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We present a calculation of the wave vector and frequency dependence of the longitudinal dielectric function
of a disordered material which is collection of noninteracting parallel chains. We used a one-dimensional tight-

binding model with nearest-neighbor interaction only, and randomness in the diagonal elements of the
Hamiltonian. The model does not contain electron-phonon interactions, and is therefore valid only at zero

temperature. The dielectric function is calculated from integral equations after a method developed by
Halperin. The graphs of z, vs frequency resemble those for e, (crystalline), but broadened by 8'/L, where 8'
is the crystal bandwidth and L is the decay length of the wave functions in the random system. The graphs of

show a similar broadening. We find ai(o) = 0) = 1+0.993'~.' fq + 1.56/(Lb)'] ' (ff: is the Fermi-Thomas
screening factor, b is the lattice constant) for qb & 0.2m. The peak in the conductivity at zero wave vector
occurs at a frequency which is inversely proportional to L. The disorder also removes the singularity in c, at

q = 2kF, co = 0; the condition for a Peierls distortion in the presence of disorder is discussed. These results are
interpreted in terms of the localized states in one-dimensional disordered systems.

I. INTRODUCTIQN

Recently certain classes of materials have
been discovered which exhibit strong anisotropy,
especially in their dc conductivity and optical prop-
erties. Two classes of particular interest are
the mixed-valence planar complexes (MVPC) of
platinum [e.g. , KIPt(CN)4Bro, .nH20], ' and com-
pounds containing linear stacks of organic ion
radicals such as the anion tetracyanoquinodimeth-
ane (henceforth TCNQ). 3'4 A wealth of experi-
mental data has been amassed ' for these sys-
tems, and several theories have been advanced
which attempt to explain the data. Heeger and
collaborators~ have applied the Mott-Hubbard
model to the compound N-methylphenazinium-
TCNQ (NMP-TCNQ), and claim that it undergoes
a transition from a metallic state to an antifer-
romagnetic insulating sta, te at 215 K. ~ That is,
above 215 K the conduction band is half full, but
below that temperature the band is split into two

by the Coulomb repulsion energy of two electrons
on the same TCNQ molecule. To get the proper
band splitting they require a polarizability of 100
A3 for the NMP ion. They claim that otherwise
the splitting would be too large to fit the conduc-
tivity data.

Rice and Bernasconi have proposed a model for
the MVPC materials in which disorder is pro-
vided by dislocations and impurities, leading to a
picture of interrupted metallic strands. ~ They
have also published a calculation of the dielectric
function in this model, s which reproduces the
large positive dielectric constant observed at low
frequencies. 9

In addition, Bloch, Weisman, and Varma (BWV)
have proposed that many of these materials can

be grouped together into a class of nearly one-di-
mensional disordered conductors. '0 They claim
there is intrinsic disorder in many of the materi-
als in addition to extrinsic disorder introduced by
defects and impurities. For example, NMP' has
a large electric dipole moment (about 1.1 D), "
which can be oriented randomly in either of two
opposite directions with equal probability. ~ [Re-
cently new experimental evidence has been re-
ported which calls into question this source of
randomness. Kobayashi~s repox ts x-ray diffrac-
tion data which indicate that the NMP dipoles alter-
nate along the chains (& axis), and are all aligned
parallel along the 5 axis, but there is no order in
the third (c) direction. Morosin, ~4 on the other
hand, has x-ray diffraction data which show no
such structure, but which are consistent with the
BWV interpretation. Perhaps the difference in
their results may be due to differences in sample
preparation. Theodorou and Cohen~~ have com-
piled magnetic susceptibility data, which also show
strong sample dependence. ] The electrostatic
potential produced by these randomly oriented di-
poles will provide a random potential at the posi-
tions of the electrons. In the MVPG, the Br sites
and the HBQ sites are partially and randomly oc-
cupied. (The K' occupy fixed positions according
to recent x-ray~6 and neutron-diffraction'~ experi-
rnents, although they had previously been thought
to be random. ) The Br are charged, and H20 has
a large permanent electric dipole moment. Ran-
domness in their configuration may produce a large
random component in the potential felt by an elec-
tron moving in the Pt chains.

It is interesting to note that in both these cases
the disorder potential is of electrostatic origin,
and hence will be modified by any dielectric
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screening which takes place in these materials.
Moreover, it is of interest to establish just how

much of their large dielectric constant is associ-
ated with the conduction electrons and how much
with the molecular framework in which those elec-
trons move.

It is in the light of these considerations that we
have calculated the dielectric function e(q, u&) for
a model of a disordered material which exhibits
one-dimensional conductivity. Pollak has pub-
lished a derivation of a dielectric function for an
amorphous semiconductor, ~8 which takes local
fields into account, but which requires knowledge
of the form of the wave functions for an applica-
tion. Since we do not know the form of the wave
functions, we are unable to use his results. The
method used here avoids any need to calculate wave
functions.

In Sec. II we report the results of a calculation
which shows that the contribution of the bonding
electrons and the ionic lattice to the dielectric
constant is too small to account for observed val-
ues. Section III contains a description of the
model we have chosen to represent conduction
electrons in these materials, and the form the
dielectric function of a one-dimensional system
takes in the random-phase approximation (RPA).
We suggest some simple appxoximate calculations
of the dielectric function for random one-dimen-
sional systems in See. IV. Section V describes
the mathematical formalism for calculating the
conduction-electron contribution to the dielectric
function, and Sec. VI details the numerical aspects
of the calculation. We report and discuss our
numerical xesults in Sec. VII.

II. POLARIZABILITY OF BONDS AND IONS

The dielectric constants of several of these ma-
terials have been measured at microwave frequen-
cies. That for Ka Pt(CN), Br, , 2. SH,O is about
10, as measured by Berenblyum et al. That for
NMP- TCNQ was measured by Buravov et al. ~9

and was found to vary from about 350 at 4 K to
about 800 at 80 K. Buravov et al. also measured
the dielectric constant of acridinium-(TCNQ)z, "
and it was of the same order of magnitude.

We first asked whether polarization of the bonding
electrons and the ions can account for the large
dielectric constant of NMP-TCNQ. (A relatively
small polarizability can produce a large dielec-
tric constant if the geometry is right. ) We took
from the chemical literatuxe 3' the polarizabili-
ties of the interatomic bonds, and assigned half
to each atom in the bond. The mean polarizability
of neutral phenazine calculated in this way is 25. 3
6

A, in good agreement with the measured value,
23. 4 A3, 24 and that calculated for NMP is 27. 2
0
A3, a factor of four too small to give the screening

of intramolecular electron repulsion required by
Epstein et al. ~ We calculated the effect of ionic
motion by assuming that the moleeules moved as
rigid units in a simple harmonic oscillator poten-
tial, whose force constant was taken from the coef-
ficient of T3 in the low-temperature specific heat, 2'

which has been measured by Etemad, Garito, and
Heeger. 6 Further details of this calculation will
be published elsewhere. ~v The results depend on
the anisotropy of the ionic force constant, but for
any of the values we chose, the eigenvalues of the
dieleetrie tensor were all less than two, and one
was slightly negative. These values are less than

of the measured dielectric constant at micro-
wave frequencies (which are nearly zero on the
scale of any other frequencies in NMP- TCNQ).
Moreover, the eigenvector corresponding to our
negative eigenvalue is perpendicular to the chain
axis, the direction of the large measured dielec-
tric constant. Hence a model which assumes that
all the electrons are localized on individual mol-
ecules cannot be used for the low-frequency dielec-
tric properties of NMP-TCNQ. We now study a
different model, one in which the conduction elec-
tron states, not yet considered by us, are localized
by disorder not to within a molecule, but rather
to a region of several molecules along the high-
conductivity axis; the extension of the states being
determined by their energy and the randomness in
the syste

III. MODEL

We choose as our model of a one-dimensional
conductor a set of chains of sites or molecules.
Along each chain the sites are separated by a dis-
tance b. The chains ax'e assumed to be noninter-
acting; the transition probability for hopping be-
tween chains is taken to be zero. Each chain is
furthex" assumed to occupy an area A„which is
defined by the relation A=NN, AA„where 0 is the
volume of the system, N is the number of sites
per chain, and N, is the number of chains in the
volume.

We represent each chain by a tight-binding Ham-
iltonian with diagonal randomness only

ff=ge. ln&& I.fp(l~&&n+iI+ I
.»&nl),

(3. l)
where t is the nearest-neighbor interaction, as-
sumed constant (we shall choose the unit of energy
in Sec. V so as to set i= 1), and c„ is a random
diagonal site energy. The &„ are independent ran-
dom variables, each with a Gaussian distribution
of width St. We shall refer to the quantity 8 as the
"randomness. " Each

l n& is a wave function for
an electron in a tight-binding orbital at site n. It
can be shown that the dipolar contribution to the
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randomness in the &„ in NMP- TCNQ is approxi-
mately Gaussian in form. 3~ In the absence of any
sel eenlng,

f =d e icos 8)tg ) (3.2)

4me
&(q, (u)=1 —lim

o+ q~Q

g l(ks I e '~'I k'@I»[f(E»}—f(E,.)]
kk'a g~ —E~, —S(d + ih(y

(3.4)
Here k and k' are eigenstates of the Hamiltonian
(and are not Bloch waves unless there is no ran-

where d is the dipole moment of a NMP molecule
(about 1.1 D), r, is the distance from a particular
TCNQ molecule to the lth NMP molecule, and 8,
is the angle between the dipole moment and x, in
the point dipole approximation. From E(l. (3.2)
we find St= 0. 76 eV. As the bandwidth in these
materials ls believed to be about 0. 1 eV, this
randomness parameter would be much larger than
the nearest-neighbor interaction t. If there was
no screening, the electrons would be very tightly
localized indeed and the eonduetivity would be
smaller than observed. If we assume that the
screening can be calculated with the aid of a sim-
ple functional form for the dieleetrie function, we
ean now solve the problem self-consistently: Find
a dielectric constant which produces the proper
random potential to repxoduce itself.

We shall assume further that the tight-binding
functions are sufficiently localized that we may
a,pproximate

&~If(~) I
~'& =f(~.) b.. . (3.3)

where f is any function of distance along the chain.
We see in Sec. V that the formalism by which we
calculate the dielectric function requires this as-
sumption.

We have omitted the electron-phonon interaction
from the Hamiltonian (3. 1); phonon-assisted
hopping is thereby eliminated. The resulting
dielectric function is eorreet only at T'= 0 ox" at
frequencies larger than any important hopping rate.
We shall comment in Sec. VII on the deviations
from our results which are expected when these
conditions are violated.

We have calculated the dielectric function in the
random-phase approximation (RPA), in which the
dielectric function takes the form 3

domness), s is the electron-spin coordinate, 0
is the volume of the system, and f is the Fermi
distribution function. Since we are dealing with
random systems, we are intex"ested in an ensem-
ble average of the dielectric function. Because
we have assumed that the chains are independent
of each othex, each eigenstate is confined to a
singj. e chain, and the ma, trix elements linking
states on different chains are zero. Localization
of the eigenstates to single chains requires only
that the randomness S be lax"ge compared to any
interchain matrix element of B. Because of this
independence, we may replace the index k with
two indices i and j, where f is a (two-dimensionaO
chain index and j indexes the states within a chain.
Then the double sum in (3.1) becomes a sum over
i, ~', j, and j'. The sum over i' may now be done
tx'ivially —only the terms with i =i' contribute,
The ensemble average of the sum over chains is
simply the pxoduct of the number of chains N,
and the ensemble average of the sum j and j' on

a single chain.
We then have

{»(q, r~)) = 1 —lim 4me

~„o+ q V~V

p

i(joie�

"'()'s)i'[y()),)-)'(Z;)))
Eg —Fye S(d+ SSQ

(3.5}
where V, is the volume of a unit cell, V, =A.,b.

IV. SIMPLE MODELS OF THE DIELECTRI FUNCTION

The primary feature of random one-dimensional
systems which sets them off from their crystal-
line counterparts is the localization of the elec-
txonie wave functions. In this section we derive
expressions for the dielectric function which take
this localization into account. We shall compare
these results with the results of our exact calcula-
tion in Sec. VII.

A. Imaginary part

Suppose the wave functions in the random sys-
tem are like those in a crystalline system but de-
cay exponentially on eithex side of a maximum, ,

ik)=(L,b)-'i'exp(fkx- Ix-x, I/L, b), (4. 1)

where x, is the center of state I k), assumed to
vary randomly from state to state, and J, the ex-
ponential decay length, is assumed independent of

Then we find

{k~ e"'~ k') = I 'exp[- ~x, —x,.~/I. b 'i(k' q-k) —(x, x,.)](([2/L, +ib(k'+q- k)] ' —[ib(k'+ q- k}] 'j

x exp[»»(k'+ q k) (x.—x )]+—([2/r —fb(k + q —k)] '+ [tb(k' + q —k)] ') exp[- » t(k' + q —k) (x» —x» )1) .
(4. 2)
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8m' ' Xb '
f«o «o'i(»i'"'io')i'. ,

x [f(E») —f(E». )) 5 (E» —E». + E(o), (4. 4)

where we have replaced the sums with integrals.
If we assume further that h(d «2f, so that all quan-
tities may be evaluated at the Fermi energy, and
that E(k) =2tb(kr- k) as it does in the crystal, then

e2(q, Q7) = [4w e Ln (Er)E(d/q V,]

x ( fy» gy»)

where n(Ez) is the density of states per site at the
Fermi level and D is given by

D= 1+ «(qb —R&u/2t) L . (4.5)

Note that e2(q, &g) is linear in frequency for low

frequency. At higher frequencies the function D
dominates the dependence. It provides a maximum

in»» at 8~ = 2 qbt, with a width of 4t/L.
The small q behavior of Eq. (4. 5) is clearly in-

correct for disordered systems. As q-0, Eq.
(4. 5) predicts e»-1/q . The reason lies in the
approximation of the wave functions of the random
system by Eq. {4.1). This expression implies
more phase coherence than is actually present in
random systems, and as a result overestimates
matrix elements. For example, (klk') o-'5»». since
the exponential factor prevents the e'+~ '" factor
from a.veraging to zero. For small q,

&kl e"'I k'& = &kl k'&+tq ~ &kl rl k'&.

If the first term does not vanish, there will be an
erroneous 1/q contribution to the dielectric func-
tion. At, large q, we might also expect this expres-
sion to be invalid at large frequency, because of
the approximations made in the sentence before
Eq. (4. 5).

B. Real part

The real part of the dielectric function may be
obtained from the imaginary part by Kramers-
Kronig analysis. If we use Eq. (4. 5) to calculate
&,(q, 0), we obtain

e~(q, 0) = 1+[4e n(E~)/q V, ][»m+3+ tan»»qLb

+»qL/(1+ «q»L') + ,'qL/(1+ «q 2L»)'t'] . —

(4. 7)
In the limit J -~, which corresponds to a perfect

On squaring and averaging over all possible values
of I xk —&k. 1, assuming that variable to be distri-
buted uniformly in [0, Nb], we obtain

l(kle"'lk'&I'. =N '( [1+-'(k'+q-k)'L'b'] '

+ —', [1+«(k'+q —k) L b ]
(4. 3)

From Eq. (3.5) we have

x[f(E,) -f(E,.)] (E,. —E,)-'. (4.S)

Assume that (klxlk') =Lb if Ik —k'
I

~ 1/Lb and if
I»„—x,, I ~Lb, and (kIxtk') =0 otherwise. That
is, the matrix element will be zero unless both
wave functions are appreciable in the same region
of space, and at the same time close enough to-
gether in wave vector that they will stay in phase
over their entire length (otherwise the oscillations
will cause the matrix element to vanish). We re-
place the sums by integrals giving

r, (o, o) = i ~o"„{"—,
')'J" «o

kF+1/ Lb
x dk' —(Lb) (E» —E», )

kp
(4. 9)

where the factor of 4 comes from the four equiv-
alent regions of the Brillouin zone which contribute,
and the 2L/N arises from an average over the
(uniformly distributed) I x» —x», I . Set E» —E».
=2tb(k' —k), which should be valid for states near
the Fermi level. With these changes Eq. {4.9)
becomes

e,(0, 0) =1+Sve (Lb)3(V,w't) ' dk
kg-1/ Lb

k&+ f/Lb 2~2 Jb ~
dk (k k)-~=1,""')

Tr

(4. 10)
where & is the inverse of the Thomas-Fermi
screening length, tc = Sme2n(E~)//V, .

To generalize to finite wave vectors, we observe
that for a metal, for which L = ~,

e, (q, 0) = I +» /q (4. 11)

Then a disordered system might be expected to
have a dielectric function of the form

crystal, Eq. (4. 7) reproduces the proper depen-
dence on q for low q, but is a factor of 1.5 too
large. For finite L, and small wave vector, Eq.
(4. 7) suffers from the same limitations as Eq.
(4. 5)—the nonorthogonality of the wave functions
provides a spurious term proporhonal to 1/q~.
Equation (4. 7) does not reproduce the Peierls
singularity at q =2k~. This occurs because it is
an integral over frequency of Eq. (4. 5), whose
validity is restricted to low frequencies. For
wave vectors near 2k~ the important contributions
to &2 cover a wide frequency range. As much of
this range is not adequately described by Eq. (4. 5),
we do not expect Eq. (4. 7) to be accurate either.

A simpler expression for»:&(0, 0) may be obtained
from the following argument:

Swe~
e,(0, 0)=1 '"„' Q l&kl lk'&I'
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e&(q, 0)=1+K~[q +x/2(Lb)2] ~. (4. 12)

We see that Eq. (4. 12) reduces to Eq. (4. 11) if
L-~, and to Eq. (4. 10) if q-0.

If we write e, = I+4m&/V„where a is the po-
larizability of an electron, we observe from Eq.
(4. 10) that n ™(Lb)3.A similar result has been
reported by Berezinskii, 33 although his numerical
factors are considerably larger than ours. We
attribute the difference to the fact that our cal-
culation is not done in the weak-scattering limit
or near the band edge as, in effect, his was.

frequency region, where it is proportional to &2,

a peak at about wt/L, and a Drude-like tail at
high frequencies.

For finite wave vector, the quadratic frequency
dependence follows directly from Eq. (4.5). For
q= 0, an argument similar to that for &, gives
quadratic dependence for o. (A similar argument
is given in Mott and Davis. ") The basic expres-
sion for the conductivity is

4m 0

C. Conductivity

There are three distinct frequency regions in
which the conductivity o(q, ~) = ure2(q, ~)/4w shows
qualitatively different behavior. They are a low-

x[f(E,) f(E,, )]5(E,—E,. +h&u), (4. 13)

Under the same assumptions about matrix elements
and energy dispersion that we made above, Eq.
(4. 13) becomes

b 2 0y+&odI2tb t IfF
( ) kp

pic (k=f dk; dk (Lb) —('e(k) c e(k k'
)

2pe2 b &F+&od ~2t& 2pe2
dk = n~(Er) Lsbm(h~)2 .

C

(4. 14}

This expression is valid only for low frequencies,
and is surely invalid if he/2t) 1/L, since the
cancellation in matrix elements which restricted
the integrals in Eq. (4. 10) has not been taken into
account.

Berezinskii has recently reported a calcula-
tion of the conductivity which shows o ~ uP ln (~/
+0); our calculation is not sufficiently sensitive
to note the difference between uP and ((k) in&@} .
There may be quantitative differences between his
prefactors and ours, but they agree qualitatively;
we attribute the difference to the difference in
the models: he is working in the weak-scattering
band-edge limit, while we are not.

The conductivity should peak when the Fermi-
level electrons are in resonance with the per-
turbing field. If the electron is thought of as a
particle bounding back and forth with velocity v~
in a box of length 2Lb (one decay length on either
side of a maximum), it would be in resonance with
a field of frequency (p=vr/4Lb. Translated into
energy units this becomes

h(u =vt/L . (4. 15)

On the high-frequency end Eq. (4. 5) predicts
o()-cu ', like the result of the Drude theory, o(&u}

=a~~/(4vvru~). For this system Eq. (4. 5) implies
~ = vhL/16t= xLb/6vr, i.e. , the mean free path at
optical frequencies A„, in this system is A„,
= ()wLb = 0. 39Lb [But it should .be noted that Eq.
(4. 5} was derived under the assumption that u was
small, so these numerical factors ought not be
taken too seriously. ] We may, however, construct

a dc mean free path A~, by the following argument.
The reciprocal of the mean free path is the

mean probability of scattering per unit length. An

electron at the center of a tight-binding band which
is periodic except that one site energy is different
from zero [i.e. , e; = 0 if t kk 0 and eo = x in Eq.
(3. 1)], will be scattered (reflected} by the impurity
with probability R, where

R(x) = xa/(x~+ 4ta) . (4. 16}

Then if we ignore multiple scattering and treat
each site independently, we may calculate the
mean free path of an electron at the Fermi energy
in our random system. The mean probability of
scattering per site is given by

dx h(x}R(x),
b

Aq,
(4. 17)

A~ =—=0.43 Lb
4b

dc (4. 19)

where h(x) is the probability distribution of the
site energies &. For our Gaussian distribution of
width St, we find

=1 —(2 )'~' exp(-px) e fc( )
4-g(-1) 't -z 1x3x ~ ~ x(2m —1),

(4. 18}
where the expansion is strictly valid only for
small S. Retaining only the leading term in the

expansion we find
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where me have used a relation between the ran-
dornness S and the localization length I. from Ref.
30. This value of A„ is only slightly larger than

A„, which mas computed above. It is also inter-
esting to note that the mean free path is nearly
equal to the decay length for probability, which is
half that for wave functions.

I»= I~(E,)&=+ .(E,)l.&. (5 1)

Choose boundary conditions as follows. Let
&2o(E,) be a real number. Choose a real number

Z~, independent of E, and require

a,(E,) = Z~a, (E,) . (5. 2)

Similarly, at the other end of the chain choose a
real number Z„and require

In addition to these simple models, it is possible
to calculate the exact RpA dielectric function for
our system. That is we can mrite integral equa-
tions whose solutions mill enable us to evaluate
the dielectric function from Eq. (3.5). The der-
ivation of these equations follows that of Halperin"
for the spectral density of various one-dimensional

systems and for the conductivity at zero wave
vector of a one-dimensional system with a Gauss-
ian mhi, te-noise potential.

%e write our wave functions in terms of tight-
binding states (n&,

A&2(E~) = 1.

If we relax the condition (5.3), we note that we

can construct wave functions (1&(E) at any energy
we choose. These wave functions mill be nor-
malized on a chain containing N sites, and mill
coincide with the eigenfunction I j& if and only if
E=E,. This can only occur if s„(E)/a„„(E)=ZR.

We rewrite Eq. (3.5} as a double integral over
energy by introducing 6 functions,

&q(q, tq)&=(-)&m(,
"

)(ffzzzz

~
I «(E) I

e"'I ~(E')& I' [f(E)-f(E )]

x(E-E' - h~+iho() 'D(-E E,)-
.q(z z, .)) . (5.5)

We have also introduced P(E) defined above, and

summed over the spin coordinate s.
By the assumption (3.3) we have

(0(E) I
e"'I C(E')& =pe"'" .(E)s.{E') (5.6)

Define a function Z(n, E) by

Z(, E)= . ,(E)/s. (E). (5.7)

In terms of this definition the above boundary con-
ditions [Eqs. (5.2) and (5.3)] become

s~(E,) = Z~s~. g(E,) (5.3} Z(1, E) = Z„Z(N ~ 1, E) =Z„. (5.8)

Conditions (3. 1), (5. 2), and (5.3) can be satisfied
simultaneously only at certain energies E,. These
are the eigenvalues of the system. %e complete
the definition of the eigenfunctions by requiring
that they be normalized on a chain N sites in
length,

The matrix elements in Eq. (5. 5) may be re-
written according to Eq. (5. 6); the 5 functions
may be replaced by 5 functions in Z(%+1, E},
using Eq. {5.8); and the Fermi factors and energy
denominator may be removed from the ensemble
average. With these changes Eq. (5.5) becomes

2'

{q{q,~)& = 1, —ljm —2,,

dEdE'[f(E) -f(E')](E—E' —h(a+inc() ~

q V, N

Fq'q'q" „(z) „(z') ' q(z(z+(, z) —z ),' q(z(N+(, z') —z, )).
n

(5. 9)

All of the information about the Hamiltonian and
the randomness is contained within the angular
brackets of the above equation. The integral would
become straightforward if me could evaluate the
quantity in the angular brackets. %hat follows
here is a. derivation of an integral for that quan-
tity in terms of auxiliary functions to be defined
below for which me shall derive integral equations.

%'e shall show that the quantity in angular brackets
is NC{q, E, E'), where C is independent of N, Z~,
and Z„. Now Eq. (5. 9) becomes

&q&q, &)=(-)," ozzzz'()(z)-g(z'(
q~V,

&&'(E —E' —h&() + iso&) C(&&&, E, E') . (5. 10)
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W(q, E, E', n) = g [8 "'~a, (E) a, (E')]

x[e """„(E)a„(z')1-'. (5. 12)

From these definitions it follows that

U(E, n + 1)= Z (n+ 1, E) [U(E, n) + 1] (5.18)

The integral in Eq. (5.10}may be written in
terms of dimensionless energies by scaling all
energies to the hopping matrix element t. If this
is done, it becomes clear that & -1 is proportion-
al to em/f. Throughout the remainder of this sec-
tion we assume this scaling has been done.

To evaluate C we define another set of functions
and relations among them: Let

((-g

U(z, n)=g", E
(5.11)

(=g !!

BZ(n+ 1, E) 3 Bz(n, E)

(5.16)
By a comparison of Eqs. (5. 16) and (5.13), and

taking the boundary conditions at n = 1 into account
[from which we have U(E, 1) = BZ(l, E)/BE = 0; see
Eqs. (5. 8) and (5. 11)], we observe that

BZ(n, Z) (5. IV)

The quantity in angular brackets in Eq. (5. 9) may
be rewritten

(
I W(q, E, E', N+ 1) I Bz(iq+ 1, E) Bz(i(('+ 1, E')

U(z, K+I) U(E', X+I) BE BE'

X(I(z(((~ (, 8) —8 }5(z(N!.(, 8'( —z
()!

=(~ W(q, E, Z', Iq+1)
~

' 5(Z(Iq+ 1, E) —Z, )

W{q, E, Z', n+ 1)= e"'"Z(n+ 1, Z) Z(n+ 1, Z') x 5(Z(N y 1,E') —Zs)). (5. 18)

z(n+ 1, z) = [z - e„-z(n, z)]-', (5. 15)

&& [W(q, E, E', n) + 1] . (5.14)

From Schrodinger's equation and Eq. (5.7}we
have Po(y, (t(', n) = (5(tan 'Z(n, E) —&f&)

&&5(tan 'Z(n, E') —(t(')), (5.19)

We further define the auxiliary functions P2(P, P',
n), P,(d, y', n), and P,(y, y', n) by

& W(q, E, E', n) 5(tan 'Z(n, E) —y) 5{tan 'Z(n, E') —y'}&

P.{@,e', )=&lW(q, z, z', )I'
x 5(z(n, E}—tan(t&) 5(Z(n, E') —tang')) .

(5.21)
We see, by comparison of Eqs. (5.21), (5.18),
and (5. IV) that the quantity in the large angular
brackets in Eq. (5. 18) is P~(tan 'Z„, tan 'Zn, Iq +1).
Thus ere need only to evaluate I'2 in order to
compute the dielectric function from Eq. (5.10).

In order to evaluate I'2 we shall derive expres-
sions for P,((B, (B', n+ 1) in terms of P, (d&, (t(', n)
and P,(P, P', m), with h&j, and m=n or n+1.

%e begin with the simplest case:

P,(y, y', n+1) =&5(t~-'[E - ~„-Z(n, Z)]-'- y)

x 5(tan '[E' —e„—Z(n, E')] ' —(t('}) . (5.22)

have seen above, Z(n, E) depends only on
g and q, for l&n, and not on &„. This expecta-
tion value may then be written

Po(g, (t(', n+1) =J( dc„h(e„)

x &5(tan '[E —e„—Z(n, E)] ' —(t()

x 5(tan-'[Z' —~„-Z(n, Z')]-'- @'}), (5.»)
where h(e„) is the probability density function for
the random variable &„, a Gaussian of width S.

The arguments of the 6 functions may be trans-
formed into the form 5(tan 'Z(n, E) —tan '(E —e„
—I/tan(t()) by multiplying the 5 function by
Bta.n '(E —&„—1/tan@)/B@. In this way we obtain

Po{$, (B, n+ 1) = (sing stnp )

(5.24)de„h(e„)&5(tan 'Z(n, E) —tan '(E —e„—I/tan(t()} 5(tan 'Z(n, E') —tan '(E' —f„—I/tan@')))
[1+(E —e„—I/tan(t ) ] [1+(E' —c„—I/tan@')~]

The quantity in angular brackets is clearly Po(tan '(E —e„—I/tan(t ), tan '(E' —e„—I/tan@'), n), so we find
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P~(P, &t&', n+ 1)= (sing sin@') 3 de„h(&„)

Po(tan ~(E —c„—1/tang), tan '(E' —&.„—1/tang'), n}
1+(E' —e„—1/tang'}' (5.25)

By a similar argument, starting from Eq. (5.20) and making use of Eq. (5.14), we have

&q b ~ & -g &f&n&(&n)
P1(@& &f&

&
n+ 1) 8 (sln&t& slI1@ )

[j (E 1/t y)2]1/2

P,{tan '(E —z„—1/tang), tan '(E' —g„—1/tan&t '), n) {;.&-, .
[1+(E' —~ —1/tan&t&')']"'

+e sxnys»y ~, @, @,~+& .
(5.26)

Similarly, we may show that

2 «', 4', +1)=fd&'&d&''K&&', «'';'i &'i)IP &&'p&", &+26os&ico &'&&&a& «'i &I, )

+ cos Qg cos $)PO(&t g~ @)~ n)] ~ (5.2V)

&«&' «''' '& I& If« ~&=~ ) &&&&'s —&» '&+ —& /' &&')») &&'l-&&'&&&' —~. -&I&»&/)) .

A particularly interesting and useful property
of these functions P, is their well-defined be-
havior as n becomes large,

Po(&t' 4&', n) Po(&t', 0'),
Pg(&f&, &t&'& s) -Pg(&t&, 0'), (5.29)

P~(4, 4 ', &)-«+f(4, 0', n),

where PO, P&, and C are independent of n, C is in-
dependent of P and &t&', and f is of order n or
smaller, so that for large n, P2/n-C. The
proofs of these statements are given in the Appen-
dix.

In the Appendix, we also show that C may be
written as an integral of the functions Po and P&,

C= d@dQ'Po tan ~ 1 tan@, tan ~ 1 tan{t)'

xf2cos&t& cosP'Re[P, (&t&, &t ')]+cos Q cos Q'

~~,(e, e')] . (5.30)

We observe finally that the C in Eq. (5.30) is the
same as the C in Eq. (5.10). Thus the quantity C
may be calculated by solving two integral equa-
tions [Eqs. (5.25) and (5. 26)] and doing one inte-
gral [Eqs. (5.30}]for each pair of energies. From
this point an integral over the two energies E and
E' [Eq. (5,10)] is required to compute the dielec-
tric function.

VI. NUMERICAL PROCEDURES

Equations (5. 25) and (5.26) have no analytic
solutions, so it was necessary to solve them nu-

x r«z, .)) /« (6. 1}

For a random one-dimensional system all states
are localized, 8 so the matrix element in Eq.
(6. 1) is finite for any k and O'. Hence C(q = 0)- 0

merically. This entailed discretizing the space
of the Q, Q' coordinates, which proved to be the
most difficult phase of the pxoject. We had two
tests of the quality of our choice of discretization.
First, Eq. (5.25) is a homogeneous equation, of
the form JKPO=XPO, with X= 1. We calculated Po
by starting with an initial guess Po ', computing
Eo'~" =MPO'0', where M is a discxetization of the
kernel, and normalizing Po{~" to form Po{~'. The
Po ' wexe formed in this way until Po at each grid
point changed by less than 0.002 of its value in one
iteration step. [We tried several other methods—
successive over-relaxation (SOR), 38'7 Aitken's
63 process, 38 and lynn's e algorithm, 39 but none
of these led to any reduction in the computer time
required to produce convergence. ] lf P&, is the
converged result of such an algorithm suitably
normalized the largest eigenvalue of the matrix is
the number by which PO=MPO must be divided in
order to normalize it. One test of the adequacy
of a particular grid is the closeness of this eigen-
value to one.

The second test is the value of C [from Eq.
(5.30)] at zero wave vector. For small wave vec-
tor C reduces to

«:~ ~ ~ & e(Z I « I «I &':
&=I
««&''
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as q'. By computing the value of C at zexo wave
vector for a particular discretization, and com-
paring that value with typical values for nonzex'o
wave vectors, we were able to produce another
test of the accuracy of that particular discretiza-
tion.

As our first method of discretization, we ap-
proximated the function by its values on a square
grid of polD'ts, typically choosing 12-20 polDts on

a side. It soon became clear that the functions
involved were not sufficiently smooth for this
sort of approximation, unless we were to use im-
practically large numbers of points.

We then tried a scheme in which the functions
were evaluated at points which were intersections
of the "natuxal lines" of the problem, Equations
(5.25) and (5.26} are line integrals in a two-di-
mensional space. Furthex, each such line of in-
tegration (type A) generates values of the functions
for an entire subset of P, Q' points, which form
another line (type 8) in the space. If a subset of
lines is chosen from the infinite set of possible
lines of integration, a subset of lines of type 8 is
also singled out. The intersections of the lines
of type A with the lines of type B were taken as
the points of the grid. This scheme was also un-
satisfactory. We found no practical way to do the
two-dimensional integral in Eq. (5.30), or even
to calculate p,(tan I(1/tang), tan I(1/tang')), which
is one factor in that integral. Besides this, we
were unable to obtain as good solutions to Eq.
(5. 2 I) wltll tllls IIle tllod as llFe could wl'tll tile IIle'th-

od described below. That is, this method gave an
eigenvalue of O. 85 for about the same number of
points that our final method gave an eigenvalue of
0.95, at E=1.75, E'=1.25, S=2.QQ. Another
difficulty with this method arose in choosing the
lines. Each grid was a single point in an (approxi-
mately) 20-dimensional vector space choosing
an optimum set of lines by hand or by machine was
a nontrivial task.

We finally decided on a square mesh of points
with variable density. That is the square of side
m in 4, Q' space was subdivided into smallex
squRx'es, RDd the point density lD eRch sub8quRre
could be 1, 4, 16, or 64 times the minimum den-
sity. (Or alternatively, the distance between
adjacent points of each smaller square could be 1,
2, 4, or 6 times the minimum distance. ) The
minimum distance between points was usually cCC w,

but sometimes *II, or even+~II was necessary.
We typically chose grids of 400-500 points (Fig. 1),
but occasionally wex'e forced to use as many as
1200.

At first we chose the positions of the fine density
grids by hand, but as we built up experience
working with the problem we were able to devise
a semiautomatic program for grid placement.

X X X X X X X X X X X X X X

X X X X IC X

X X X X X X X

XXXXX
X X X XXXXX

XXXXX
X XXXXX

XXXXX
XXXXXXXXXXXXx
XXXXXXXXX
XXXXXXXXX X X
XXXXXXXXX
XXXXXXXXX X
XXXXXXXXX
XXXXXXXXX X X
XXXXXXXXX
XXXXXXXXX X X
XXXXX
XXXXX
XXXXX
XXXXX X X

X X X X X X

X X X X

X X X X X X X X X X X

XXXXXXX
X X X X XXXXXXXXXXXXX

XXXXXXXXXXXXX
XXXXXXXXXXXXX
XXXXXXXXXXXXX

X X X X XXXXXXXXXXXXXXXXX
XXXXXXXXX

X X XXXXXXXXX X X
XXXXXXXXX

X X X X XXXXXXXXX X X X
XXXXX

X X )XX/X X X X X

X X X XXXXX X X X X X

FIG. 1. Grid of 464 points, on which po, P&, and C
were computed at E=0.50, E'=0.0. Grids we used for
most energy pairs were similar to this one.

This pxogxam interpolated po in energy space to a
trial grid at a new energy point, and modified the
grid to reduce the projected error. (The pro-
jected error is a quantity we defined to approxi-
mate the anticipated contribution of each region to
the total error in the function Po. It is the product
of the maximum value of the third difference in
the square, the mean value of the function Po in
the square, and the Dumber of points whose lines
of integration —lines of type A, described above—
pass through the square. } Po was then interpo-
lated to this new grid from its known values at
other points in the energy plane as before, and„
if necessary, modified again. This process was
repeated until convergence was obtained. Then
the integral equation was solved on the chosen
grid with the interpolated function as the initial
trial value of Po.

To solve Eqs. (5.25) and (5.26) it was then nec-
essary to reduce the integral kernal to matrix
form. Each rom of the matrix represents a single
line integx'al. These line integrals do not, in
general, pass through any of the grid points ex-

1 1
cept the corners (- 2II, —2II) and (2II, 2II). Where-
ever a line of the grid crossed a line of integx'a-
tion we interpolated to the intexsection from the
three nearest grid points. We then divided the
line of integration into segments, each containing
three interpolated points, and approximated the
unknown function by a quadratic polynomial in each
segment. We next did the integrals of kernel
times polynomial in each segment using the six
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I"IG, 2. Contour plot of po(@, @') for E=0.50, E'
=0.0, and 8=1.0, computed on. the grid of Fig. l.

point Gauss-Lagrange integration formula. In
this way we were able to produce matrices to rep-
resent the kernels for both integral equations. In
fact the kernels for the two Eqs. (5.25} and (5.26)
are so similar that me mere able to produce both
matrices simultaneously for a given randomness
value and energy pair.

Having set up the matrix, we solved for Po by
straightforward iteration, as described above.
Of the eigenvalues me computed for randomness
S= 1, 59% mere within 1% of the predicted value of
1.0, and 87% were within 0.02. The remainder
were far out in the tails of the energy band, where
the contributions to the dielectric function were
small. For randomness S=1.5, 42/g of the eigen-
values were in the interval 1.00 + 0.01, and 841'
were within 0. 02 of l. Of those with more than 2%%uo

error, three were out near the edges of the band,
but two were near E —E' = 0; this suggests that the
error in the low-frequency dielectric function
may be greater in this ease than for S= 1. A

sample Po is shown in Fig. 2.
The quantity P, was calculated from Eq. (5.26)

in a similar way, except that in this ease we had
no normalization criterion to use, so p~ mas not
renormalized at each step. We also found that
SOR with relaxation parameter (d = l. 138' 7 pro-
vided faster convergence than simple iteration.

Before doing the final integration, we calculated
Po and P~ at (tan ~(l/tang), tan ~(1/tan@')), when
these points were not on the original grid. We
calculated these new values of po and p, by in-
serting the known values on the right-hand side of
the integral equation, and doing a single integra-

tionlike that involved in setting up the matrix. The
integral in Eq. (5.30) was done one subsguare at
a time, using Simpson's rule in both directions.

At randomness 1, the values we calculated for
C(q = 0) were typically 10 3 to 10 4, and very near
E=E' they rose to 10 2. For q 40, the values of C
were typically in the range of 10 ~-10 ~ except at
very large energies, where they tailed off. From
this me argue that the significant values of C have
errors of the order (1-3)% in most cases.

The values of C(q=O) at randomness 1.5 were
typically in the range 10 3-10 4, but for very small
E —E' they rose rapidly to become greater than
10 ~. We were unable to correct this behavior with
any grid of practical size. To compensate for
these errors, we subtracted the value of C(q= 0)
from that of C{q=0. 1) whenever it appeared that
the calculated value of C(q = 0. 1) was appreciably
in error, as shown by the error in C(q =0).

It was only necessary to evaluate C over one-
fourth of the area in the energy band squared.
One factor of & came from the symmetry of C in its
two energy indices: C{E,E') = C(E', E). The other
factor of ~ came from the symmetry about E=0
of both the unperturbed band and the chosen form
of disorder. From this we obtained C(E, E'}
=c(-z, -z').

We evaluated the integral in Eq. (5. 10) by first
integrating along lines of constant h~o=E —E', in
this way computing cz(q, +0). When these inte-
grals were done, we did the integral over E —E',
effectively calculating e, from &~ by Kramers-
Kronig analysis. Both of these integrals mere
done treating the numerator as a eubie polynomial
in the variable of integration and treating the de-
nominator analytically. We also did the integrals
approximating the numerators as quadratic instead
of cubic, with no significant change in the result.

We evaluated the dielectric function at T=0 only.
It was not necessary, therefore, to evaluate C at
energy pairs E, E' for which E and E' were on the
same side of the Fermi level, since f(E) —f(E')
=0 for these pairs.

Because of the q in the denominator of Eq.
(5. 10), it is impossible to use this form directly
to compute &(q = 0). We took advantage of Eq. (6.1)
to remove this apparent singularity. To do the
calculation we defined a quantity C*,

x~1-z,)~(z'-z, .)) ns'. (s.p

We were able to define P*„p*,, and P2 by analogy
P„P„and P3, and by arguments similar to those
given in Sec. V, we established that
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We evaluated the quantities C* and e(q = 0) by
methods analogous to those described above for
finite wave vectors.

The (E —E')2 in the denominator of Eq. (6. 5)
implies that C* should go to zero quadratically|
in E —E' if E is to be finite. This will occur in an
exact solution since

C*(E, E') =lim C(q, E, E') (E —E') /(qb),

(()(

2000-

(ev)
0.05

FIG. 3. Longitudinal dielectric function vs frequency
for randomness S=1.0 and wave vector q=0. 0. Other
parameters are T =0; transfer matrix element f; = 0.025
eV; volume of a unit cell V, =470. 7 ~; lattice constant
along the chains b =3.87 A; half-filled band. Filled cir-
cles, e&, open circles, e2, dashed line, e& (real part of
the crystalline dielectric function).

+[sin(f& sin(tt'(E —E')+sin((b —(b')]po(/p, (b')

(6. 8)

C (EE (= fd( 'p ,(taa't'(t/ta t), tall '(t/ta t')(

x[2sin(@ —/b')p*, ((b, @')+sin ((p —(p')

xPo(/P, (b')] .
From this and Eq. (5. 10) we have

(6.4)

de k(e)
P*, (P, d ') =(sing sing') '

[1~(E e 1/tang~]1/~

p*, (tan 1(E —& —1/tan@), tan 1(E' —e —1/tang'))
[1~ (E' —e —1/tan&f&')']'/'

as may be seen by comparison of Eqs. (6.2) and

(6.1), and, as we have argued above, C(q, E, E')/
q tends to a finite value as q-0. Errors in the
calculated C* obscured this quadratic behavior.
We shall defer until Sec. VII for a description of
our treatment of C* for small E —E'.

VII. RESULTS AND DISCUSSION

We have computed the longitudinal dielectric
function for a system in which the randomness S
=1, for wave vectors 0. 0, Q. 125, Q. 2, 0. 5, Q. 9,
and 1.0, in units of w/b, where b is the lattice
constant along the chain, and for a system with
S=1.5, for wave vectors 0. 0, 0. 1, and 0. 2. The
other parameters were chosen to match the ex-
perimental values or best guesses for NMP- TCNQ:
nearest-neighbor hopping matrix element t= 0.025
eP, lattice constant b = 3.8682 A, and volume of a

0
unit cell V, =470. 7 A . ' These parameters merely
fix the energy and magnitude scales of the dielec-
tric function, and do not affect its shape. We find
that

e = 1+ G(qb, h(d/t, kT/t, S) (b2/tV, ), (7. 1)

where G is a function independent of the param-
eters b, t, and V, .

The results are shown in Figs. 3-11. In these
graphs we show the real and imaginary parts of
the dielectric function, e, and e~, as functions of
frequency for the given wave vector. We also
show for comparison e', and e~, the real and imag-
inary parts of the dielectric function for a crys-
talline tight-binding band with the same cell di-
mensions and hopping element. The expressions
used for E', and &~ are identical to those derived
by Williams and Bloch 0 [their Eqs. (18) with 8=0
and e„=1], except that our ez is twice as large as
theirs, as is necessary to satisfy Kramers-Kronig
relations.

In what follows we discuss e~ first, then e„ then
the plasma frequency, and finally the ac conduc-
tivity.

A. Imaginary part
8pg2b2

e(q =0, cu) =1 —lim
e-0 Vc

l dEdE' C*(E,E')
E —E' ~ E —E' —Sv+&@a (6 5)

At all wave vectors the curve of &~ looks like a
broadened form of that for c~. A similar broad-
ening has been observed in the optical absorption
spectra of amorphous and crystalline forms of
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certain semiconductors. 4~ Because the peak posi-
tion is shifted very little between the crystalline
and random curves, the wave functions in the ran-
dom system are likely similar to those in the
crystalline system, but exponentially damped:

In Sec. IVA we observed that states of this form
lead to an &2 which is peaked at Sm = 2qbt but with
width 4t/I. . Figures 4, 5, 10, and ll, for which
the wave vectors are sufficiently small that the
peak in &~ is at low frequency, demonstrate the
behavior clearly. The peak position in each of
these curves is where the crystalline peak occurs
{at 4tsin2 qb=2qbf), and the broadening in Figs.
4 and 5 is about 0.01 e7, and in Figs. 10 and 11
about 0. 02 eV; in each case this is 4&/L. At
larger wave vectors {Figs. 6-8) the derivation in
Sec. IV is not strictly applicable, but the observed
broadening at the high-frequency end of &2 is also
about 0. 01 eV.

%e note in passing that &2=0 for IS~I
& I2sinqb I in one dimension. Energy conservau. on
requires a minimum energy change of I2tsinqbI

/I

t }

I
Ij

I

FIG. 5. Longitudinal dielectric function vs frequency
for S=1.0 and q=0. 20 ~/b. e2 is greater than 3.05X10
between. the dot-dashed lines. Other parameters are the
same as in Fig. 3.

IOO—

/(& I

i

I ~E

Il ~

}

W~ (e&)
O. l

FIG. 4. Longitudinal dielectric function vs frequency
for 8=1.0 and q=0. 125 z/b. The imaginary part of the
crystalline dielectric function, e&, is greater than 1.96
x 104 between the dot-dashed lines. Other parameters
are the same as in Fig. 3.

FIG. 6. Longitudinal dielectric function vs frequency
for S = l. 0 and q = 0. 50 Tr/b. The dot-dashed line shows

Other parameters are the same as in Fig. 3.
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20

20

8cu (eV)

FIG. 7. Longitudinal dielectric function vs frequency
for S=1.0 and q = 0. 9 ~/b. Other parameters are the
same as in Fig. 3.

FIG. S. Longitudinal dielectric function vs frequency
for S=l. 0 and q=a/b. Other parameters are the same
as in Fig. 3.

for a transition under a perturbing potential of
wave vector q. This minimum energy change is
required because the one-dimensional Fermi sur-
face consists of two points. It is not possible to
create a transition between states the differences
between whose k vectors lies nearly along the
Fermi surface as one can in two and three dimen-
sions. Energy conservation also requires &~ = 0
for 18+1 &14t sin-,' qb I.

B. Real part

As might be expected from the discussion of &2

above, the real part of the dielectric function re-
sembles that in the crystalline case, but with the
singularities smeared out. In general, as the fre-
quency increases, z, rises from its ur = 0 value to
a maximum, drops sharply to its largest negative
value, then increases slowly to one. The positive

i I
II

I 200
I

I
800

FIG. 9. Longitudinal di-
el.ectric function vs fre-
quency for S =1.5 and q
= 0. 0. Other parameters
are the same as in. Fig. 3.

0
0.06
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For finite but, small wave vector (qb~ 0.2v) we
made the analytic approximation

A QK 2

&g(K 0)= I+ 2 I 2 3 ~

q +Yf'L b
(V. 2)

400i

O. I

where u and r are parameters chosen to fit the
data. Figure 12 is a plot of v~I, 2bm/(» —1) vs
(qLb) . The best fit to a straight line through the
four points with 0. lv ~qb ~0. 2v (which are free
of the uncertainty in C* near E —E' = 0) gives u
= 0. 993 and r = 1.560, which are very close to u = 1
and r= ~n. The agreement with the extrapolation
[Eq. (4. 12)] is surprisingly good. The calculated
values for the dielectric constant at q = 0 are also
in approximate agreement; for them r/u= l. 3.

For wave vectors larger than 0.2v/5, the dielec-
tric constant rises above the Thomas-Fermi value
of 1+~'/q'. (lt is about twice as large as 1+x'5'/
v at q=v/b; see Fig. 13.) This excess is all
that remains of the logarithmic singularity in a, at
q = M'~ which gives rise to the Peierls distortion
in the perfect crystal. The condition for the oc-
currence of the Peierls distortion is

%o(2k } g'(2a )(2n )'[~,(2u„o}-1]V,/eve',
(V. 3)

FIG. 10. Longitudinal dielectric function vs frequency
for S=1.5 and q=0. 10 v(jb. e& is greater than 4. 76
X10 between the dot-dashed lines. Other parameters
are the same as in Fig. 3.

I(

II

II

and negative peaks are shifted by about 4t/I. from
the position of the crystalline singularities; the
magnitude of the shift is the same as the amount
of broadening observed in &3.

The small secondary minimum in e, (0. 125 n/5,
v) for 8= 1 near K~ = 0. VO ev is probably an arti-
fact of the calculation, a result of our inability
to obtain accurate values of C for C & 10 4. We ran
the calculation once more adding small positive
values of C along E —E' = 0. OV5 eV (where we have
no computed values), and once with the values of
C along E —E' = 0. 060 eV reduced by a factor of 2.
(Either of these changes provides a smoother de-
crease of em to zero. ) In both cases the extra
minimum in f I disappeared.

Gne striking feature of these results is that q&

is finite at zero frequency and wave vector. Be-
cause of the localization of all the states by the
randomness, the de conductivity vanishes at T=0,
as discussed further below, leading to a finite
e~(0, 0). This remains true at finite temperature
in our model because we have omitted phonon-as-
sisted hopping as a mechanism for producing dc
conductivity. When the effects of phonons are in-
cluded, the Thomas-Fermi form of e(q, ~) holds
for small q and v smaller than the hopping rates.

f00

0.)

/
/

/
/

/

t
t

FIG. 11. Londitudinal dielectric function vs frequen-
cy for S=1.5 and q=0. 20 vt/b. e2~ is greater than 3.05
& 103 between the dot-. dashed lines. Other parameters
are the same as in Fig, 3.
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Bloch~ on other grounds. This localization length
would be provided by a randomness of S of 1.9.
With an analytic form for e(L) valid at all wave
vectors, analogous to Eq. (4. 12) for small wave
vectors, and using Eq. (3.2) we could produce a
set of equations S=S(c) and e=e(S). A solution
of those equations could then be compared with
the experimental value to determine the extent
to which the random ordering of the NMP dipoles
influences the dielectric function and localization
of the states.

The observed microwave dielectric functions in
NMP- TCNQ and the other one-dimensional con-
ductors increase with temperature. We under-
stand the increase in terms of the turning on of
phonon-assisted hopping. At very low tempera-
tures, even microwave frequencies are much
larger than the jump frequencies associated with
hopping. The electrons are effectively localized
as a result, and the dielectric function is of the
form c(q, &u)=1+v /[q +&v/(Lb) ][Eq.(4.12)]. At

FIG. 12. (~Lb) /[&g(q, 0) —1] vs (qLb), where I(: is
the inverse Thomas-Fermi screening length and L is
the exponential decay length of states at the Fermi level.
All points for both randomness values with q ~0. 2 ~/b
are included. +, S=1.0; x, S=1.5. 8.0—

where %u(q) is the energy of a LA phonon at wave-
vector q, in the absence of electron-phonon cou-
pling and g is the electron-phonon coupling param-
eter as defined in Ref. 43. We conclude that the
electron-phonon coupling constant ).=g~(2k~)/
4N& must be greater than 0.845 for a Peierls dis-
tortion to occur at T=0 for S=1. The energies
of acoustic phonons in NMP-TCNQ are of the order
of 0. 01 eV or less (based on data in Ref. 26), so
that an electron-phonon coupling parameter of 0.03
eV would be necessary to produce a Peierls dis-
tortion if S = 1 in NMP- TCNQ. Preliminary analy-
sis of susceptibility data 4 has indicated that S may
be as large as three. A Peierls distortion has not
been observed in NMP- TCNQ. "' This observa-
tion is compatible with our results and any rea-
sonable values of the randomness and electron-
phonon coupling. Sen and Varma4' have calculated
the Peierls transition temperature in the coherent
potential approximation for some binary alloys;
our results support their conclusion that a large
electron-phonon coupling is required to maintain
a Peierls distortion in the presence of a random-
ness localizing the electronic states to ten sites.

If our estimate of the transfer matrix element of
NMP-TCNQ is correct, Eq. (4. 10) with the ob-
served microwave dielectric constant of 350 im-
plies a localization length of 2. 75 sites, in good
agreement with an estimate of three sites made by

6.0—

OCg

~ ~ ~ ~ ~ ~ ~

X ~ ~
gp /

j r
] ]+

/
I g

/+
I

2.0 —
fI.

II

II
I'

I

0,5
Wave Vector (~/& )

I

I.O

FIG. 13. F (q) = q [e
& (q, 0) —1] vs q, and F (q) = q

[+ f (q, 0) —1 ] vs q, where &
&

is defined by Eq. (7.2).
Solid line, F(q) for the crystalline case; &, F(q) for
S=1.0; +, F(q) for S=1.5; dashed line, F"(q) for S
= 1.0; dot-dashed line, F+ ( q) for S = 1.5. Note the in-
crease in F(q) above ~ at large wave vector.
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For q ~0.20 v/5, (d~» ur', and (d~ was calculated
from this expression. As the randomness in-
creases, the plasma frequency decreases. To
understand this, we examine E(l. (7.6), and ap-
proximate (()~~= (2/7()(() c,h(d, where d, &u is the width
of the energy region where E~ is appreciably dif-
ferent from zero; & is a mean energy in that re-
gion, and a~ is a mean value of e, in that region.
By inspection of Figs. 3-11 we observe that +
increases by a small amount with increasing ran-
domness and b~ increases by a large amount,
owing to the broadening effect of the randomness
as described in Sec. VIIA. The mean value of a~,
however, has decreased by a very large factor
from the crystalline case (note that ea has a
square-root singularity at h~ =4tsin2qb). We at-
tribute this reduction in E2 to the localization of
the wave functions. Not only will the matrix ele-
ment be smaller in the random case because the
states are not spread out as far, but many pairs
of wave functions will not overlap at all, and con-
tribute nothing to the total. The reduction this ef-
fect produces in &~ is more than enough to offset
the increase observed in 4~ and ur.

0.5
Wave Vector (m/b)

l.0

FIG. 14. Plasma frequency vs wave vector. Solid
line, crystalline; dashed line, $=1.0; dot-dashed line,
S=1.5.

& (L )=(+ f'~ (e, -')( "-~') '(
(7. 4)

If ea(q, (d')=0 for &u' &(d', and ~»(d', E(l.
(7. 4} becomes

e,(q, (d) = 1 —(u~(q)/(da,

where

(7. 5)

max

(do(q) = (d ea(q, (d ) «()
7T 0

(7.6)

high temperatures the jump frequencies are much
larger. The electrons are no longer bound to
their localized states and the dielectric function
becomes that of a conductor, e = 1+z /q . What
is observed is the "turning on" of the hopping, the
transition from insulating to conducting behavior,
which leads to the increase in a, .

C. Plasma frequency

Figure 14 is a plot of plasma frequency vs wave
vector. At large wave vectors the plasma frequen-
cy was determined by finding the higher frequency
at which c& passed through zero. For small wave
vectors, we calculated the plasma frequency from
Kramers-Kronig relations

D. Conductivity

e calculated the frequency and wave-vector de-
pendent electrical conductivity from &2: o(q, (d)

=u&e~(q, (d)/4w. The results are shown in Figs.
15 and 16. In each case the conductivity increases
quadratically from zero frequency, reaches a
maximum, and decreases again to zero. The
widths of the curves, like those for c~, are in-
versely proportional to the localization lengths of
the states at the Fermi level. The quadratic de-
pendence of the conductivity on frequency for small
frequency is clearly observed for finite wave
vectors. We were, however, unable to obtain ac-
curate values of C* for small E —E', and could
not therefore calculate o for small ru directly. We
expect a quadratic dependence on frequency in the
q = 0 case as well (see Sec. IVC or Mott and
Davis'4}.

Because of the great success of our analogous
formula for e,(q, 0) we used Eq. (4. 14) to deter-
mine C* and a2 for the small (d region where we
had no reliable data before, and used that data,
joined smoothly to our C* values for larger (d,

to calculate e,(0, ~). The values we have com-
puted for E~ at q=0 for low frequency are there-
fore somewhat more uncertain than the low-fre-
quency dielectric constants we report at finite
wave vectors.

The maximum conductivity for q = 0 is seen to
move toward higher frequency with increasing
randomness. The reason for this is again the de-
crease in decay length, as we discussed in Sec.
IVC. In comparison with Eq. (4. 15), we find
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FIG. 15. Conductivity vs
frequency for randomness

x, q=00;+, q
=0.125 ~/b; circles, q
=0 20 7(/b triangles 0 50
~/b; squares, 0. 90 n/b;
asterisks 1 00 7(/b
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n&/I- = 0.0085 eV for 5 = 1, in fair agreement with
the observed peak position at 0.0065 eV; for S
= 1.5, we have v f/f. = 0.0176 eV, compared with
the observed peak at 0.03.40 eV. Both of these
results are consistent with @o = 0. V8 v &/L.

Although our theory predicts an + ~ dependence
for the conductivity at high frequencies, our data
do not clearly show this behavior. At randomness
1 the drop in conductivity at large frequencies is
considerably faster than 1/~', while that for S
=1.5 is slightly slower than the predicted rate.
At these large frequencies the number of available
states with energy difference sufficiently large is
decreasing rapidly, since both initial and final

800-
E
CP

states [k and k' in Eg. (4. 13)] are in the tails of
the band. This rapid decrease in densities of
states is reflected in the high-frequency behavior
of o for S=l. For S=1.5, however, the decrease
in the density of states is less xapid, resulting
in behavior more like the 1/&ua expected for a con-
stant density of states.

There are a number of directions in which
future research on this topic should go. First the
variation with band filling should be investigated.
Further it would be interesting to study variations
with temperature, to add the effect of phonons,
and to add electron-electron correlations.
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APPENDIX

We wish to show that the I', converge to the val-
ues predicted for them in Eq. (5.29). We begin
with Po, which satisfies (5.25):

fire (eV)
0.IO

FIG. 16. Conductivity vs frequency for randomness
1.5. &, q=0. 0; +, q=0. 10 7r/b; circles, 0.20 7r/b.

x 5(tan '(E —e —tang, ) ~ —P)

~5{tan '(Z' —e tenet) '- y')P, (y„y'„n) .,

(Al)
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We wish to show that one is a nondegenerate eigen-
value of this kernel; and that all other eigenvalues
are smaller in magnitude than one. If this is
true, then P, (Q, (t&', n) will converge to Po(P, P'),
where Po is the eigenvector of the kernel of (Al)
belonging to the eigenvalue 1. [This can be seen
by an expansion of Po((t, P', n) in eigenvectors of
the kernel. If this expansion is iterated I steps
farther, the jth term is multiplied by X, , where
X, is the jth eigenvalue. In the limit m -~ X, - 0
unless I~, I

—l. Since we only have one eigen-
value 1, only its eigenvector (properly normalized)
remains. ]

To prove this we need one theorem from the
mathematics of integral equations: If a kernel is
bounded, both it and its transpose have the same
eigenvalues with the same degeneracy 8 (but not,
of course, the same eigenvectors). The kernel
we have is not bounded, since it contains two 5

functions and but one integral. The quantity

«.(hh :,h'„d ,) 'J=dd. dh. '

XK((t, P's (t&1s $3)K({t&» (t&3, (f&» (t&[)

(A2)
is bounded except for the line P = P' = 0, tangy
=E' —8+tang&, and the quantity

«(d, h :d„'h) Jd=h dh .«(d'. d :h, .,'d')

XKP(P» P1& P» (t'1) (As)

is bounded for all Q, Q', (It) &, and Q& as long as
h((!) is bounded. [This excludes from the possible
distribution functions h(a) such things as binary
alloy distribution since they are unbounded. We
may of course approximate any such 5-function
distribution by one which is bounded but with a
finite width. ]

We may rewrite K~ as

«(hh'; ht h')= J dsdt dth(s ) h'(t )h(s )h(tan t{Z—s —[« —s —(E—t, —tanht) t) ) ' —d}

x t&(tan '{E'—c, —[E' —e, —(E' —e, —tan(t&, ) ] ] —@ ).

We observe first that

(A5)

Thus the kernel which is the transpose of K3 has
one as an eigenvalue with the constant function as
its eigenvector. Now let (C&((t&, P') by any eigen-
vector, and let X be its eigenvalue. Further let
(&f&, (t ') be a point for which I g((t&, (t ')

I
~ l(I)(P, (t ') I.

Thus we have

at(d, s', ) =J«(h, h ;d,,, d ,) d(hh')dhdc'',

I»(h h )I -«J«.(„d, ',h' h, d ,&ad ah Id(d. h,)'', '

(Ae}

I1I I e(e„@',)I =
I e(+, +').I .

Since this must be true for all ((t&1, $1) including

(p, (t ') a, we have (X( ~ 1; and the equality can
hold only if p((t&, p') = p(p, (i'&') everywhere, i.e. ,

if P is a constant. We have proved therefore that
the kernel (transpose of K,) has a nondegenerate
eigenvalue 1, and hence K3 must also have such an
eigenvalue. Hence, by the argument following
(Al), Po(P, (t&', n), converges to a value independent
of n.

Alternatively, we might note that K satisfies
the conditions of case b on p. 197 of Doob, 47 with

1 1 1X the square -2n &
Q -2m, - ~n ~

Q
~ 2m, C =X,

P=&{', and (&=3. [That is, the probability of
getting from any Q, P' to any other in three steps
is bounded below by a positive number. From
this it follows that Po({Jh, p', n) converges to a quan-
tity Po((t&, (t&') independent of n or of the initial con-
ditions. ]

P, ( tP'(, &n) also converges to a value indepen-
dent of n for large n. 48 I', satisfies Eq. (5.26):

p(h, d', ~ 1)=s"'s nd s 4'&', (dd', , 1) s"'(cost cond, 'tach tant')JJ ddt'd, hd(sh)s

x{&(tan (E —e —tan(t&1) —(t&){)(tan 1(E' —e —tang&) ' —(t&')(cos@1cos(t&1) 1P1((t1, Q» n). (AV)

Because of the term in Po here, this case must be
treated differently from the previous one. What
we must show is that all eigenvalues of the kernel

which overlap with P, are less than one in magni-
tude. From this it follows (by expanding Po in
eigenfunctions of this kernel) that P, takes on the
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limiting form

P, =g(1-~,) 'Po, f,(4, 0'), (A8)

where the sum is over all eigenvalues X, ; P, is the
eigenfunction belonging to the jth eigenvalue, and
I'

& is a coefficient in

Po(P, P') sin(t} sin(t}' e"' = +POP, ($, (t}') .

This limiting form is only valid if I X;I & 1 for all
j for which I'o, & Q. To show that the eigenvalues
of this kernel are less than one, we exhibit a func-
tion Q which satisfies the same boundary condi-
tions as I'~ at n =2 and which satisfies

q((t}, (t}', n+ 1)= e"' (cos(t} cos(t}' tan(f} tan(t}')

q(y, y', n) = e"'"~ "cosy cosy'
a„(E) a„(E')

5 E —F.;

where the F.; are eigenvalues of a chain of length
n —1, with right-hand boundary conditions z„=P;
E', are similar energies with right-hand boundary
condition ze=p'. By E(ls. (5. 5), (5.11), and

(5. 17) we observe that (SZ/SE) '= —U '(E, n)
= —&'„(E). Thus

q((t}, (t}', n) = cosp cosp' e"'"'""

&P, &Q', &e &(&) 5(tan '(E —e —tang, ) ' —&f&)

x g@Q @g E Q + 5@

xZ5(z' —z;.}). (A12)

x6(tan '(E' —(. —tang', ) ' —P')(cosg, cos(I'}',) '

xq(y„y'„n) . (A9)

Because this is a first-order equation, there is
only one such function. We show then that the
function Q which satisfies the stated conditions
must go to zero as n-~. (Hence all the eigen-
values j of the kernel are less than one so that
X, - 0 as I ~ for all j.)

We define

q(y, y', n) = cosy cosy' e""""&[e,(E)/e„(E)]

x [a,(E')/a„(E')] 5(tan 'Z(n, E) —(t})

x 5(tan-'Z(n, E') —@')) . (Alo)

By comparison with the definition of P, [E(l.
(5.20)] we see that P,((f},p', 2) = q(p, p', 2). Fur-
ther, q satisfies E(l. (A9).

We shall now show that q(p, (t ', &)- 0 as n- ~.
We may reverse the argument of Eqs. (5.8) and

(5. 9) to write

As n- ~, the 5 functions, which are densities of
states, increase as n. Because of the exponential
localization of all states of a disordered one-di-
mensional Hamiltonian, ' the produc«~(E) e„(E)
is of order e "~~( ', where L(E) is the localization
length at energy E. '" [That is, a state has a,

maximum near site I, and decays exponentially
on either side. Then we have a,(E)- e ~~( ' and

a„(E)-e '" "z(e}, so the product is e,(E)e„(E)
-e "('~(e}.] Thuswe find q((i}, (t ', n)-n'
x e "~ '~' " ' ', which goes to zero as n- ~, and
since

as well.
We show, finally, that Pa((t}, Q', &) ~n for large

ni but becomes independent of (t} and P'. [Given
the way in which P~ enters the formalism for
e(q, (d), this is the only reasonable dependence,
for it makes & independent of the size of the ma-
terial and the choice of boundary conditions. ] To
show this dependence we begin from E(l. (5.27):

}',(4, (', + } f& (, ( , d(a hd(c}=( t(s}n(''(Z —a —(/(an( }}

x 5(p', —tan '(E'- & —1/tan(f}')) [P ((t}„p'» n)

+2cos(I|}&cos@&Rep&((t}» q}» n)+cos $&cos (t}zpo((I}&,@,g)].

d(t)~dp~g (It), p; (t)~, Q~ (A14)

We note immediately that the kernel K(P, P',
(t}„@',) in E(l. (A13) has the following properties:
(a)

From this it follows [as in E(ls. (A5) and (A8)],
(b) one is a nondegenerate eigenvalue of K;

it is the largest eigenvalue in magnitude. (c) 'rhe
eigenfunction belonging to this eigenvalue is a con-
stant, independent of p and Q'. We see then that
this largest eigenvalue of K contributes n&&C,
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where C is the coefficient of the constant term
in the eigenfunction expansion of the inhomogene-
ous terms. The other eigenvalues contribute
terms of the form

(1 —~,) 'DA', (0, 0').

As n- ~ these last mentioned terms become less
and less important compared to the former, and

I,-nC.

To evaluate C, we must expand the inhomoge-
neous terms on the right-band side of Eq. (A12)
(the terms in po and p, ) in terms of eigenfunctions
of the kernel and retain the coefficient of the con-
stant eigenfunction. That coefficient is $0 &&(in-

homogeneous terms), where $0 is the adjoint
function to Po—the function which satisfies the
homogeneous integxal equation with the kernel
transposed. It is easy to check that this function
is Po(tan '(1/tang), tan '(1/tang')). Thus we have

C= d(t) dP'Po tan 1 tan(tj, tan 1 tan(t)' d& h &

.2Rep, (tan '(E —a —I/tang), tan ~(E' —e —I/tang')) po(tan '(E —e —I/tang), tan '(E' —& —I/tang'))
[1+(E —e —I/tang)»]'" [1+(E' —& —I/tang')']'~' [1+(E —e —I/tang) ][1+ (E' —e —1/tan@')»]

(A15)
Now define new variables t and»i by tan] =E —e —I/tang, tan»i =E e —I/—tang'. In terms of these variables

we may write

d) dq de h(a) (tan $ + 1) (tan»i + 1)po(tan '(E —a —tan)), tan '(E' —c —tang))
[1+(E —& —ta $)'] [1+(E' —~ —tan»))']

x[2 cos& cos»l Rep, (5, »i)+ cos $ cos»t po($, »I)] . (A16)

The integral over & in Eq. (A16) may be done easily, using Eq. (5.15). Mth this transformation, Eq.
(A16) becomes Eq. (5.30).
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