symmetrize the orbitals associated
with the atoms in the same shell in accordance with
the 14 representation. The basis set consists of
the Li 1s optimized atomic orbitals at the —,00,
2~~, and 1~0 shells, the F 18, 2s, 2P functions at
the —,

'
—,'0, 100, and 12& shells, seven s-type and six

P-type single GTO's at the &00 shells, tmo s-type
(exponents: 0. M340, l. 20775) and two p-type
(exponents: 0. 27329, 0.S3626) at the 2~0 shell,
amounting to a total of 49 I"4-type symmetrized
functions. With the Hamiltonian in Eq. (9), solu-
tion of the secular equation gives the lowest unoc-
cupied I'4 level at E= —0. 0058 a.u. This leads to
an energy difference between the I'4 and I"& states
as 0. 154 a.u. (4. 20 eV) which is in reasonable
agreement with the experimental value 4. 82 eV.

IV. IMPROVEMENT BY ITERATION: ELECTRONIC
POLARIZATION

In Sec. II the Hamiltonian Hz, mas constructed
under the assumption that the electronic structure
of each ion remains unchanged from the perfect-
crystal case. In reality the presence of the point
defect causes a distortion of the electron distribu-
tion of the ions mhich is usually referred to as elec-
tronic polarization. This is not to be confused with
the distortion of the free-ion electronic structure
due to the formation of the perfect crystal; the
latter has been taken into consideration by the SCF
calculation of the band structure.

The effect of electronic polarization can be incor-
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porated into the present LGAO formalism by means
of an iterative procedure. Those eigenfunctions of

(Hg, ')r+ which correspond to the occupied states ofZc I'g

the ions (or filled-band states) yield directly the
degree of polarization of the electron cloud since
the presence of the E center has been explicitly
taken into account in the parent Hamiltonian. Fol-
lowing the procedure described in Sec. III 8, we
have solved the secular equations of (Hz@,')r for all
irreducible representations of the O„group to de-
termine the "polarized" wave functions for all the
electrons of the ions in the first six shells. Exam-
ination of the individual charge density shows
that the Li' ions in the &00 shell are much less
polarized than the F" ions in the —,

'
—,'0 shell as may

be anticipated from the more tightly bound nature
of Li'. Also the degree of polarization of the F
ions is found to decrease in going from the &-,'0 to
the 100 shell. Assuming the effect of polarization
to be negligible beyond the 1» shell, we use this
new charged density for the ions in the first six
shells to replace the old one in computing the charge
density of the E-center crystal. In addition im-
provement is also made of the charge density of
the trapped electron by using the results of the
six-shell calculation described in Sec. III 8 in place
of those of Sec. II (see Sec. IIIA). The above two

steps lead to the first-iteration version of charge
density of the E-center crystal which we shall de-
note as p]cl(I';I r). By comparing the numerical
values of pl,',l(I' ll r) and pal(I"; Ir), we curve fit
pp".,'(I", I r) —p j",,'(I"; I r) and [pp", (I'P r)]'"
—[pll,'(I'l I

r)]'~ to superpositions of localized
functions (e. g. , e and l e " ) around the vacant
site and around the lattice sites on the first two
shells. The functions centered at the first shell

2
contain also terms like xe " and those at the sec-

mQg 2 mQP 2 2 ~Q&2ond shell contain (x+ y)e '", xye "", and z'e '" .
Upon applying these polarization corrections to the
Coulomb and exchange potential in Eq. (9), we ar-
rive at the first-iteration Hamiltonian (Hz",')r+
which gives the energies of the ground state and the
1"4 state of the E-center electron as —0. 2487 and
—0.06725 a. u. , respectively.

Strictly speaking the change of the ground-state
energy from —0. 1602 to —0. 2487 a. u. is due to
electronic polarization as well as the improvement
of the E-center electron charge density. The ef-
fect of the latter, however, is likely to be small be-
cause of the close resemblance of the envelope func-
tions in Figs. 1 and 2. Thus we believe that the
suppression of the ground-state energy by 0. 0885
a.u. reflects, to a large measure, the change of
charge distribution of the ions caused by the point
defect. A somewhat analogous situation is found
in band-structure calculations of perfect crystals.
If one starts with an OAP model for the crystal po-
tential to generate the initial solution and then pro-

ceeds to self-consistencyby an iterative scheme,
the absolute energies change quite significantly from
the initial OAP values to the final SCF ones although
the changes in energy differences are substantially
smaller. For example in the SCF calculation of
the pure LiF crystal, this change of energy of the
1"»„state amounts to 0. 216 a. u. from the initial
to the next-iteration stage, reflecting the effect
of charge redistribution in going from the free ions
to the crystal.

The energy of the lowest unoccupied 1"4 state of
the E-center electron is likewise suppressed. The
shift here is 0.0615 a. u. , somewhat smaller than
the corresponding value for the I"~ ground state.
The energy difference between the I 4 and I, states
now becomes 4.93 eV in closer agreement with the
experimental value.

V. DISCUSS10N

%e have presented a scheme for ab initio LCAO
calculations of electronic structure of E centers
based on the Hartree-Fock-Slater method. The
Hamiltonian includes the Coulomb and exchange
interaction due to all the atoms (or ions) in the
crystal and the trapped electron. The E-center
wave functions are expanded as linear combinations
of atomiclike orbitals centered at the atomic sites up
to the sixth (or seventh) nearest neighbors to the
vacancy. By means of the Gaussian technique all
the multieenter integrals necessary for the Hamil-
tonian matrix elements can be evaluated analytical-
ly or expressed in terms of the error function.
An initial crystal potential was constructed by as-
suming the charge distributions of the Li' and. F
ions in an E-center crystal to be the same as those
in the perfect crystal. The solution of this initial
Hamiltonian is used to generate an improved crys-
tal potential which in turn provided a set of im-
proved wave functions. In this manner the effect
of electronic polarization can be taken into ac-
count. This iterative procedure can be carried out
to self-consistency, although in the present work
we have performed only one iteration. The theo-
retical values of the absorption frequency and the
magnetic hyperfine contact interaction constants are
in good agreement with experiments.

While the subject of theoretical calculation of
electronic wave functions of E centers has been
treated extensively in the literature, the general
approaches adopted in the majority of these works
are very different from ours. Even for the earlier
works on the application of the LCAO method to
calculate electronic states of the E centers in
LiF, ' the methods of treatment differ signifi-
cantly from ours. For instance in the paper by
Kojima, the ions were replaced by point charges
in calculating the potential-energy integrals„and
this modification of the potential was regarded by
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Kojima as being not very satisfactory. For these
reasons no comprehensive comparison of our re-
sults with those of the previous workers mill be
made. Instead we shall just cite results from a
fern selected papers as examples of previous cal-
culations. Wood and Joy'6 gave 3.26 eV and
(4 59 6V) fol' tl16 I I I4 RbsorptloI1 ellelgy wlllch
may be compared with our value of 4. 93 eV. (The
value 4. 59 eV inside the parenthesis arises from a
local minimum in the calculation of the excited
state by Wood and Joy, and they believe this to be
the appropriate minimum. ) The magnetic hyperfine
constants have been calculated by Gourary and
Adrian. From their results ' one obtains
ip(1 i, —,'00)I and II{|(F,—,

'
—,'0)I as 0. 170 and 0. 120

a. u. , respectively (ours being 0. 170 and 0.209).
While the over-all agreement appears to be reason-
able, the vast difference in the method of approach
does not allow us to make much quantitative use out
of this comparison. Electronic polarization in Il-
center crystals has been examined by several au-
thors~~'3 3 using a semicontinuum model in which
the effective-mass approximation is often adopted
and a polarization potential expressed in terms of
the dielectr ic constants is introduced. In our
method, however, the potential of the finite crys-
tal is treated explicitly as opposed to the effective-
mass approximation. Also, instead of using the
dielectric constants, me calculate the polarization
energy, by means of a Hartree-Fock procedure,
directly from the distortion of the electron clouds
of the neighboring ions as produced by the vacancy
and the trapped electron; thus the questions of
validity of the dielectric-constant approximation and
of whether or not the polarization can fully re-
spond to the trapped electron, do not arise. The
semicontinuum model has been applied to calculate
the energies of the E centers in NaCl and KCl,
but me have found no similar calculations for LiF
to make quantitative comparison with our results.

To assess the ultimate utility of the LCAQ method
for E-center calculations, me may mention some
possible refinements which can be added to the
present work. As indicated in Sec. I, relaxation
of the crystal lattice due to the E center is neglected
in this paper. Allowance for small displacements
of the ions near the imperfection can be accom-
plished by introducing a correction term in the

Hamiltonian corresponding to the difference between
the relaxed and unrelaxed lattice; the necessary in-
tegrals and matrix elements again can be evaluated
by the same Gaussian technique. The calculation
can then be carried out to self-consistency by the
iterative procedure outlined in Sec. IV using the
appropriate relaxed lattice structure. Improve-
ment for the calculation of the excited state,
(I 4) Ilkewlse cRI1 lie 111Rde. Ill Sec. IV 'tile excited
state mas taken as the unoccupied orbital of the
Hamiltonian (Hz) )r, which was generated by placing
the E-center electron in the I", state (the ground-
stR'te Collflglll'Rtloll). Tile llse Of llIIOCCllpled Ol'-

bitals of the ground-state config ration to approxi-
mate the excited states has been a common prac-
tice. However, recent calculations of the CQ mole-
cule indicate that while this approximation may
give satisfactory energy, the oscillator strengths
computed by this approximation and by using the
wave function derived from the proper excited con-
figuration may differ by almost a factor of tmo.
To deduce the excited-state Hamiltonian (Hl,,)r-
for the E-center problem, one may assign the
trapped electron to the unoccupied I 4 orbital re-
ported in this paper and calculate the charge densi-
ty of the crystal in this excited configuration from
which the Coulomb and exchange potentials may be
obtained. An iterative scheme similar to the one
for the ground state may be employed to achieve
self-consistency. This would then enable us to cal-
culate properties pertaining to the excited state
such as oscillator stxengths. All the refine-
ments outlined in this paragraph can be in-
corporated into the LCAO formalism, although

they mould entail more complex computational
mork. Development of the necessary numerical
technique is undermay.

The method of LCAQ has been employed over
many years for qualitative description of E centers,
but quantitative gb initio application in the past had
not been entirely successful due to the difficulty of
handling the multicenter integrals. In this paper
me have shown that with the Gaussian technique the
computational work for an gb initio calculation is
reduced to a very manageable level and demon-
strated the utility of the LCAQ method for first-
principles quantitative studies of electronic ener-
gies of E centers.
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