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Phonon decay rates in potassium due to phonon-phonon and electron-phonon scattering are calculated and

compared for small wave numbers at low temperatures {-1to 10 K). %e find that the phonon-phonon half-

w idth s Ppp have a strong dependence on the temperature and m agni tude of q, but are roughly independent of
the direction of q. The electron-phonon half-widths I,„are temperature independent, vary slowly with q {linear
in q for q

& 0.3&(2m/a), and have a strong directional dependence on q for the transverse phonon modes. The

umklapp contribution I
pp

to the total phonon-phonon decay rate I
pp

is also calculated for small q and is

shown to have a pronounced temperature dependence whereby I „ /I „decreases rapidly at lower

temperatures. In comparing the various half-widths we find that at high temperature {»30 K) I
pp

dominates
I",„.At lower temperatures the two are comparable to each other and the situation is complex. Along certain

directions in q space for certain branches l,„may dominate whereas along symmetry directions at small q for
the transverse branches I, is zero and I dominates. The relevance of these and other results are discussed

in the context of low-temperature transport properties. Finally we briefly compare our results for potassium

with those for two other simple metals, rubidium and aluminum.

I. INTRODUCTION

This paper presents the first estimates of the
phonon-phonon scattering rates which are appro-
priate to low-temperature transport processes in
metals. The existing calculations for the metals
potassium, rubidlumy and aluminum are all dj.-
rected towards calculating the widths of phonons
seen in neutron scattering and are thus inappro-
priate for transport properties in that (i) the cal-
culations are done for higher temperatures and
for larger wave vectors than are desired, and (ii)
the calculations do not separate the contributions
of normal and umklapp scattering. This second
point is crucial for understanding transport prop-
erties and will be discussed in detail in Sec. IB
and the end of Sec. IV.

In this paper we attempt to partially remedy this
lack of information by presenting results of com-
putations on the decay rates of phonons in potassium
at a few degrees kelvin of both phonon-phonon
(Sec. Il) and electron-phonon (Sec. III) scattering,
both of which, as we discuss below, are important
for understanding low-temperature transport prop-
erties. %e use the words "partial remedy" be-
cause our present calculations are not as accurate
as we would like, particularly in the most interesting
region of low temperature and small wave vector.

The difficulties of extending the present methods
of calculations to these regions are extensively
discussed in Appendix A.

Our purposes in presenting this paper are (i) to
provide some reasonable numbers as a guide for
calculations of transport properties at low tempera-
tures; (ii) to stimulate further calculations of
phonon-phonon scattering rates in the low-tem-
perature, small-wave-vector region by showing the
need for such calculations, presenting the current
state of the art in this area, and suggesting where
improvements are necessary; and (iii) to detail
the interesting and unexpected results we have
found (Sec. IV) which we hope will engender some
discussion and thought among those interested in
the physics of phonons and transport processes.

Before presenting the results of our calculations,
we first discuss the relevance they have for trans-
port properties. In particular, in this section we
will now develop an increasingly more sophisticated
view of how momentum is transferred between the
electron and phonon systems in a metal.

A, Two limiting cases

Suppose that momentum is pumped at a constant
rate into the electrons by an applied electric field
(which has no effect on the ions). A steady-state
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distribution of the elec««&, in which the average
momentum is nonzero, is then achieved by various
scattering mechanisms of which we shall, in order
to state the pxoblem concisely, consider only one-
electron-phonon scattering. Momentum transferred
to the phonon system by this scattering mechanism
can be "redistributed" in two ways: (i} It can be
distributed to the other phonons by (anharmonic)
phonon-phonon scattering with a characteristic rate
I'», or (ii) it can be returned to the electron sys-
tem by the inverse of the original process, elec-
tron-phonon scattering, according to the rate I',~.

Clearly there are two limiting cases depending
on which rate, I'» or I',~, dominates. If I'»» I',~,
it may be that the phonons drop out of the problem
except as a sink for momentum. Then the calcula-
tion of transport properties is relatively straight;—
forward. On the other hand, if I"»«I',~, the in-
ternal dynamics of the phonon system may play an

important role in transport properties.
This latter limit which occurs at low tempera, -

tures raises an important question: How does a
metal reach internal equilibrium at low tempera-
tures'P The question was stated most forcefully by
Peierls, ~ for the alkali metals. For these the
Fermi surface does not touch the Brillouin zone,
Hence, as it turns out, none of the momentum
(supplied by the applied electric field) can be dis-
sipated in the process of transferring the momen-
tum to the phonon system. Furthermore the phonon
system by itself does not contribute either to mo-
mentum dissipation since its internal scattering
rates are so small. How then does the system
rea.ch equilibrium, or would careful measurements
reveal nonlinear dependences on the applied field' ?

We do not answer this question but show that any
answer must take into account greater complexities
than previously considered. I et us turn now to
the two limiting cases for phonon scattering.

l. Bloeh limit I&„&&I;„
For phonons it is simple to show that I',~ is

nearly independent of temperature while I'» is a
rapidly increasing function of the temperature.
Accordingly one might expect that at reasonably
high temperatures I'»» I',~. Furthermore there
is a subcategory of I'», called umklapp phonon-
phonon scattering, I'~~, in which the phonon mo-
mentum is relaxed to the lattice. So not only is any mo-
mentum quickly equilibrated among the phonons but
it is rapidly (how rapidly depends on the tem-
perature among other things) dissipated to the lat-
tice. Accordingly we may suppose the phonons to
be in an equilibrium state appropx iate to no electric
field being applied, i.e. , a state which has no net
momentum associated with it. This limiting case
was first discussed by Bloch, 3 who showed that the
resulting electrical resistivity was linear in tem-

perature at high temperature and went as T' at low

temperatures. The upper limit is well justified
experimentally (after one makes suitable adjust-
ments for the temperature dependences of the pho-
non frequencies), but the low-temperature limit is
in some dispute, especially since we have just
pointed out that I'» falls rapidly for decreasing
temperature.

2. I'honon-drag limit, f„' & f'
8p

To consider an extreme case, let us suppose that
we are at such a low temperature, that phonons
have difficulty in equilibrating any momentum that
is pumped into them from the electrons (being ac-
celerated by the electric field). Further let us
keep in mind that at these temperatuxes the umklapp
phonon-phonon scattering rate I'~~ is much less
than the total phonon scattering rate I pp the
former falling exponentially with I/T. That being
the case, the phonons can only feed momentum
back into the electrons —specifically, to the local
distribution which is drifting under the influence
of the electric fieM. In steady state the phonon
gas has the same drift velocity as the electron gas;
we say that the phonons are dragged by the elec-
trons. In that phonon-drag regime, i.e. , the one
in which there is no way to dissipate the momentum,
the electrical resistivity goes to zero. Qf course,
in any real sample that situation would not be
reached since other momentum absorptive centers-
impuritxes, dxslocatzons, surfaces, etc. —would
eventually dominate the low-temperature resis-
tance. Nonetheless, it is clear that there are two
distinct limiting cases, and it would be interesting
to know which is appropriate as the temperature is
lowered.

Before we turn to a discussion of some of the
subtleties involved, we should point out why the
situation is so special for some alkali metals. Be-
cause the Fermi surface does not touch the first
Brillouin zone, one very effective method for
relaxing electron momentum is not available, that
of umklapp electron-phonon scattering which en-
ables some of the momentum to be lost to the lat-
tice in the process of electron-phonon scattering.
Accordingly, the considerations discussed above
at such great length come into play.

3. Effect of two limiting eases on electrical resistivity

It is perhaps worthwhile to point out several fea-
tures that arise in calculating the electrical re-
sistivity in the two limits. In Fig. 1 the calculated
resistivities ' are plotted in units of T' for low
temperatures (1-10K). On the Bloch curve the
"bump" in the T coefficient is due to the rapid
onset of umklapp electron-phonon scattering (in
the electron system}. At still higher temperatures
that coefficient drops, indicating the transition
to the linear temperature dependence.



R. C. AI. HERS et al.

l2

0
8

E
O

6

4
L IM I T

ium, 7'8 and aluminum, ' o are all directed toward
calculating the widths of phonons seen in neutron
scattering. As mentioned earlier, these results
are inappropriate for our purposes in two ways:
(i) All the calculations are for higher temperatures
(the lowest being 9 K in potassium) and for higher
wave vectors than we desire. As we shall point
out, principally in Appendix A, calculations in the
desired range put considerable strain on the com-
puting facibttes available to us. (ii) The calcula-
tions do not sepax ate the contributions of normal
and umklapp scattering. This second point de-
serves some extended discussion.

The Boltzmann equation for phonon distribution
n(q) provides a convenient basis for discussions.
Conventionally we may write

I
I

I
/
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FIG. 1. Calculated temperature dependence of the
electrical resistivity in both the Bloch (I'~ && I ~) and
"phonon-drag" (I'» « I'+} limits. Results for the resis-
tivity divided by the fifth power of the temperature are
shown between 1 and 10 K as a solid curve for the Bloch
limit and a dashed curve for the phonon-drag limit. In
the latter case p/T is not strictly zero for 7&1.4 K but
rather is many orders of magnitude too small to show up
on the figure.

where the operator on the left-hand side is the
drift operator and on the right-hand side is the
collision integral. For simplicity we suppress the
possibility of electxon-phonon scattering processes
discussed in Sec. IA. Formally one can divide
I{n(g)) into two kinds of processes: normal ones
in which the total momentum of the phonon gas is
conserved and umklaPP ones in which momentum
is transferred to (or from) the lattice. To date,
no one has solved (l. l) keeping the full structure
of the collision integral. The most common ap.-
proach has been to make relaxation-time approxi-
mations for the two kinds of processes. %'e adopt
this procedure in oxder to discuss the general
structure of our results, not knowing of a better
approach.

Qn the other hand, the "phonon-drag-limit" re-
sistivity at low temperatures approaches zero
more rapidly than T5. At high temperatures the
drag limit approaches a, fixed ratio of the Bloch
limit. This results from the incorrect assumption
that I'» « I',~ at a/1 temperatures and wave vectors.
A correct calculation for the resistivity would in-
volve using the appropriate phonon decay rates so
that the resistivity "switches" from the drag to the
Bloch limit. Clearly this switch in potassium oc-
curs at an experimentally accessible region and

any sensible calculation must include this effect.
%hat seems likely as a result of the calculations
in this paper is that the details of the switch may
be complicated owing to the fact that I'» exceeds
I',~ at different temperatures for different phonon
polarizations and wave vectors.

B. Normal and umklapp phonon-phonon scattering

The existing calculations of the phonon-phonon
scattering rates for the metals potassium, ~ rubid-

J. Normal processes

Since normal processes conserve the total mo-
mentum of the phonon gas, one must allow for the
possibility that the scattered phonons relax to
some distribution which is drifting with a velocity
v e

n (g, X; v) = [88B~~(i)w F] 1]-1

of the phonons. Such a distribution could be set
up by the injection of momentum from the electron
system as would occur if there were a significant
amount of phonon drag. In this case the appropriate
relaxation-time appx'oximation is

~)) = [+(0 ~) +a gfe(g ~i v)](2I'pp) ~

(l. 3)
In principle, I'~~ is a function of wave vector q,
polarization &, and temperature T [=(ksP) ']. In
practice, all the calculations for which I'» and I'~~~

have been separately calculated have usually been
restricted to extracting an average I'» depending
only on temperature. %'e are, of course, able to
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compute (albeit sometimes with dubious accuracy)
the full wave-vector and polarization dependence
of l ». The difficulty arises in using this result
in subsequent calculations of transport processes-
a difficulty which can conveniently be defer red to
another publication. The nature of the difficulty
is easy to state: In order to do a calculation the
drift velocity v in (1.3) must be determined; any
procedure for this will involve calculating various
moments of the distribution function and the com-
putation of these moments becomes more cumber-
some if l" depends on wave vector and polarization.

2. Umklapp processes

Since umklapp processes involve the transfer of
momentum to the lattice they tend to relax the
phonons to that frame —i.e. , to an equilibxium dis-

STOT(

IO

tribution in the absence of any perturbation. Ac-
cordingly the appropriate relaxation-time approxi-
mation is

I'( (q~))= —[ (q, ~) — o(q, ~)l(»;, ),
where no(q, &) = (e'"'""'—1) ' is the standard equi-
librium distribution. The details of the way we
calculate I'~~ are specified elsewhere in this paper
(see Appendix A).

Although there have been many theoretical dis-
cussions of the separation of decay rates into I'»
and I"~~ and several attempts~~™ to extract these
numbers from experiments, it is somewhat sur-
prising that there has been only one serious micro-
scopic calculation. ~ ¹klasson has calculated
weighted averages of l"~0~ and I ~~~ as a function of
temperature for argon, and finds that the ratio
I'"'/I' varies from about 2 at 100 K to about 50
at 5 K. The primary concern of his paper is to
explore the differences between ordinary sound and
collisionless (or zero or high-frequency) sound.
The crossover between these two sounds occurs for
~- I'~~', so that the calculation of I'~~~ plays a role
only in a discussion of some transport properties
and the damping of ordinary sound. On the other
hand, the bulk of the theoretical interest has been
in discovering those systems in which second sound
can propagate. The condition for this is l"~~«v
«I'», and hence the interest in making estimates.

Finally we should point out that bad as our cal-
culation of I'~» (q, X; T) and I'~o~(q, X; T) may be,
they are the first that have, as far as we know,
ever been attempted.

0.2 0.3
[q[ (z~ia)

FIG. 2. Semilog plot of the q dependence of I', I'~,
and I'+ at 1 K for potassium. For this temperature I'~ is
roughly independent of direction and the half-widths for
the f1 00], [1 1 0], and [1 11]directions all fall fairly
close to a set of "universal" curves, which are those
shown above. Maximum scatter about these curves is
indicated by the barred lines. For the only symmetry
direction, [110],which has nondegenerate transverse
branches, I'(Tz) is sufficiently close to I'(T&) for the two
sets of points to fall within the barred lines on the curves
labeled by I'&&(T) for both the total and the umklapp half-
widths. As a point of reference we also show the elec-
tron-phonon half-widths I'~&(L) and I'+(T) for the f6 2 1]
direction. I'+'s are temperature independent. [6 2 1]
direction was chosen so as to avoid effects associated
with the symmetry directions (see Secs. III and IV for
further details on this point). The discontinuities in
I'+ are due to umklapp processes turning on..

C. Summary of results

In Fig. 2 we have attempted to represent sche-
matically many of the results of our calculation.
With some discussion it will be possible to ex-
tract additional information from Fig. 2.

1. Phonon-phonon scattering I'„

The four solid curves in Fig. 2 give the wave-
vector (q) dependence of phonon-phonon scattering
at one temperature (1 K). The total and umklapp
rates for the longitudinal and transverse phonons
are given. These "universal" curves represent
an average value of the results calculated along the
[100], [110], and [111]directions. The "scatter"
around these curves is indicated by the barred line.
Two features are clear: (i) Any given rate is rela-
tively independent of the direction of q, and (ii)
there is some dependence on the magnitude of q
associated with the polarization.

What is not on the figure is the strong tempera-
ture dependence of the I ». All the rates increase
with the temperature with the low-q end being
raised most rapidly and with the difference both



TABLE I. q dependence of the normal (Ã) and umklapp (U) contribution to both the longi-
tudinal (L) and the transverse (T) phonon-phonon half-widths in the [$ 0 0] direction at 1 and

92 K. Calculations used a. 1024-point mesh and c =6.5&10 rad/sec (see Appendix A for a
discussion of the mesh size and &}. "Higher" and "lower" transverse modes (1"h and T&)

are degenerate in this direction.

Normal

I-U I-U

(10' rad/sec)

0. 1
0.2
0.4
0.6
Q. 8

(&, 0, 0)

0.5
2

10
30
20

0.1
0.4
2
7

10

10
30
80

140
70

7
30
40
50
50

0. 02
0, 2
0, 7
6

30

0. 005
0, 06
0. 7
5

10

0.4
3
6

30
120

0. 3

20
30
50

between I"'" and I' and between different polariza-
ti.ons being greatly xeduced.

2. EIeetron-phonon scattering I~&

Up to this point we have said little about elec-
tron-phonon scattering. It is relatively simple to
calculate, especially since it is essentially tem-
perature independent in most metals. The dashed
curves in Fig. 2 show the electron-phonon rates
along the [621] direction for longitudinal and trans-
verse phonons. It can be seen that the longitudinal
rate is initially proportional to the wave vector.
%hat cannot be seen here is the extreme sensitivity
of the transverse phonon rates upon the dix'ection
of the phonons. Along symmetxy directions the
transverse phonon rate is zero for all wave vectors
below the value where umklapp processes begin.
The larger value of the transverse phonon rate is
a, consequence of the large anisotropy in the phonon
spectrum of potassium, a point which is discussed
in detail in See. III.

3. Temperature dependence

At I K we ean see in Fig. 2 that I",~ & I'» for
phonons of that energy (q- 0.01 x2w/a), but it must
be remembered that I',~ is ealeulated along a cer-
tain direction [621j. Along and near symmetry
directions I',~& I'» for transverse phonons, so one

cannot even conclude that phonon drag dominates
at 1 K, although we would suppose that, in the
absence of any detailed calculation, phonon-drag
effects would play an important role in the trans-
port processes at 1 K. For increasing temperatures
all the phonon-phonon scattering rates will increase
and at various crossover temperatures each I'»
process will exceed its appropriate I',~ process.
For potassium we estimate all these "crossovers"
will have occurred by about 30 K. Hence at such
and higher temperatures the Bloch limit is quite
a good one.

The plan of the rest of the paper is as follows:
The phonon-phonon and electron-phonon scattering
rates ax'e discussed in detail in Sees. II and III,
respectively. Section IV contains a comparison
of the two rates. Finally in Sec. V we make a
tentative extension of the work to another alkali
metal, rubidium, and even more tentatively to a,

polyvalent metal, aluminum. Computational details
are relegated to the appendices.

H. PHONON-PHONON HALF-VADTHS

This section comprises a summary of oux' cal-
culations for the total phonon-phonon half-width
I'~&' and the umklapp contribution to the half-width

A quick glance at our results in their barest
form, Tables I-III, indicates the complexity in-

TABLE II. Small-q dependence of the total and umklapp phonon-phonon half-widths in the
[(00] and [( ( (] directions at, 1 K. Calculations used an 11664-point mesh with & =1&10 rad/sec.

0, 05
0.1
0.2

0. 03
Q. 1
1

Q. Q04

0.02
0.1

Th Tl
total

tot tot

(10 rad/sec)

0. 0003
Q. 004
0.03

0. 00007
0.0009
Q. 009

0.05
0.1
0. 2

tot totI'L I' g„s~
(10' rad/sec)

0. 06 Q. 03
1 Q, 1

19 2

~I. ~ r„=r,
(10' rad/sec}

0. 001 Q. 0004
0. 01 0. 004
1 0. 04

Th-~r
umklapp
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TABLE III. Total and umklapp contributions to the phonon-phonon half-widths
for several different temperatures and values of q in the [& ~ 0] direction. As was
noted in the text, this is the only high-symmetry direction which has three nonde-
generate phonon modes. 11664-point mesh size was used with & =1 &10 rad/sec.

(27r/a)

I tot I tot I tot
L Th Tg

(10 rad/sec)
Z

U I U

(10 rad/ sec)
I U

TE

0. 05

0. 1

0. 2

0.4

0. 4
1
9

92

0. 4
1
9

30
92

0.4
1
9

30
92

9
30
92

0. 04
0.04
0.1
4

0.4
0.4
0. 8
6

24

4
4

14
47

28
45

120

0. 01
0. 01
0. 08
4

0. 06
0. 06
0.2

3
15

0. 8

0. 8
2

13
51

10
30
98

0. 02
0. 02
2

40

0. 07
0. 07
3

21
71

0. 2

0. 2
5

38
130

13
87

300

0. 0005

0. 007
0. 01
0. 4
2

0. 4
0. 4
1
5

12
19
48

0. 0002

0. 003
0. 004
0.3
2

0. 03
0. 07
2

9

7
16
51

0. 0004

0. 004
0. 2

2
6

0. 02
0. 5

6
22

2
23
87

(f $0) Temp. L
total

L
umklapp

Th

volved in trying to interpret these numbers and of
trying to compare them with the electron-phonon
half-widths. The chief source of this complexity
lies in the number of variables on which the half-
widths depend. In particular, we have to specify
the wave number q (including both magnitude and
direction), the polarization X, the temperature T,
and also whether we are interested in the total
half-width I'~~' or just the umklapp contribution
1 . We remind the reader I'~~ =I'~~+I'~~; i.e. ,
the total is the sum of the normal and umklapp con-
tributions to I'».

Despite these difficulties, it is possible to devel-
op a semiquantitative picture of how the two kinds
of half-width compare with each other by concen-
trating on how each of them separately depends
upon the various variables. Fortunately, it will
often turn out that one or the other of the half-
widths will be independent of a certain variable,
and hence this fact will greatly simplify our task.
We now begin this process by considering the de-
pendences of the phonon-phonon half-widths.

a. q dependence. I'» is a very strong function
of the magnitude of q, monotonically increasing by
orders of magnitude as Iq I becomes larger, with
the strongest q dependence occurring at the lowest
temperatures. This strong dependence on the
magnitude of q usually greatly dominates the de-
pendence of I'» on the direction of q, which typical-
ly varies by at most a factor of 2. Furthermore

I'» shows the same qualitative dependence on Iql
independent of both the polarization and whether
we are considering I'~t~t or I'~U~. In all cases I'»
is a monotonically increasing function of Iql with
the strongest dependence at small I q l and low tem-
perature. At 1 K I'~~' and I'~~ have a rough power
dependence of q' to q

' for 0. 1 & q(a/2v) &0.2 for
both longitudinal and transverse modes. See Fig.
2. Below 0. Ix 2v/a the dependence is faster than
q'. As we will see in Sec. III this is much stronger
than the linear dependence of T,~(q).

b. Temperature dependence. I'» is strongly tem-
perature dependent, changing by two or three orders
of magnitude between 1 and 100 K. At sufficiently
low temperatures the curve of I'~~ plotted as a
function of temperature flattens out and I'» ap-
proaches a finite zero-temperature limiting value
at finite q. See, for example, Fig. 3.

c. Polarization dePendence. There is a slight
tendency for the total half-width for longitudinal
phonons I'~~"(I,) to be larger than that for the trans-
verse phonons I'~~'(T) at low temperature and vice
versa at high temperature. In general, the half-
widths for the different polarizations tend to stay
within an order of magnitude of each other. This
lack of any strong patterns in the polarization de-
pendence (for example, with q) contrasts strongly
with the case for I',~(q).

d. UmklaPP contribution. The umklapp contribu-
tion is very strongly dependent on the wave num-
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ber, temperature, and phonon frequency. The
width is largest for large q, especially near the
zone boundaries. It drops by orders of magnitude
for decreasing q, dropping faster for the high-fre-
quency branches of the phonon spectrum, For
small q there is a pronounced temperature depen-
dence whereby I'~~/I'~~~' decreases rapidly at lower
temperatures. At sufficiently large q I'~~/I'~t~' is
essentially temperature independent.

e. Symmetry directions. It should be emphasized
that we have only calculated I'» along symmetry
directions. Although we have no reason to suspect
any strange behavior in the phonon-phonon half-
widths as we move away from symmetry directions,
we are unable to make any definitive statement
in this regard without explicit calculation. (A
hindrance to such a calculation is that the resulting
decay rates are a matrix in the polarization vec-
tors. ) The electron-phonon half-width I',~(|I), on
the other hand, is strongly dependent on whether
the wave vector q lies along a symmetry direction
or not, especially for the transverse modes. This
point is discussed below.

III. ELECTRON-PHONON HALF-WIDTH

The contribution of electron-phonon scattering
to the total phonon width for wave number q and

polarization & is given by

IO
Il

CP
lD

O

Ol- ~
r

I'~p (0.4,0.4,0)

i0' - I' (0202 0)

r,',"(O.i, o.i,o)

I;, (O.Z, O.Z, O)

Ip (O. I O. l 0)

l IO

TEMPERATURE ( K )
IOO

FIG. 3. Plot of I''t(L) as a function of temperature
for q= (0.1, 0. 1, 0)(27t/a), (0. 2, 0.2, 0){2z/a), and
(0.4, 0.4, 0)(2m/a). Curves are a rough interpolation
between the calculated points marked by the circles.
Calculations for these points used an 11664-point mesh
size with & =1&&10 ~ rad/sec. Temperature-independent

lues of I +tot (L) for these three wave vectors are jnd j-
cated by the arrows in the middle of the figure. tInter-
section of these values with the plot of I"~' as a function
of temperature for fixed q defines the crossover temper-
ature &„(see Sec. IV) which is plotted in Fig. 9. ]

.+IV(e)l' ~ '" e(».-e),
(3.1)

where m is the mass of an electron, p the ion mass
density, V(Q) the pseudopotential, R,q the polariza-
tion vector of the phonon, Q=q+6, 6 a reciprocal-
lattice vector, and k~ the Fermi wave number.
See Appendices B and C for further details, in-
cluding a derivation of (3. 1).

A. Temperature and q dependence

In contrast to I'» the electron-phonon half-width
I',~ has a simple temperature and q dependence.
In particular, because the relevant comparison
temperature for these processes, the Fermi tem-
perature Tr, is large (-25000 K) the temperature
dependence is negligible. The q dependence of I',~
is given by

l., q(q ~.,l' (3.2)

in the long-wavelength limit (q & 0. 3x 2w/a). This
result may easily be derived from (3.1) by noticing
that V(Q)- —

& er as Q-O, and that the umklapp
contribution is zero for sufficiently small q. The
second observation is a consequence of the fact
that no reciprocal-lattice vector 6 satisfies the
geometrical constraint 2k~ ~

l q+6I for sufficiently

small q in a material like potassium, whose Fermi
surface does not touch the Brillouin-zone boundaries.
Farther out in the Briiiouin zone (q & 0.3x 2s/a),
where it is necessary to include both the umklapp
processes and the Q dependence of V(Q) in (3.1),
I',~ is relatively insensitive to q as compared to
I'». In particular, Fig. 4 shows that F,~ usually
changes by less than an order of magnitude in this
region.

B. Directional dependence-long-wavelength region
{q&0.3 X 2n ja)

We turn now to the strong dependence of l,~ on
the direction of q in the low-wavelength limit. We
observe that this is the appropriate region of in-
terest;, at temperatures &30 K, i.e. , in the tem-
perature range at which I',~ begins to become com-
parable to I'» (see Sec. IV), thermal phonons will
typically have wave numbers of less than 0.3
x2v/a (cf. Fig. 5).

This directional dependence is determined by
the polarization vectors via the i/ ~ E,, I factor in
(3.2). The dependence is particularly pronounced
in the case of transverse phonons along symmetry
directions where I & ~ &,„l -0 and hence I',~- 0.
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FIG. 4. q-dependence of the electron-phonon half-
width I+ in the [100], [110], and [621]directions for
potassium. As was explained in the text these results
are nearly temperature independent. Degeneracy of the
half-widths I' at the point (1,0, 0)(27I'/a) is exact. At
this point only I Q I

=
I q+ G I

= 27I/a wave vectors are in-
volved in the sum over G in Eq. (3. 1), resulting in the
same value of I'+" for the longitudinal and transverse
modes. A similar degeneracy occurs at (0. 5, 0. 5, 0. 5)
(27I./a) (not shown), where only wave vectors IQ I =0. 866
& 27I./a are involved.
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FIG. 5. Dispersion curves for potassium in the [1 00],
[110], and [621] directions. Curves were obtained by
using a Born-von Karman analysis fitted to inelastic
neutron data. See, for example, Ref. 6(a). Phonon fre-
quencies are plotted in temperature units (i. e. , T=&~/
kz). [100]direction (like the [111]direction which is
not shown here) has two degenerate transverse modes.

Off symmetry directions I',~ are not zero for these
phonons, but this factor still causes the half-width
to be much smaller than for the longitudinal phonons
even when the polarization vector is far from being
transverse. For example, E„has to deviate from
a plane perpendicular to q by as much as 18' be-
fore Iq ~ i,r Is =6, i. e. , before I',~(T) is within
an order of magnitude of I',~(L) (note that I q. e,~ I

lies within a few percent of unity for all q direc-
tions).

In studying the directional dependence of the
transverse phonons via the polarization vectors, it
it sufficient for our purposes to look only at the
long-wavelength limit, i. e. , for q & 0. 3& 2w/a.
In this region the polarization vectors obtained by
a Born-von Karman analysis fitted to inelastic neu-
tron data are roughly q independent and fit smoothly

q„(a/2m)

(a)

2 8 4 8
q„(a/Z7f')

(b)

FIG. 6. I q. &T I for the lower and higher transverse
modes for different values of the anisotropy index s in
the directions defined by q„, q~=2~/a —q„, and q»= 2q~.
These directions correspond to points lying on the line
AD of Fig. 7. Curves were calculated in the long-wave-
length limit using the elastic constants of tungsten for
cf f and c44. c&z was adjusted to change s. For s = 1

(which is the case for tungsten) the system is isotropic
and for both transverse modes I q &7 I =0 for all q. See
the text for further details.

onto those determined from the elastic constants
(i.e. , the long-wavelength limit). In this limit
they depend crucially upon the ratios of the elastic
contants c», c44, and c». In particular their be-
havior is largely determined by the anisotropy
index s which is defined by

'-=(» —ct )/2c44 (3 3)

and whose deviation from unity is a measure of
the system's elastic anisotropy.

C. "Anisotropic" tungsten model

To illustrate the dependence of the polarization
vectors on s we consider a model of tungsten (nor-
mally a bcc metal with s = 1) in which we kept c»
and c44 fixed" and hence left unchanged the longitu-
dinal and transverse velocities in the [001]direc-
tion and varied s above and below unity. (The only
constraint on s, imposed by the stability condition
c«+ 2c,a

& 0, is that s & 3c»/4c« = 2. 4 for tungsten. )
Figure 6 shows the effects of this variation on the
higher and lower transverse polarizations.

In these figures and several others (for potas-
sium) we have used the convention that the direc-
tion of q is determined by the coordinates of the
point on the faces of the Brillouin zone which a ray
in the direction of q would intersect. Since we
restrict ourselves to the ~48 th irreducible part of
the Brillouin zone, this means that all such points
will lie in the plane ANP of Fig. 7. For example,
the [110]direction is specified by the point (2, 2, 0),
the [621] direction by the point (&, 4, —,'), etc.

Figure 6 is a plot of iq ~ Ez&l and Iq ~ &&, I, in
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of reference note that a Debye model would predict
I,~=O for all transverse phonons in the absence of
umklapp processes since it requires Iq - e~ I = 0.
In sharp contrast to the off-symmetry directions,
the electron-phonon half-width for transverse pho-
nons, I',~(T), is zero along symmetry directions
for q- 0 since symmetry then requires I q ~ c~ I =0.
In this latter case I',~(T) therefore can only turn
on at finite q (e.g. , at q = 0.27 M 2w/a in the [100]
direction) when umklapp processes become possible.

FIG. 7, Brillouin zone (in reciprocal space) for a
body-centered cubic lattice (which is the case for. potss-
sium). Prism-shaped volume defined by the points A,
Ã, P, and 1 is the 48th irreducible peart of the zone.
Several points and lines of symmetry are indicated as
well as a few additional points which are referred to in
the text. We choose our coordinate axes so that A

=(~, O, O), ~'=(-,', —,', O) and P=(-,', —,', —,') in units of 2z/a.

the long- wavelength limit, for directions corre-
sponding to points lying on the line AD of Fig. 7,
i.e. , roughly through the middle of the «th ir-
reducible section of the Brillouin zone, We have
not bothered to give a third plot for the longitudinal
polarization vectors since I q ~ Z I. I = 1 for any value
of s.

An examination of Fig. 6 shows that when s de-
viates from unity, large changes oeeur in Iq
~ 0& I along nonsymmetry directions. Furthermore
we would point out but can not explain a kind of
"conjugate" behavior between the behavior of E~„
and &r& as s varies from below unity to above it.
By this we mean that lq ~ R~„I for s &1 looks simi-
lar to the curves of I q ~ Ep, I for s& 1 and vice
ve~sa. For s=1 lq ~ &2„1= Iq ET, I =0 and the two
curves join together.

D. Potassium

lV. I;,-I;, COMPARISON

Figures 9 and 10 summarize the results of our
comparison between I",~ and I'». The solid line in
Fig. 9 is a plot of the crossover temperature T
as a function of wave vector q. It is defined by

I'~tp'(q, X; T,„)= I',"~'(q, X) . (4. 1)

(0
q~(a/2') ~

I

4
Qp

j 4
J. qz4

As we have discussed in See. III, the eleetron-
phonon half-width I,~ is independent of temperature.

The solutions to (4. 1) were obtained graphically,
with necessary interpolations being made between
the points (q, T) for which we have calculated I'».

Potassium corresponds to a value of s=0. 131.
Qn the basis of Fig. 6 we are led to believe that
the deviations of lq ~ &2, I from zero will be much
larger than the deviations of Iq E»l. This con-
clusion is borne out by detailed calculations using
the correct elastic constants for potassium.
The results are shown in Fig. 8, where we have
plotted equal-value" curves of lq ~ z~j as a func-
tion of direction within the « th irreducible part of
the Brillouin zone. The convention for determining
the direction is the same as is used for Fig. 6.

Figure 8 clearly shows that while the higher
transverse mode (T„) is almost always close to
being purely transverse in all directions, the Eosoer
transverse mode (T,) deviates quite a bit with Iq
~ E»l -0.3 over most directions which are not lines
of symmetry. Consequently l,~ for the lower trans-
verse mode retains a surprising amount of strength
even in the q-0 limit [see Eg. (3.2)]. As a point

QA ~q„(o/27r)

0
2 I

FIG. 8. "Equa1.-value" curves of I q ~ && I in the
long-wavelength limit for potassium as a function of di-
rection (within 48 irreducible part of the BriHouin
zone). The notation used for direction is explained in
the text. Points 1,abeled by the circled letters, A, N,
and & refer to the directions IA, I&', and IP indicated
in Fig. 7. We remind the reader that g~=27I/a-q„ in
these plots. Triangular-shaped region in the upper left-
hand corner gives values for the higher transverse
branch and the lower right-hand region gives values for
the lower transverse branch. In order to save space we
have labeled the various axes in such a way that the two
triangular regions are mirror images of each other,
Intersection of the [621] direction with the A& I' plane is
labeled by a triangle (4).
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FIG. 9. Rough comparison between rptpot and riot as a
function of temperature and wave number. Solid curve
is a crude estimate of the crossover temperature T~,
for which I'~ =1~ at fixed q. At temperatures less
than T (the shaded area in the figures) 1" &I'&&t. At
temperatures greater than T~ the reverse is true,
I'~ot & I'&&t. In each figure, the curve passing through
the three calculated crossover points (indicated as cir-
cles) is included as a guide to the eye. Note that in (b)
the circles all lie on the abscissa, indicating, that with-
in the accuracy of the calculations, I'~&I'+. See, for
example, the calculated rates for the point (0.4, 0.4, 0)
(27I /Q) ln Flg. 3 ~

A typical example is shown in Fig. 3. At tempera-
tures below the solid line T,„(q), i.e. , in the
shaded area of the figures, I',"~'(q) &1"~~~'(q, T) For.
temperatures above the solid line I",~ (q) & I'~~'(q, T).
In those cases where, within the limited accuracy
and range (in q and T) of the calculations, the pho-
non-phonon rate always exceeds the electron-pho-
non one as in Fig. 9(b), T„(q) is then set equal to
zero. Figure 10, which compares the umklapp
contribution to the phonon-phonon half-width I'~~

with I',"~', uses the same conventions as Fig. 9.
The reader should be warned that a detailed corn-
pax'ison is more complex than is suggested by these
figures. We shall return to this point shortly.
Furthermore, the accuracy of the numbers for l"»
at low temperatures is not known very well (see
Appendix A) and better calculations may eventually
cause the curves to shift. Since our experience
with the effects of mesh size leads us to believe
that in most cases we overestimate I"», if there
is a shift it should in most cases pxobably be up-
ward for T (q).

For the longitudinal phonons the graphs in these
figures are based on calculations of I"» and I',~
in the [110]direction. This direction is singled
out because, as noted earlier, it is the only sym-
metry direction that has three nondegenerate pho-
non modes. (We remind the reader that we have
not calculated I'» in nonsymmetry directions. )
For the transverse phonons the graphs ax'e again
based on calculations of I'» in the [110]direction,
but this time I',~ is taken from calculations in the
[621] direction [where we have solved (4. 1) for the
same magnitude of q]. The reason for choosing
the [621] direction is that it lies roughly in the mid-
dle of the ~48 th irreducible part of the Brillouin zone

l7Q-

l60-

I0-/~/

iqj (2~/a)

(a)

30-

r (Th)
20-

0.2 0.4
I qj {2~/a)

IO-

I qi {2~/a)

(c)

FIG. 10. Bough comparison between the umklapp con-
tribution to the phonon-phonon half-width X'&U& and 1 &tt.
Solid curve is a crude estimate of the crossover tem-
perature T at which 1~tt =I"pp at fixed q. At lower
temperatures (the shaded area in the figures) 1t &T&~&

and at higher temperatures 1 ~to&t & I'~+. Curve sketched
through the three points marked by circles in. each fig-
ure is included to guide the eye. Note the break in the
vertical scale of (a).

and may be considered to give a "typical" value
for I',~(T). There is no point in using the [110]
direction for I',~ for transverse phonons since it is
zero in the long-wavelength limit. Since I',~ is es-
sentially independent of direction for longitudinal
phonons in the long-wavelength limit (this is a con-
sequence of the empirical fact that j q ~ &~ j -1 for
all directions) no such problem arises in the longi-
tudinal case.

From this discussion it is clear that Figs. 9
and 10 represent only a rough estimate of how I"»
and I',~ compare at different values of q and tem-
perature for "typical phonons. " Direction plays
an exceedingly important role for the transverse
modes. Along certain symmetry directions I"»(T)
is always greater than I',~(T) even at zero tem-
perature, whereas away from symmetry directions
the situation may reverse with I'»(T)» I'»(T}.

The picture that seems to be emerging from these
calculations is as follows. At high temperature,
say above 30 K, I'» dominates I',~ and the phonon
system will be in equilibrium with itself. It is in
this region where it is permissible to use Bloch's
"Annahme, "which states that the phonon distribu-
tion function can be taken to be that of the equilib-
rium phonon distribution. ~

In the region below 30 K, say down to 1 K, the
situation becomes complex. The coupling to the
electron system via I',

~ will be of the same order
of magnitude as the coupling among the phonons
via l». If, for example, momentum is fed into
the electron system via an electric field, this map
lead to a steady-state phonon distribution function
which has a net momentum associated with it. Any
attempt to figuxe out whether this will ox' will not
happen is complicated by the f".ct that some modes
may be in thermal equilibrium while others are
strongly "dragged" by the electron system. For
example, at 10 K Fig 9 predicts that I" I'"



for longitudinal (thermal) phonons whereas I",~"

& I'~~' for the transverse (thermal) phonons. The
situation is even further complicated in the partic-
ular case of "drag" effects in the electrical con-
ductivity, where it is important to consider also
the strength of the umklapp contribution to the pho-
non-phonon half-width I'~~~, which at 10 K is less
than I',~ for all three modes. This raises the pos-
sibility that, although the phonons for some modes
scatter among themselves more rapidly than against
the electrons, nevertheless they might not be able
to get rid of the extra momentum passed on to them

by the electron system because there are insuf-
ficient umklapp collisions to dissipate the momen-
tum. Finally it is once again necessary to re-
member that I",~ is zero along certain symmetry
directions so that the phonons are always in equi-
librium among themselves near these directions.
These phonons ~&y ultimately act as sinks for
the momentum by some sort of "convective" process
(in momentum space) whereby the phonons in other
directions with small umklapp rates relative to
electron-phonon scattering are eventually able to
dissipate, by normal scattering into these sym-
metry directions, the momentum acquired fxom
the electron system. At temperatures below 1 K
this kind of process may be the dominant mecha-
nism for removing momentum from the system.

V. COMPARISON WITH RUBIDIUM AND ALUMINUM

We tuxn finally to the question of whether the
analysis for potassium is unique, or whether it
may also apply to other simple metals. Here we
briefly examine the crystal dynamics and electron-
phonon scattering rates of rubidium and aluminum.
Our chief reason for selecting these two paxticular
examples is the existence of calculations and some
experimental measurements of the phonon spec-
trums, phonon-phonon half-widths (albeit at higher
temperatures and larger wave number than we
would like), and electron-phonon half-widths of
these two materials. We find that, for one of these
metals, rubidium, our analysis is almost identical
to that for potassium, whex"eas for aluminum it
may turn out that phonon-drag effects are negligible.

A. Rubidium

I

04-

I I I

[801
I 1 I I

j62~1

o 0.3

O
4

O
0—0.2

0"r~

to the different ionic masses (vn, », -M '~2). The
Debye temperature of potassium is 91 K and is
56 K for rubidium.

The phonon-phonon half-widths of rubidium at
high temperatures (100, 200, and 300 K) were cal-
culated by Copley, '9 and are readily compared with
the high-temperature (92, 215, and 299 K) phonon-
phonon half-widths for potassium calculated by
Buyers and Cowley. Although there is a great
amount of variation from wave vector to wave vec-
tor when comparing the two sets of data, the over-
all trend appears to be that I'» for rubidium typ-
ically has a value about 60% of that for potassium
at the same q, polarization branch, and similar
temperatures (e.g. , we compared the 92-K re-
sults for potassium with the 100-K results for
rubidium, etc). The deviation between the I'» for
the two alkali metals is least at small q (- 0. 2
&& 2w/a).

Using various approximations (e.g. , using an
isotropic Debye-like phonon spectrum) Kashcheev
and Krivoglaz show that I'-

I @I C 5 T in the high-
temperature limit (T»0). C' is defined in Appen-
dix A, Ett. (A1), ' and has an explicit ionic mass
dependence of M '~2. C is the sound velocity and
has an ionic mass dependence C- M ~~~. Conse-
quently we mould expect l - M '~, all other things
being equal. This result agrees mell with the over-
all trend observed in the comparison between ru-
bidium and potassium for the calculation of I'».

The electron-phonon half-widths for rubidium
are shown in Fig. 11. They were calculated in
the same manner as for potassium [Eq. (3. 1)j.
The chief difference is a scale reduction (about
48/o) which follows from the fact that I",~- M ',

Like potassium, rubidium has a bcc crystal
structure and is monovalent with a Fermi surface
which, although slightly more distorted than that
of potassium, is approximately spherical and does
not cut any zone boundaries. The chief diffexence
between potassium and rubidium appears to result
from the different ionic masses (39.1 amu for potas-
sium and 85. 47 amu for Rb). The similarities
between the two materials shows up clearly in a
comparison of the phonon spectra, which are es-
sentially identical'8 except for a scale change due

0.5 Q4 0.2 0
f (2wla)

0.2 04 06 0,8 I.O 0 0.2 0.4 06 0.8 I.O

6(2w'~a) I q I (2m'~a)

FIG. ll. q dependence of the electron-phonon half-
widt s for ~y~dg&m in t e [llo], tl 00], and f62l]
directions. Sharp discontinuities in the curves represent
umklapp processes turning on. Because these onsets
are determined by purely geometrical considerations,
they occur at the same place (in units of 27t/a in q
space) as they do for potassium, which also has a bec
crystal structure.
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the normal contribution and the total electron-pho-
non half-widths. Our values for normal contribu-
tion I',"~ are roughly comparable to the total half-
widths calculated by Bjorkman et al. , who state
that in their calculation the main contribution
comes from normal processes. Our calculations,
however, give a large contribution from umklapp
processes. This difference between our results
and those of Bjorkman et al. probably means that
their effective pseudopotential was much weaker
than ours at q= 2k~. As Fig. 12 shows, I',"~ ranges
from 1x10t' to 2x 10" rad/sec, whereas including
umklapp processes I',"~' can get as high as 10'3 rad/
sec for q & 0. 2x 2v/a, These results suggest that
I",~" is roughly between a fifth and a half of l,„,,

and hence I",~ is starting to become comparable
with I'~~" for longitudinal phonons at 80 K. We re-
mind the reader that D, », = 430 K for aluminum.

As we mentioned earlier, the relative size of
the umklapp contribution of I',~ is important for
determining the possibility of phonon drag in alu-
minum. Our crude calculation, in contrast to that
of Bjorkman et al. , suggests that this contribution
is rather large. To determine this point it is
necessary to do a better job in calculating I",

p that
we have done. Specifically, both a more accurate
matrix element and the distorted-Fermi-surface
shape must be taken into account. We conjecture

that the resulting umklapp rates will be sufficiently
large to bring quickly the phonons into equilibrium
with the lattice so that the phonon-drag effects will
be negligible, but we will not be surprised if this
very preliminary analysis has missed some im-
portant point.
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APPENDIX A: CALCULATION OF PHONON-PHONON
HALF-WIDTHS

The phonon-phonon half-widths were calculated
using the standard formula

I'(kX~») = „Z 6(-k ~k, ~k2)x „' ' [-( +nn2+1) &(++ ad, + +2)
v8 ~ - - - (C(-kX;k&X,;k,Z, )('

16lq(d kA.

+ (n~+n2+ I) 5(e —
m&

—~2) —(n& —na) 5(&u —sr&+ v2) +(n& —n2) 0(~+ rut+ (d2)] . (Al)

C'(-k&; k,&, ; k2+) was calculated using a centro-
symmetrical potential. 2' The effective potential
V(l r I) and its spatial derivative were used directly,
and the lattice sums were done in coordinate space
using three shells of nearest neighbors. For a
comparison between the advantages of using real-
space versus reciprocal-space lattice sums see
Koehler et ~l to

The potential used is that of Buyers and Cowley.
To put it into the proper form for our calculations
the following procedure was used. Figure 2 on
p. 758 of the Buyers and Cowley paper was photo-
graphed and enlarged to determine G(q), which is
related to the interionic potential V(q) by the for-
mula

G(q) = (q'/z'e') V(q) . (A2)

To obtain the real-space potential V(r) this expres-
sion was Fourier transformed as

z2 2 2 " '
8

7T p

The results for V(r) and its spatial derivatives are
shown in Fig. 13 and Table IV.

Once the potential is calculated the numerical
determination of the phonon-phonon half-width I »
for a phonon l by three-phonon processes is deter-
mined in the usual fashion by an integration pro-
cedure over the other two phonons l' and l". We
use here the abbreviated notation that l stands for
the polarization of the phonon mode (longitudinal,
L; higher transverse, T„; lower transverse mode,
T,), the wave vector q, and frequency &u(qX). In
particular, we construct a uniform cubic mesh in
the irreducible P~th volume of the first Brillouin
zone. The value of q' (the wave vector of phonon
I') is determined by methodically selecting points
from this mesh. Symmetry operations enable us
to cover the entire zone. The wave vector for
phonon l" is constructed by conservation of crystal
momentum. If q" lies in the first Brillouin zone,
the contribution of this process is labeled normal.
If it is necessary to reduce q" to the first zone by
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FIG. 13. Plots of the effective potential V(r) and its
first four derivatives for potassium, for which points
the numerical values are reported in Table IV. Lattice

0
constant a = 5.2259 A. Arrows indicate nearest-neighbor
positions. Circles represent the values reported by
Cowley, Woods, and Dolling, Ref. 5(a), p. 490, Table
II. V(r) is in units of rydbergs, V'(r) in 10 6 ergcm-~,
V"(r) in 10' erg cm, V"'(r) in 10' ergcm", and
V""(r) in 10' ergcm+.

the sharpness of the conservation law and 4~
= ~+ ~' —~", for example. In the limit E- 0, this
weighting factor is equivalent to the 6 function.

Two points should be made regarding this
weighting function. First, each of the three pho-
nons involved has a width. Consequently one ex-
pects contributions from phonon processes when
~~ is less than or comparable to the largest width
of the three phonons involved, with a stronger
weighting being given to those processes where 4~
is closer to zero. This sets a scale for E. Sec-
ond, even if the phonons had no width, for practical
considerations some sort of approximation would
be required for the ~ function representing con-
servation of phonon energy in order to do the in-
tegrations numerically. ~'

The size of c plays an important role with regard
to the second point. As E is reduced, fewer points
in the integration mesh will give a significant con-
tribution to I'», and the sampling over the region
where the integrand is large will become worse,
leading to a greater error in the numerical integra-
tion. To offset this problem it is necessary to use
a finer mesh when & is reduced. This point brings
us to crucial problem of mesh size which, as we
will subsequently show, becomes the limiting factor
which determines the range of temperature and

wave vector over which our calculations are fea-
sible.

There are two relevant aspects to this problem.
he first is numerical in nature. We need a suf-
ciently fine mesh for an accurate numerical inte-

gration. This size depends not only on the value
of E but also occasionally on the size of q as well.
For example, at low temperatures and for small
q the largest contribution to the integrand occurs
for q' and q" =—0. This requires a fine mesh in
order to get an adequate sampling of the q'-0 re-
gion. The second aspect, which is related to the
first (the numerical aspect), concerns the physics
of the calculation via the importance of choosing a
reasonable value of E. As we have noted earlier,
E should be of the order of magnitude of the full
width of a typical phonon involved in the three-pho-

a reciprocal-lattice vector it is labeled umklapp.
Once the wave vectors of l' and l" are established
the appropriate eigenvectors, phonon frequencies,
thermal factors, matrix elements, etc. , are cal-
culated to give the contribution to I'»(l),

For our purposes it is important to realize that
conservation of phonon energy is achieved via a
weighting factor

1
5 6(d) =-

7f (6(d) + f

where E is a parameter which gives a measure of

1st neighbor 2nd neighbor 3rd neighbor

V'(r)
V" (r)
V"'(r)
V

IIII
( )

—5.41x10
2.44~10'
3 67x10
1.41x10

3.83x10
3.92x10
2. 04x10
2. 77x ] 0~~

9.28x 10
—2. 39x 10

2. 75x 10io

4. 30x 10

TABLE IV. First four derivatives of the effective po-
tential V(r) for potassium evaluated at the first three
nearest-neighbor distances, &th derivative is in units
of erg/cm". Lattice constant used in the calculation of
the phonon-phonon half-widths was a = 5.2259 A. Mass
of the potassium ion was taken to be 6.4922&&10 g.
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FIG. 14. Number of scattering processes with a given
energy difference plotted as a function of how much they
deviate from satisfying energy conservation (6K). Plot
was derived from a calculation of the phonon-phonon
half-width for q=(0, 05, 0, 0) (2~/a) for the longitudinal
branch using a value of & =lx10 rad/sec and a mesh
size of ll 664 points in the Brillouin zone. Dashed line
in the figure is proportional to b(Bc') [Eq. (A4)] and is
provided as a point of reference.

non processes. In the low-temperature limit the
widths drop sharply, which requires a very small
value for c and hence a fine mesh. With regard
to this last point we are in the unfortunate position
of needing the low-temperature limit (of the order
of 1 K in comparison to a Debye temperature of the
order of 100 K) of the phonon-phonon half-width
I » since it turns out that it is in this lixnit that
the electron-phonon half-width I',~ becomes com-
parable to I'».

In our actual numerical calculations two dif-
ferent mesh sizes and values of & were employed.
The largex mesh contained 1024 points in the first
Brillouin zone and was used with a value of E

=6. 5&& 10" rad/sec (equivalent to 5 K in tempera-
ture units). The finer mesh contained 11664 points
and was used with a value of e = 1& 10" rad/sec
(1 K}. In each case the value of c was chosen to be
as small as possible without damaging the accuracy
of the numerical integration.

At high temperatures (&90 K} and large wave vec-
tor ( &0.2 x 2v/a) these mesh sizes and values of
& are quite reasonable. Furthermore, for q
= (0. 2, 0. 2, 0) (2v/a) and (0.4, 0.4, 0) (2v/a) at 92
K our values of I'~t~"(T„) using 11 664 points in the
Briiiouin zone (& = 1&&10"rad/sec) are essentially
identical to those of the calculation of Buyers and
Cowley using mesh sizes of 1000 and 2000 points
(e =6.5X 10" rad/sec), suggesting that the calcula-
tions are roughly independent of mesh size and &

in this region.
At the lowest temperatures (- 1 K) and the small-

est wave vectors (-0. 5&& 2v/a) for which we have
calculated, however, neither of these meshes are
sufficiently small to give completely reliable re-
sults. The finer of our two meshes, for example,
corresponds to a spacing between points of the or-
der of 0. 04&&2v/s. The values chosen for e are
roughly equal to 5 and 1 K in temperature units,
and are much larger than typical phonon-phonon
half-widths for T5 30 K (cf. the half-widths in
Table III with the above values of e).

A good example of the problems that using such
a large value of & can lead to is shown in Fig. 14,
in which the number of scattering processes are
put into bins according to how much they deviate
from satisfying energy conservation (A&u). If the
number of scattering processes N(n. &u) in the bin
4~ is approximately constant over the range of
the weighting factor of (A4), i.e. , of the order of
5&, then the weighting factor will correctly give a
much stronger weighting to processes which more
closely satisfy energy conservation. If, on the
other hand, N(h~) grows rapidly with h~ as is
shown in Fig. 14, then too much weight wiU be
given to processes which do not satisfy energy con-
servation very well.

Empirically we find that the effect of using too
large a value for e (and too coarse a mesh) leads
to an overestimate of I"». This effect is clearly
demonstrated in Table V where we show how I'»
and I'~~ vary with mesh size at 1 K. For example,
I'~'„' for $ = 0. 05 ' 2v/a in the [)$0] direction drops
one order of magnitude as the mesh size (and e)
is changed from 1024 points (6. 5&& 10" rad/sec) to
54000 points (5&&10' rad/sec). '

At low temperatures and small q the mesh-size
and E problems ale not solved easily. For exam-
ple, by using a uniform mesh even small changes
in the mesh spacing lead to a dramatic increase in
the number of points in the Brillouin zone. Also,
in changing e from 6. 5X 10" to 5&& 10'0 rad/sec we
note that we were forced to go from 1024 to 54000
points in the Brillouin zone in order to get a rea-
sonably accurate numerical integration. To get
around these problems it is probably necessary to
use a different integration scheme, such as a
Monte Carlo program or a logarithmic mesh which,
in contrast to a uniform-mesh integration scheme,
does not waste a lot of computer time in regions
where the integrand is negligible.

APPENDIX 8' DERIVATION OF EXPRESSION FOR
THE ELECTRON-PHONON HALF-WIDTH

I;„(q'A)

As a natural starting point we observe that the
electron-phonon collision operator for phonons is
given by the Golden Rule (first-order perturbation
theory) to be"
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2 p JIM (k —k')I's(k' —k+q+G) x5(&,, —e, +k&u„)ff(e„,) [I -f(&„)]n(~,&)
coll kl!' o

-f(e.)[1 -f(e~ )][1 + n(~,.)l) (Bl)

+ K(u„) [f(&,,) —f(e,)]an(~,i) .
(B2)

In this and all subsequent formulas f(c,) is under-
stood to be the equilibrium distribution function,
i.e. , f(e,)=[e~ 's +1] '. Furthermore, in the
relaxation-time approximation 1/T, ~(q, X) is de-
fined by

—b n((u, „)
s —hn((g, q)

coll T ~(q X)
(B3)

The notation used here is fairly standard. M„(k —k')
is the matrix element (to be given later), k and
k' are the wave vectors of the electrons, 0 is a
reciprocal-lattice vector. The distribution func-
tions for the electrons and phonons are, re-
spectively, given by f(c~} and n(~J. The sum over
spin contributes the factor of 2 before the summa-
tion. The two terms in (Bl) correspond to the pro-
cesses depicted in Fig. 15.

Using Eq. (Bl) we may now easily derive an
expression for I',~(q, X). To do this we first ob-
serve that in equilibrium the collision operator is
identically zero. If an additional phonon of wave
vector q and polarization X is then introduced into
the system, i.e. , for n(&u,~)-n"""(z,~)+An(v, „),
the collision integral becomes

(
—bn(&u, ) = P g M (k —k')I

oo 1 1 @ kk' 0

xa(k —k'+q+G) 5(e, . —e,

Furthermore we can identify our Golden-Rule
calculation of I/ T~(q, &) with the imaginary part
of the phonon self-energy due to the electron-pho-
non interaction I',~(qX) by the expression

)
= 2I',~(q, X}.

T,~(q, X
(B4)

=—'p JIM„(k-k')I n(k'-k+q+c)
kk"' 0

x5( „k „„)[f(„) f(,)]. (B5)

In the pseudopotential approximation for a simple
metal like potassium the squared matrix element
for scattering between plane-wave states k and k'
is given by'

(k-k')I'=
I
v(k-k')

k') 'ea-a', ~l (B6)

where Vl (k -k'} I' is the pseudopotential, M is the

Compare, for example, our result for longitu-
dinal, long-wavelength phonons (B8) with the same
limit for the imaginary part of the self-energy de-
rived by Kokkedee" [Eq. (5. 11) of his paper].
Using (B2)-(B4) we then have

1

( )
= 2I',~(qX)

TABLE V. Effect of the change in mesh size and the value used for e on the
phonon-phonon half-widths. Value of & used for the 1024-point calculations
was 6. 5&10 rad/sec (5 K in temperature units); for the 11664-point mesh
size & =1 && 10 rad/sec (1 K); and finally for the 54 000-point mesh size &

was set equal to 5&&10 rad/sec (0. 5 K). All the half-widths were calculated
for a temperature of 1 K.

Number of points
in Brillouin zone

q
(27}./a)

~tot l tot stot 1 U ~U 1 U
L Th T) I Th T)

(10 rad/sec) (10 rad/sec)

1 024
11664

1 024
11 664

(0.1,0, 0)

(0.2, 0, 0)
20
10

1
0. 2

Th T1

5
1

TA —
1

0, 2

0. 04

2

0. 3

0. 5
0. 009

0.6
0. 09

1 024
11664
54 000

(0. 05, 0. 05, 0)
2

0 4
0.2

0. 5
0. 1
0. 05

1
0.2

0. 1
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k
The energy integrals then trivially give

J QI g+S(d ~
—f~

FIG. 15. Processes contribution to I'+. (a) An
electron with wave vector k scatters into a state with
wave vector k e~itting a phonon of wave vector q.
(b) An electron with wave vector k' absorbs a phonon of
wave vector q while scattering into a state with wave
vector k, Process (a) tends to increase the phonon pop-
ulation &'(a~) while process (b) tends to decrease +(~~).

ionic mass, and N is the number of cells per unit
volume. In our calculations we have used the Ash-
croft pseudopotential for V(ik —k~i) with R, =1.13
A for potassium~ ~o=1.27 A. for rubidium and &o
=0.59 k for aluminum" (see Fig. 16).

For a free-electron-like material which has a
spherical Fermi surface that does not intersect
the Brillouin-zone boundaries, such as is the case
for potassium, the integrations in Eq. (84) are
straightforward. See Appendix C for the details.
The final result is

m2
, Zl v(Q)l' -" e(2k. -Q),

2 mph
'

o I q I (E7)'

where Q =q+0, p is the ion mass density, and

e(x} is the umt step function. In the long-wave-
length limit (q- 0) for longitudinal phonons, using
Iq R,~i -1 and V(Q)- —

& e~, we have the simple
result that

21',~(j, 1.) = ~~ v(m/M) v~ q .
We wish to thank Bill Buyers for his assistance
in making the correct connection between our cal-
culations for this rate and those of him and Cowley
reported in Ref. 20.

APPENDIX C: INTEGRATIONS IN EQ. (82) OF
APPENDIX B

In particular we need to integrate the expression

IV(k k'
I l(k-k') e,„„l'~(k'-k+q)

kA ™A-0 '}t

&a —@~qx-

= A(dq) A'g, (c2)

(2v)3 6 3(k' —k+ Q)
Avp AS~ g

an Jso,. 5'(r, '-r, +g). (c

In these integrals both k and k' have a magnitude
equal to k~. Observing that

&'(k'-k+Q) =&(lk'I —lk-41) &(n, -nf -.)/k',

=n(k,
l k-ql)t(n„n„, )/k-2„-

(c4}
Equation (C3) hecomes after a trivial integration
over +y~

z 2" d(cos8) dq 5(kr —(k2r+Q2 —2k~Q cos&}'~~)
h~vm~

(c5)

q/2kF
Oa&o.& o.6 or' ~~i.o

-0.4
eu)rn

~ -O.6

The remaining surface integrals over the two Fermi
surfaces may be done as follows:

&~(&a +h~,.—&a) lf(&a ) -f(&a)l

For a spherical Fermi surface that does not in-
tersect the Brillouin-zone boundary it is useful to
divide the integxals of k' and k into the usual sur-
face and energy integrals

FIG. 16. Plot of the pseudopotentials that were used
in the calculations of the electron~honon half-widths
for potassium, rubidium, and aluminum. They are all
Ashcroft pseudopotentials with R~ =1.13 A for potassium,
R~ = l. 27 A for rubidium, and R~ = 0.59 A for aluminum.
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