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Correlations responsible for anisotropic-scattering properties of close-packed and tetrahedrally coordinated

amorphous-model structures are discussed. It is shown that although there are regular planes of high density

associated with the strong-scattering directions, the scattering anisotropy is not very different from that which

occurs for random scattering.

I. INTRODUCTION

The first insights into microscopic order in
amorphous materials were obtained nearly fifty
years ago from analysis of x-ray scattering mea-
surements. Such x-ray measurements, as well
as similar measurements with electrons and neu-
trons, give a Fourier transform of correlations
among atomic positions, For most amorphous
materials, the scattering from a macroscopic vol-
ume is isotropic, i. e. , independent of the orien-
tation of the sample with respect to the scattering
vector. Such scattering measurements can be
inverted to obtain the radical distribution function
(RDF), which is presently the only direct measure
of spatial correlations among atoms in amorphous
materials. However, the RDF does not contain
enough information to completely characterize the
atomic scale structure; information about the di-
rectional properties of local correlations has been
lost. Recently it has become possible to observe
anisotropy in electron scattering from small areas
of amorphous films, s and to obtain images which
report the difference in scattering from different
microscopic regions. ~6 Although there is clearly
added information in these results, there is as yet
no systematic procedure to extract it. '

In this paper we discuss the anisotropy of scat-
tering for several model structures for amorphous
materials. The models have been constructed
either manually or by computer and contain be-
tween 500 and 8000 atomic units. '~" Since we
know the positions of all the atoms of these models,
we may investigate in detail the spatial correlations
which are associated with strong and with weak
scattering directions. Previous studies of anisot-
ropy in models for atomic arrangements in amor-
phous solids have been reported by Shevchik, '
Chaudhari eg al, '7' and Graczyk and Chaudhari. ,
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The present report extends this previous work by
examining more quantitatively the strength of an-
isotropies in many different models, by calling

attention to the multiaxial nature of anisotropies
in these models, and by demonstrating that an-
isotropies found in these models can be related
to the anisotropies expected from randomly oc-
curring reinforcement and interference in models
consisting of random arrays of points.

We find, as might be expected, that there are
regular density oscillations perpendicular to strong-
scattering directions. However, these are not
describable as local. regions where atoms are
stacked in a unique set of planes. Rather there
are several families of planes going through a
given model. The planes do not seem to terminate
at well-defined boundaries, but rather in some
cases correlations can be seen across the largest
models studied. We interpret these results by
comparing them with expectations for two extreme
cases: (i) randomly occurring interference and
reinforcement, and (ii) well-defined crystalline
periodicities. For the models studied we find that
the scattering anisotropy is within 40Vo of that ex-
pected for random interference and reinforcement.

We do not present here a definitive procedure
for interpreting electron micrographs relating to
scattering anisotropy. As Cochran and others
have shown, ' ' this would require careful con-
siderations of instrumental factors as well as of
atomic correlations. However, we believe that
considerations of statistical variations of corre-
lations, like those discussed in this paper, will
be essential to the development of such procedures.

The paper is divided into four sections. In Sec.
II we display the scettering anisotropy for dense
random packing (DRP) models. We show pro-
jected atomic positions, density oscillations, and
correlation functions associated with strong-scat-
tering directions. In Sec. III we consider the
scattering anisotropy for both the first and second
diffraction rings for tetrahedrally bonded contin-
uous-random-network (CRN) models. In Sec. IV
we present results for scattering anisotropy from
random points and show how these can be related
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to results for the structural models. (a)

II. DENSE RANDOM-PACKING MODELS

The scattering intensity per atom, in electron
units, for a model structure with just one type of
scatterer is given by

f(k ) =—g ~f(a) ~'e" @ -"~'

5k')If I'
(

N

where k is the scattering vector, f is the atomic
form factor, R,. and R,. are the positions of atoms
i and j, and N is the number of atoms in the mod-
el. The form factor f is set equal to unity in all
subsequent calculations. Another function of in-
terest is the average of I(k) over all directions of
the scattering vector. This isotropic average
scattering I thus depends only on )k(:

-(l „l) I g sinl kl lR, —R, l
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(2

I(lkl)

FIG. 2. Dependence of the interference function I(k}
on the direction of k for I &1 =7.7 do for (a} the 890 cen-
tral units of the DHP model of Bennett, and (b) the 996
central units of the DRP model of Fin . Th hinney. e spherical
angles 0 and q giving the direction of k are obtained from

= an x, wherex and y as follows: 8=~&~(x +y ) ~2 P=t n '

the region of nonzero I(k) is corresponds to x~+y2 ~10

The interference function has been averaged over direc-
tions within 5' of the indicated direction f fions or purposes of
ill ustration.
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FIG
I lk

Directxonally averaged interfere f t
I ) for two DHP models. The scattering vector k is

given in units of one divided by the hard-sphere diameter

generated by Bennett. (b) 996 central units from a 7934-
unit model band built by Finney.

In Fig. 1 we show 1(lkl) for spherical regions
from two DRP models: (a) the 890 central units of

996 c n

the 3999-unit model of Bennett " d b
central units of the 7934-unit model of

Finney. ' The oscillations in I(lb I) at very s 11

I are related to the total model size. The first
peak associated with correlations within the mod-
els occurs at 7 7 dol where the distance t d
is the hard-sphere diametex. The peak indicates
the presence of structural periodicities with a
spacing of 2v/V. 'I d, '=0. 82 d„and the sharpness
of the peak indicates that these periodicities per-
sist over a considerable range [see Eq. (9)].

In Fig. 2 we display the behavior of the direc-
tion-dependent intensity function f(k) with the di-
rection of k for (k~ =7 7 d ' for the two models.
Points in the x, y plane correspond to the spherical
angles 8 and P and the intensity is given by the
height z of the "scattering net. " To aid visualiza-
tron of the results, we have averaged the scatter-
ing over an area of radius -5' centered on the
given directions. For each model there are sev-
eral directions for which the scattering tends to
be quite large.

In Fag. 3 we show the projection, for each mod-
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These projected densities may be expressed in
terms of the actual atomic density functions:

p(x, y, z) =gO(x- x, )a(y -y,.)a(z —z,.),

where x;, y;, z, are the coordinates of the ith
atomic unit, and the z axis is chosen to be parallel
to the scattering direction of interest. The pro-
jected density is then given by

(b)
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FIG. 3. Projection of 440 central units of DRP models
on the planes containing the two strongest scattering di-
rections for I k t =7.7 do~. The first few plane of high
density and their spacing are indicated by the tick marks:
(a) Bennett model, (b) Finney model. For case (a) there
is a third set of planes perpendicular to a direction
about midway between the directions perpendicular to
the indicated sets of planes. The planes are most easily
seen by tipping the page.

x10 '

O
O
O-

LLJ
C3

O
4J

b. 00
p J)l) ) 'I

L1. 00 8.00
0 I STU:INCR

12.QQ

Averaging P(z) over successive intervals along z
leads to the histogram form in Fig. 4, The oscil-
lations in density are seen to be a large fraction
of the average density and in some cases extend

el, of the 440 atomic units closest to the center of
gravity on the plane containing the two strongest
scattering directions. As expected, we can ob-
serve (by tipping the page) that in each case there
are planes of high density running perpendicular
to both strong scattering directions. Note in par-
ticular that a large fr action of the units partici-
pate at once in more than one set of planes. For
the model of Fig. 3(a) there are three strong scat-
tering directions which are almost in the plane of
the figure, the third direction being separated
about 60 from each of the two directions indicated.
In Fig. 2(a) these coplanar strong scattering di-
rections correspond to the peaks near the periph-
ery of the scattering net and are correlated to
symmetry axes of a, triangular 3 unit seed" which
was used in generating the model.

The planes of high density apparent in Fig. 3
are shown quantitatively in Fig. 4. Here we give,
in histogram form, the projected densities for
the two strongest scattering directions for each
of the two models.
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FIG. 4. Projected density, in units of atoms per
sphere diameter, as a function of distance, measured in
sphere diameters, along two strong-scattering direc-
tions for ) k I =7.7 do~ for DRP models. (a) S90 central
units of Bennett model, (b) 996 central units of Finney
model. j The plane spacing corresponding to this I k I is
0. 82 do and is indicated by the bars. The peak in the
projected density correspond to planes of high density in
the models. The upper curve of each pair has been dis-
placed up by 320 units for clarity of presentation.
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FIG. 7. Dependence of the interference functio~ I(k)
on. the direction of k for |k| =4. 7 Pz for the 519-unit
Polk model. The spherical angles 0 and (t) gi.ving the
direction of k are obtained for x and y as follows: 8
=~~~(x +y ) ~2, @=tan y/x, where the region of nonzero
I(k) corresponds to x +y ~l. The interference function
has been averaged over directions within 5 of the indi-
cated directions for purposes of illustration. (Similar
results have previously been presented in Ref. 18.)
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FIG. 5. Autocorre1ation of the projected density for
the strongest-scattering direction of the 996 central, units
of the Fxnney DHP model for I k ) —7. 7 do~, The cor-
relation is measured in. units of atoms per hard-sphere
diameter do, and distance is measured in units of do. A
smooth background corresponding to a uniform finite
sphere has been removed. (a) 996 central units of Finney
model. The broken-line envelope shows the decrease in
the autocorrelation due solely to the finite size of the
modet, . (b) Full 7934 units of the Finney model. The
broad oscitlation is due to asphericity of the model. It
is possible to discern 20 oscillations corresponding to
a plane spacing of slightly more than 0. 82do.
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FIG, 6. Directionally averaged interference function
I (I A' l ) for two CBN models. The wave vector 0 is given
in units of one divided by the mean nearest-neighbor dis-
tance 7(). (a) 563-unit model of Evans and Teter, modi-
fied from a band built model for Si02. (b) 519-unit of
Polk, hand built, and then relaxed with the aid of a com-
puter,

across the entire model.
In Fig. 5(a) we show the autocorrelation func-

tion for the density oscillations for the strongest
scattering direction discussed above for 996 cen-
tral units of the Finney' model. This function is
essentially a Patterson function projected on a
line and may be expressed as follows:

where the second term represents the Patterson
function projected on a line for a uniform sphere
of radius a, with the same volume and average
density as the actual N unit cluster. This auto-
correlation function is compared with the uniform
sphere autocorrelation which dies off simply be-
cause fewer pairs of units can be found at larger
separations in a finite cluster. Remarkably, the
oscillatory correlation for this case falls off no
faster than expected from finite size effects alone.
In Fig. 5(b) we show a similar result for the full
7934-unit model, from which the 996-unit spheri-
cal cluster was taken. The autocorrelation func-
tion for this 1,arger cluster does not oscillate about
zero because the cluster does not have a spherical
shape. We may note about 20 correlation peaks.
Even for this large model the overall decrease
in the correlation is not significantly more rapid
than that due strictly to finite size.

III. TETRAHEDRALLY COORDINATED
CONTINUOUS RANDOM NETWORK MODELS

In Fig. 6 we show T(ill) for (a) the 563-atomic-
unit CRN model built by Evans et al, ' and (b) the
519-atomic-unit model of Polk. '2 The first peak
in the isotropic intensity function is at ( k I=4. P d 0
where hence do is the mean nearest-neighbor
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distance. The second and strongest peak is at
k = 8. 7 d O'. In Fig. 7 we show the anisotropy of
the scattering for Ik I =4. 7 do' for the Polk' mod-
el. We see here that there are many, almost
equally strong peaks and also some considerable
plateaulike regions. As first pointed out by Gra-
czyk and Chaudhari, 3 these strong peaks are as-
sociated with density oscillations. These are
shown quantitatively in Fig. 8 for two directions
each in the two CRN models.

It might be asked if there is something special
about the anisotropy in the scattering correspond-
ing to the first peak in I I kl. In fact this does not
seem to be the case. In Fig. 9 we show the den-
sity oscillation corresponding to the strongest
scattering direction for the second peak in I I k I

for the 519-unitCRNmodel. Since the second peak
is stronger than the first peak for this type of mod-
el, it is not surprising that the oscillations in pro-
jected density are in fact larger than any for the

b. 00 4. 00 8.00
D I STJ-INCE

FIG. 8. Projected density, in units of atoms per bond
length, as a function. of distance, measured in bond length,
along two strong scattering directions for I k I =4. 7 dp

for CRN models. The plane spacing corresponding to this
I k I is 2~/4. 7 dp =1,33 Zp and is indicated by the bars.
The peaks in the projected density corresponds to planes
of high density in the models. (a) 563-unit model of Evans
and Teter, (b) 519-unit model of Polk. The upper curve
of each pair has been displaced up by 240 units for clarity
of presentation.

first peak. They also persist across the entire
model. Also, the strongest scattering direction
for the second peak does not coincide with any of
the strongest directions for the first peak.

IV. THEORY

In this section we outline a theory of randomly
occurring reinforcement and interference which
gives quantitatively accurate predictions for the
magnitude of the scattering anisotropy of the mod-
el amorphous structures which have been studied.
The key result is that even in a model where the
intrinsic correlations are relatively short ranged
and, on average, isotropic in character, it must
be expected that by chance the correlations will
persist over a much longer range for some direc-
tions. To demonstrate this we consider three
cases: (i) a cluster of random scatterers, (ii) a
single crystal, and (iii) superposed scattering
from regions with short-range order. We then
summarize the scattering anisotropy of various
models in the light of the theory.

A. Random Scatterers

For the case of random scatterers (1) may be
rewritten

N 2

I(k) =—P e'"~~'
i=1

where the y's are k-dependent random phases for
each scatterer. With e'" represented by a unit
vector in the complex plane, the sum in (6) may
be treated as a random walk in two dimensions.
I(k) is then simply the square of the distance from
the origin, divided by the number of steps. The
distribution of values of I, for N 10 is a simple
exponential,

(6)

P(I) dI= e dI,

where P(I) dI is the probability that I will fall in a
range dI about a particular value I. The average
of I is unity, fo IP(I) dI=1, for all values of k, a
well-known result for random scatterers. How-
ever, the distribution (7) is not sharply peaked,
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FIG. 9. Projected density for the strongest scattering
direction for I k I =8.7 dp for the 519-unit Polk model
The plane spacing corresponding to this I k I is 0. 72 dp
and is indicated by the bar.
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even for large numbers of scatterers, because of
chance constructive or destructive interference
between even distantly separated scatterers. This
somewhat surprising result does not conflict with
experiments, which tend to yield reasonably con-
sistent results for I(k) for macroscopic disordered
samples, because real experiments always involve
a spread of scattering angles, and hence give aver-
ages over many different I(k) measurements.

A related result obtained from (7) is that the
variance of I(k) does not decrease as the number
of atoms in a random cluster is increased,

2 lnlkIR 2. 5& I „(IkI) &2lnIkIR+0. 5, (12)

where the probabilities that I will be above or
below this range are each about 0. 1. The reason
why I increases with I k ~R is simply that the
probability of finding a large intensity increases
with the number of independent measurements. The
directional average of I(k), denoted T ( Ik I) is: unity.
Thus (12) may also be regarded as the expected
range for the ratio I /T The. above results for
a finite cluster of random scatterers closely paral-
lel the well studied case of a crystal with a large
unit cell containing atoms positioned at random.

(I') —(I)' =1 (6)

n —2wk /(5. 6/R) —0.2 k R (10)

where the numerator accounts for the degeneracy
of k and -k.

Sampling I(k) on a grid of k values much coarser
than &k may miss significant maxima. Using a
grid much finer than &k should reveal no addition-
al detail. For the calculations reported here we
have taken a grid size such that the spacing be-
tween successive points is always less than —,'&k.
Note that the required number of sampling points
increases both with the size of the model and with
the magnitude of k.

For random clusters the distribution function (7)
can be used to obtain an expression for the proba-
bi.lity p that the maximum of n independent values
of I(k) will be less than a certain value I',

p (I ) = (1 —e '
) ".

With (10) and (11), the expected range for the maxi-
mum value I of I(k) for the fixed I k I for a ran-
dom cluster of character istic dimension Ã can be
obtained,

However, this result must be interpreted with
some care, for although the scattering does not
become more isotropic as the cluster size grows,
we expect that the angular width of maxima in I(k),
for fixed I kl, will decrease with increasing clus-
ter size, i. e. , the anisotropy will occur on a, scale
of increasing fineness. The full width at half-
maximum &k of a Bragg spot produced by a cube
shaped crystal of edge length R is given by the
Scherrer formula

&k=5. 6/R, (9)
and we employ this equation to estimate the number of
essentially independent I(k) values which occur for a
random cluster as k varies in direction. For this
purpose, R is taken to be the cube root of the vol-
ume which is occupied by the random cluster. We
associate independent values of I(k) only with values
of k differing by at least the &k given by (9). The
number n of such independent values of I(k) for a.ll
directions of k can be approximated by

The directionally averaged intensity may be shown
to be

I-(I k I) =
I.vN/(I k

I
~)']~, (14)

where m is the number of spots which occur for
different directions of k. It is of interest to note
that the ration I /I increases as the —, power of
the number of atoms in the structure. By contrast,
for random scattering this ratio only increases as
the logarithm of the number of atoms.

C. Short-range order

The scattering from the DRP and CRN models
which we have studied does not correspond to that
from well ordered crystals. Since I(fkl) has def-
inite structure, the models are not completely
random either. For these model structures, the
question of greatest interest concerns scattering
anisotropy where there is order, and where the
intrinsic range of the order is comparable to or
smaller than the size of the model.

We can address this question only in the following
two simple cases. First, if the order corresponds
to strict periodic correlations with a range much
larger than the size of the model, then we recover
the case of the single crystal. The second case
occurs when the range of the order is short com-
pared to the model size so that in any direction
superimposed scattered waves are expected from
several scattering regions. It can be shown that
the intensity distribution in this case is describ-
able by a two-dimensional random walk as in the
case of random scatterers; the ratio I ( I k I )/
I(l k I) derived for random scatterers should apply
here also. It might be noted that this second case
would apply to a sufficiently large polycrystalline

B. Single Crystal

The scattering from a single crystal of finite
size is a series of Bragg spots whose widths are
given by (9). For a cube shaped crystal of N atoms
and N unit cells, the maximum intensity for Ik]
corresponding to a given spot is
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aggregate as well as to an amorphous sample
which was much larger than the range of local
correlations.

D. Results for model structures

In Table I are collected results for several struc-
tures; for each the directionally averaged scat-
tering, the maximum scattering, the ratio of maxi-
mum to average scattering, and the expected ratio
for random scattering are tabulated.

The first result i.s for a particular 519-atom
cluster of scatterers randomly distributed within
a sphere. The average density is the same as for
the CRN model and l kj corresponds to the first
peak in f (i@I) for those models. Since the scat-
terers are all within a sphere, , the scattering
is not strictly described by the random scattering
calculations. Still the ratio I ~/Tis within the
expected range. The over-all behavior of the
anisotropy in f(k) is shown in Fig. 10. Since the
scatterers are randomly positioned in this model,
we may say that there are no intrinsic correlations;
there are no correlations associated with inter-
actions among the atoms. Nonetheless, for di-
rections corresponding to the maxima seen in Fig.
10, there must be periodic correlations in the pro-
jected atomic density, as anticipated by the anal-
ysis of Sec. IVA.

The second result in Table I is for the 519-atom
CRN model with I k l corresponding to the first
peak in I(IkI). Somewhat surprisingly, the maxi-
mum anisotropy for the scattering is almost with-
in the range expected for random reinforcement
from intrinsic correlations whose range is much
less than the size of the model. Also the over-all
character of the anisotropy in the scattering ap-
pears to us to be not very different from that for

TABLE I. Characteristics of the scattering anisotropy
for various model structures. Except as otherwise in.-
dicated, the magnitude of the scattering vector corre-
sponds to the first diffraction ring.

max max

519-Ran.dom
519-CRN
201-CRN
500-CRN
563-CRN
519-CRN
996-DRP
890-DRP
864-fcc

0. 92
1, 47
1.21
I.61
1.09
1.95
2. 93
2. 93
5. 09

7.3
12.3

9, 8
12.4
8. 8

19.7
38. 9
33.5

864. 0

7. 9
8. 3
8. 1

7. 7
8. 1

10.1
13.3
11.4

169.8

6.6+1.5
6. 6+1, 5
5. 9+1.5
6. 5 +1, 5
6. 6~1.5
7.8+1.5
7. 6~1.5
7. 5~1.5
7.4~1.5

The scattering vector corresponds to the first diffrac-
tion ring of CRN models.

The scattering vector corresponds to the, second diffrac-
tion ring.

FIG. 10. Dependence of the interference function I(k)
on the direction. of k for 1k l =4. 7 do~ for a spherical
cluster of 519 randomly placed scatterers. (Here, do is
interpreted as the bond length in a dimaond cubic struc-
ture crystal with the same density as this random model. )
The spherical angles 6 and @ giving the direction of k are
obtained for x and y as follows: 8 =~~~Q~+y2)~~2

=tan ~y/x, where the regionof nonzeroI(k) corresponds tox
+y~ «1. The interference function has been averaged
over directions within 5 of the indicated directions for
purposes of illustration.

random scattering, as may be seen by comparing
Figs. 7 and 10. Lines 3, 4, and 5 of Table I give
similar results for other CRN models, with this
same value of Ikl. The next result is for the 519-
atom CRN model with tk j corresponding to the
second peak in T(i%I). The anisotropy here is
somewhat higher than would be expected for random
scattering. [An examination of the angular depen-
dence of the scattering (not shown) reveals only
one particularly large peak. j

Results for the two DRP models for i k) corre-
sponding to the first peak in I(I&I), lines f and 8

of Table I, are again indicative of the presence of
intrinsic order comparable to the model size, since
the maximum scattering is somewhat outside the
range for purely random scattering. At the other
extreme, results for these models may be com-
pared with those for a perfect face-centered cubic
crystal of comparable size —the last entry in Table
I. The average scattering I for such a crystal is
not dramatically greater than for the models; how-
ever, the anisotropy for the single crystal is truly
enormous, despite there being eight equivalent
(ill) Bragg spots for this I&I. For the DRP mod-
els as well as for the CRN models, the quantitative
magnitude of scattering anisotropy can be largely
accounted for by chance reinforcement and inter-
ference, as exist in random clusters, and is quite
different from the anisotropy expected for a well-
defined periodic structure.
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