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In this paper we present a coherent physical picture of the electronic structure and the transport properties of
alkali-tungsten bronzes, M+WO„over the entire concentration range X = 1-0 of the alkali atoms. We
propose a model based on nonrandom clustering of the alkali atoms into metallic regions characterized by the
local atomic fraction X, „=1. Provided that the M-M correlation length b considerably exceeds the lattice
spacing, we can define a percolation problem in which a volume fraction C = X of the material is occupied by
the metallic regions, the remainder consisting of semiconducting regions. The threshold C~ 0.17 for
continuous percolation marks the onset of the continuous metal-nonmetal transition in this microscopically
inhomogeneous material. This physical picture is borne out by the available magnetic data. A semiquantitative
calculation of the cluster stabilization energy with respect to the dispersed phase suggests that a negative
surface energy exists between MW03 and WO, within a coherent WO, lattice. b is determined by the cluster
size at which the metallic clusters begin to lose that stabilization energy. The Madelung energy provides a
barrier against penetration of the electrons into the nonmetallic regions. Tunneling corrections are therefore
negligible and we can define local electronic structure and transport properties. An analysis of the electrical
conductivity data was carried out by utilizing the results of numerical simulations of the conductivity in
simple-cubic lattices which incorporated correlation between metallic bonds. The numerical results were
modified to account for scattering from the boundaries of the metallic regions. For low values of the
conductivity ratio (- 10 ) between the nonmetallic and the metallic regions, the effective-medium theory,
modified to account for boundary scattering eAects, faithfully reproduces the results of the numerical
simulation for C ~ 0.4. An excellent fit of the available experimental conductivity data in the range C = 0.9-0.22
and over the temperature range 4-770'K has been obtained. In the process we found that the M-M
correlation length is temperature independent and has the value of b 45 A. The Hall effect and the Hall
mobility were successfully analyzed utilizing a modified effective-medium theory.

I. INTRODUCTION

The physical properties of tungsten bronzes
MX%03 have been studied since 1823. ' These ma-
terials are nonstoichiometric compounds with
metal atoms of atomic concentration X partially
occupying the simple cubic interstitial sites which,
together with the %03 sites, make up a perovskite
lattice. In particular, the alkali-tungsten
bronzes have been studied extensively over the last
25 years. ' The electrical conductivityv ' and
Hall effect "of I ix%03, Nax%0„and KX%0„
0.2&X&1, exhibit variations with X characteristic
of a metal-nonmetal transition at X ~ 0. 2. The
conductivity, Fig. 1, shows practically no depen-
dence on species of alkali atom or structural modi-
fication of the lattice. Above X= 0.4-0. 5, o in-
creases linearly with T, T& 20'K, and da/dT de-
pends weakly on X. For X&0. 1, an activated
temperature dependence of 0 was observed. ~ The
Hall coefficient B increases gradually with de-
creasing X down to X= 0. 4, increasing more rap-
idly for O. 3~X» 0. 2, Fig. 1. Gardner and Daniel-
son fitted their Hall-effect data for 0. 5&X&1 to
the approximate relation R ~X ' following from the
free-electron model. However, Lightsey's more

recent data' for 0. 22&X&0.4 increase more
steeply than predicted by the free-electron model.
Semiquantitative studies' of the optical properties
of Nax%0, show striking changes between X=0.15
and X=0.20.

The variations of both the spin susceptibility and
the specific heat'3 '5 with X are incompatible with
the free-electron model. ' The values of the vol-
ume spin susceptibility calculated from the avail-
able experimental data, v'3'~ Fig. 2, indicate a
lineax dependence of the density of states at the
Fermi energy Ez on X and not the X'~ dependence
expected from the free-electron model.

The low Na Knight shift ' observed for X&1
indicates that the electrons have become dissoci-
ated from the alkali atoms. Detailed studies of
transient NMR from Na, and W by Fromhold and
Narath' ' indicate that the electrons are trans-
ferred into states derived primarily from % 5d or-
bitals as proposed originally by Sienko. It was,
however, pointed out by Mackintosh that the NMR
properties of Na in Nax%03 are very similar to
those of Be in beryllium metal, where the long
relaxation time T, and the small negative Knight
shift originate predominantly from a p-type band.
Thus the NMR data' ' for sodium-tungsten



714 WEBMAN, JORTNER, AND COHEN 13

—1.4

25—
12— —1.2

10— 20— —I.O

8 — ir.

&15—

6——
10—

IE—0.8 ™
—0.6 =

b

—04

—0.2

Q.Q
0.2 0.4 0.6 0.8 1.0

X

FIG. 1. Electronic transport data for alkali-tungsten
bronzes at 300'K. 0 data: &, ', cubic LixWO3 (Ref. 6);
o, cubic NaxWO3 (Ref. 8); ~, cubic NaxWO3 (Ref. 9);
~, cubic NaxWO3 (Ref. 10); +, tetragonal NaxWO3 (Ref.
6); +, tetragonal KxWO3 (Ref. 6). R data for cubic
NazWO3. a, (Ref. 9); a, (Ref. 10). p data for cubic
Na+WO3.. ~, (Ref. 9); 4, (Ref. 10).

inhomogeneity of the ' W nuclei.
We are thus led by compelling experimental

evidence via the penetrating analysis of Fromhold
and Narath' ' to a picture of the a.lka, li-tungsten
bronzes closely similar to the picture of the metal-
ammonia solutions (MAS) we have recently devel-
oped. Both consist of metallic regions of corre-
lation radius b randomly mixed with nonmetallic
regions. We have systematically investigated the
transport and other properties of such microscopi-
cally inhomogeneous materials ' which undergo
continuous metal-nonmetal transitions. We have
developed quantitative theories of their electronic
properties and applied them successfully to the
interpretation and ordering of relevant data in ex-
panded liquid Hg, liquid Te, MAS, and some liquid-
alloy systems. '

This model of a random distribution of metallic
regions having a correlation radius b within which
X remains unity leads to an interpretation of the
metal-nonmetal transition in terms of a threshold
for continuous percolation and rules out the pos-
sibility of a Mott transition, as the conduction
electrons are always in regions which are locally

bronzes do not provide unambiguous evidence for
complete electron transfer to the W 5d band.
Theoretical evidence pertaining to the nature of the
electronic structure of these materials comes from
the band-structure calculations of Matheiss on

Ko M, Mo03, which is presumably very similar to
NaxWOS. These augmented-plane-wave (APW) cal-
culations show that the Mo d bands are located be-
low the K s and p bands. Furthermore, the elec-
tronic structure proposed for KMo03, where the
electrons are transferred into states originating
from Mo 5d orbitals, accounts well for the ex-
perimental data for the de Haas-van Alphen effect
in Nao 93Mo03 and Ko ~MoO„supporting the Sienko
model for the electronic structure of the alkali-
tungsten bronzes.

The transient NMR data of Fromhold and
Narath' ' indicate that there is substantial cluster-
ing of the Na atoms and not a uniform random dis-
tribution of Na atoms over simple-cubic intersti-
tial sites. Indeed, their results"' suggest a
model in which substantially all of the Na atoms
are clustered into sizable regions of local atomic
fraction X= 1. The lack of dependence of Knight
shift and relaxation time on X for the Na nuclear
resonance and the linear dependence of the specific
heat and spin susceptibility on X all indicate such
a model. The observed inhomogeneity of the en-
vironments of the Na nuclei reflects the presence
of surface and interior atoms in the clusters. Sim-
ilarly, there are interior, surface, and exterior W

nuclei, consistent with the observed environmental
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FIG. 2. Concentration dependence of the paramagnetic
susceptibility of alkali-tungsten bronzes. The experi-
mental molar susceptibility X of M+WO& was analyzed by
setting X~ = &, + X(WO3) + Xy(M'), where X(WO3) = —21 && 10
emu/mole is the molar susceptibility of pure WO3 (Ref.
13), X(Li') = —0. 7&&10 emu/mole, g(Na') = —6,.1&10 6

emu/mole, X (K') = —l4. 6 &&10 emu/mole, and g(Rb')
= —22. 0 &&10 emu/mole are the molar susceptibilities
of the alkali cations [C. Kittel, Introduction to Solid
State Physics (Wiley, New York, 1953)]. &e is the
molar susceptibility of the conduction electrons. The
volume spin susceptibility is g" =)(,/V, where the molar
volume is V=La /X and L is Avogadro's number. The
lattice constant [B. W. Brown and E. Banks, J. Am.
Chem. Soc. 76, 963 (1954)) is a=3. 785+0. 082X A. Ex-
perimental data: D, LixWO3 (Ref. 13b); ~, NaxWO3
(Ref. 14); o, Na+WO3 (Refs. 7 and 13a); &, KzWO3 (Ref.
7); ~, Rb+WO3 (Ref. 7).
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metallic.
The notion of a percolation threshold in this sys-

tem was first introduced by Mackintosh. He pro-
posed that the electrons moved through 3p states
on randomly distributed Na atoms and that metal-
lic conduction occurred above the percolation
threshold for the site-percolation problem so de-
fined on the simple cubic lattice of Na sites. This
site-percolation model has been further developed
by Fuchs, ' who supposed the electron to be re-
stricted to the vicinity of the Na atoms without
specifying the detailed nature of the wave functions.
He considered the Na atoms to be randomly dis-
tributed over the interstitial sites and developed
approximate expressions for the conductivity based
on percolation theory and interaction of the conduc-
tion electrons with "Na vacancies. " He also sup-
posed the Fermi level to be fixed by the require-
ment of close correlation of electrons with Na
atoms leading to a density of states proportional to
X, in agreement with magnetic and heat-capacity
data. There are serious difficulties with the
microscopic aspects of Fuchs' picture, but it con-
tained much of the essential physics later devel-
oped by Kirkpatrick ' and by Cohen and Jort-
ner. ' With regard to the difficulties, the nu-
clear-spin dynamics require nonrandom cluster-
ing. The electrons do not move on the Na
atoms. ' " The transport analysis is internally
inconsistent; electrons cannot both be localized on
Na atoms and scatter off vacancies in a free-elec-
tron-like way; and the low-temperature and high-
temperature transport were treated differently.
The conductivity is not simply proportional to the
percolation probability as shown by Thouless and
Last and by Kirkpatrick. Finally, the site-
percolation threshold is too high, corresponding to
a value of X=X* of 0. 33 for a simple cubic lat-
tice. "

Kirkpatrick pointed out that his analysis of
transport in disordered systems as a percolation
process applied also to the alkali-tungsten bronzes.
Recently, Lightsey' demonstrated that his detailed
conductivity data were consistent with Kirkpatrick's
power law

o ~ (X X*)'~

with a percolation threshold X*= 0. 17. Once
again, he supposed the Na were randomly distrib-
uted and that the electrons moved from Na to Na,
defining a site-percolation problem. He proposed
electron transfer to nearest and next-nearest neigh-
bors, giving an effective number of nearest neigh-
bors of 14 to account for the low value of X*.

In the present paper, we apply our previous
methods of analysis to the Na cluster model of the
alkali-tungsten bronzes. We carry out here a de-
tailed analysis of a continuous metal-nonmetal

transition in a solid over a broad temperature
range. We find excellent agreement with theory
for the electrical conductivity and Hall coefficient.
In the process, we find that the Na-Na correlation
distance is practically temperature independent
and has a value of roughly 45 A.

II. CLUSTER MODEL FOR ALKALI-TUNGSTEN BRONZES

For each simple cubic interstitial site l we can
define a site occupation number n, which takes the
values n, = 1 or n, = 0 according to whether an alkali
atom is or is not at that site. The mean site oc-
cupation number is

n=-(n, ) =X. (2. 1)

A(R)=1 —X, R~b,
A(R) = 0 1 R& b . (2. 3)

In this model there is a local value of X, X, =n, = 1,
within the clusters which drops abruptly to zero at
the cluster boundary.

Roughly speaking, space is divided into statisti-
cally independent regions of diameter 2b, within

A (R)

FIG. 3. A schematic representation of the conditionally
average site occupation number A(R) for the nonrandom
cluster model.

We define further a conditionally averaged site
occupation number

(2. 2)

which is the difference between the mean value of
the occupation number on site m subject to the con-
dition that site l is occupied by an alkali atom and
the mean occupation number X. In the cluster
model, A(R) is 1 —X for R= 0, remains near that
value for R —b, and drops rapidly to zero for R~ b.
This behavior is sketched in Fig. 3. Provided 5
is substantially larger than the lattice constant a,
we can treat A(R) as a continuous function, as in
Fig. 3. We can idealize the cluster model further
by replacing A(R) by the simple step function
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which the local occupation number fluctuates ran-
domly between 0 and 1,

n, = 1 with probability X,
n, =0 with probability (1 —X) .

Because we are supposing b substantially larger
than a, n, may be regarded as a continuous vari-
able n. This defines a continuous percolation prob-
lem for which the percolation threshold is '" X*
= 0. 15-0.17. There are local metallic regions
(n = 1) occupying a volume fraction C= X of the ma-
terial and insulating regions (n = 0) occupying a vol-
ume fraction 1 —C. Above the percolation thresh-
old there are continuous metallic paths extending
throughout the material. Below the percolation
threshold, only isolated metallic clusters exist.
The percolation threshold marks the onset of a
continuous metal-nonmetal transition within the
microscopically inhomogeneous material.

We have now made contact with the previous
analysis of Cohen and Jortner (CJ) of such transi-
tions. ' The density of states n(Ez) at the Fermi
energy is given by

n(Ez) = Cno(Ez), (2. 4)

where no(Ez) is the density of states for pure
NaWO3. Fuchs' was the first to propose this re-
lation, justifying it on the basis of the Fermi-
Thomas model; CJ have given a more precise de-
rivation and interpretation. It is valid when the
shorter of the phase-coherence length or the Fermi
wavelength is small compared to 5, when it be-
comes an expression of the Weyl theorem. Equa-
tion (2. 4) gives an immediate explanation of the
spin susceptibility and the specific-heat data with
C =X.

A major difference between the present solid
material and the previous liquid systems studied
by CJ is the absence of motional narrowing of the
Knight shift. In the liquid case the Knight shift
was given by an equation of the form (2. 4), and
provided a convenient basis for the determination
of C. In the present case the 'Na nuclei are in a
time-independent environment in which the Knight
shift z, a local property, has the full metallic val-
ue vo, independent of C.

Having given the cluster model a precise formu-
lation which makes contact with the previous CJ
theory, before going on to apply that theory to the
alkali-tungsten bronzes, we first examine the phys-
ical origin of the clustering. We consider those
terms in the total energy of the system which de-
pend on the configuration of the alkali atoms. We
evaluate these per alkali atom in a rough way to
obtain an indication of whether a uniform or a clus-
tered configuration is stabler at T = 0 K.

The energy contains two parts, a single-particle

band- structure energy arising from the transf er of
electrons from the Na atoms to the tungsten atoms,
and a Coulomb interaction energy. The band model
we use for evaluating the former consists of a
threefold degenerate (choosing 5d —t2, bands fol-
lowing Sienko ) semicircular density of states (per
W atom)

(E) = —1 —(—) (2. 5)

where B the bandwidth and E measured relative to
the center of the band. Later, in making energy
comparisons, we take the bottom of the band as the
origin of single-particle energy. The Fermi en-
ergy is determined from

U

n(E) dE=X .
-23/2

(2. 6)

We wish to discover whether the clustered configu-
ration is stabler than the dispersed configuration
for all X. To do so, it is sufficient to prove it for
small X, for which (2. 6) yields

X= 4(8,')'/v,
where

cosez= 2IE& I/+ .

(2. 7)

(2. 6)

The single-particle band-structure energy is
@U

E, = En E dE .
-B/Z

Inserting (2. 7) and (2. 6) into (2. 9) gives

Ei ——~ BX,

(2. 9)

which can be neglected for low X. In the dispersed
configuration, each Na ion is screened, either by
a localized state or by a Fermi-Thomas screening
cloud, depending on the value of X. We estimate
the latter energy by supposing that the screening
cloud is restricted to the eight nearest-neighbor
W atoms, the most favorable case. The Coulomb
interactions of the —,

' of an electron charge on each
atom with the Na ion is reduced by about a factor
of 2 by their mutual repulsion and the energy of
polarization. The screening energy Ez becomes

E, = —(I/W3) e'/a . (2. 11)

E;= (2/v)B sin'er,

1 = (3/v)(28~+ —sin28z) .
Solving (2. 6') yields

8~= 0.313,
E', = o. 366& ~

(2. 9 )

(2. 6')

(2. 12)

(2. 13)

The Coulomb interaction energy is just a Madelung

Within a large cluster, the energy per Na atom con-
sists of E, evaluated for X= 1,
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energy for the Na' ions and the conduction elec-
trons which are restricted to the W atoms. To-
gether these form a CsCl structure so that the lat-
ter energy is

E2-——1.76e /a .
Equation (2. 6}yields the expression

8 = 24 sin8z/vn(E~) .
We need here the band density of states, whereas
the specific heat contains the electron-phonon re-
normalization factor (1+X). Because, however,
the density of states estimated from the specific
heat agrees with that from the spin susceptibility
to 20/o or better, we can ignore X. The specific
heat yields'5'9 accordingly a value of n(Ez) of 8. 2
x10 ' (cgs) for X= 1. Inserting that value of n(Ez)
and (11—13) into (11—15) yields 4. 8 eV for B.
The va, lue of a is 3. 85 A. Adding (2. 13) and (2. 14)
and comparing the result with (2. 11) leads us to the'
conclusion that X= 1 clusters are stable with re-
spect to a dispersed phase by 2. 7 eV per Na atom.

This stabilization energy at T= 0 is so large that
it raises the possibility of macroscopic precipita-
tion of a MWO3 phase. Although these materials
are prepared at elevated temperatures (700-800'K},
it can be easily demonstrated that the configuration-
al entropy is unimportant. The maximum value of
the entropy of mixing in the cluster configuration
is —TS= —kT ln2, 0.04 eV at 700 'K, which is con-
siderably lower than the cluster stabilization ener-
gy at T= 0. Thus the configurational entropy can-
not destabilize macroscopic precipitates with re-
spect to microscopic clusters. On the basis of ex-
perimental information we can reject the possibility
that microscopic clusters a.re metastable and that
diffusion effectively ceases above the temperature
of precipitation. The diffusion coefficient (for
vacancies) in Na„WO, is 2x10" cm sec ' at 770 K,
so that the diffusion length on a time scale of 24 h
is 1 p.m. This would imply that the precise value
of the correlation length b depends on the thermal
history of the sample, and, as we shall see, the
transport properties of the material are sensitive
to the value of b. On the other hand, the electrical
conductivity data for MLWO3 are insensitive to
thermal annealing for 24 h at 700 K. We are in-
evitably led to the conclusion that the cluster con-
figuration is stable both with respect to dispersion
into a uniform phase of the average composition
and with respect to growth of clusters into pre-
cipitate s. Such stability aga, inst precipitation would
be ensured by a negative surface energy associated
with the interface between MWO3 and WO~ within a
coherent WO~ lattice. A negative surface energy
drives the clusters towards smaller radii. The
correlation length 5 would presumably be deter-
mined by the size at which a cluster begins to lose

the Madelung stabilization energy and/or its band
energy increases. Such a picture is akin to a
phase separation on a microscopic scale, where
the dispersed phase, consisting of MWO3 clusters,
is characterized by a negative surface energy.

It would be of interest to improve our rough esti-
mate of the stabilization energy by basing it on an
accurate band structure and a detailed screening
calculation. More important, the conjecture of
negative surface energy has to be quantitatively ex-
amined by considering the band energy and the
Madelung energy near the cluster interface. Sup-
posing that such detailed studies confirm our rough
argument, it should be noted that the latter is quite
general. Clustering can be expected whenever an
electron is transferred from a metal atom into
states which do not overlap the metal atom ap-
preciably. If, on the other hand, such overlap
were to occur, the metal atom would be locally
neutral and insensitive to its configuration. Dis-
persion would then be favorable.

We now consider the applicability of the CJ
formulation of transport theory for inhomogeneous
systems to the present case. An essential require-
ment is that the conduction electrons are indeed
confined to what we have called the "metallic" re-
gions. The Madelung energy provides a potential
barrier against penetration of the electrons into
the "nonmetallic" regions of 6. 6 eV in the present
case. The Fermi energy is about 1.3 eV (cf. Sec.
III), and the tunneling barrier for electrons at the
Fermi level is therefore 5.3 eV. With such a bar-
rier, tunneling can be expected to be completely
negligible as long as b is greater than a.

III. ELECTRICAL TRANSPORT IN ALKALI-TUNGSTEN
BRONZES

The cluster model for M~WO3 bronzes outlined
above implies that electronic transport in these
materials is amenable to an approximate descrip-
tion with the aid of semiclassical percolation the-
ory. Within the semiclassical approximations, the
transport problem becomes equivalent to conduc-
tion in a macroscopically inhomogeneous medium.
Kirkpatrick ' 0 carried out a numerical study of
the conductivity o of a simple cubic network of
resistors in which each nearest-neighbor bond was
randomly assigned a conductance 00 with probability
C and ai with probability 1 —C. The conductivity
ratio is x = o, /o0. In the limit x=0, the current
flow within the resistor network reduces to a bond
percolation problem, for which the percolation
threshold is C = 0. 25 and where numerical cal-
culations result in

o(C}= 0, 0 & C & 0.25,

o(C) =A(C —0.25), 0. 25 & C & 0.4, (3. lb)



o(C) = o,(& C - -,), 0.4 & C & 1.0 . (3. lc}

In simulating electrical transport properties of a
microscopically inhomogeneous material we are
dealing with a, continuous site-percolation problem
in which any portion of the material can be random-
ly metallic or nonmetallic. To mimic the features
of the continuous percolation problem one can im-
pose correlations on neighboring bonds, so that if
a bond is of one type all its neighbors out to the
correlation distance 5 must be of the same type.
We have carried out a numerical study of the con-
ductivity of simple cubic resistor network with cor-
related bonds. We now briefly outline the results
for the conductivity of a randomly inhomogeneous
conductor containing regions of two finite but widely
different values of the local conductivity. Typical
numerical results obtained for correlated netw'ork
model incorporating nearest-neighbor and second-
nearest-neighbor bond correlation are portrayed in
Fig. 4. These data are compared with Kirk-
patrick's results for the uncorrelated network and
with the prediction of effective-medium theory. 3~'3

The major effects of correlation is to shift the per-
colation threshold from 0.25 to C*=0.15+0.02, in
accord with numerica, l simulations of the perco-
lation probability ' for the continuous percolation
problem. The macroscopic conductivity cr was ex-
pressed in the form

f(x, C)=w(C-C*)", C'&C&0. 5,
2=1.6, (3.4)

is obeyed above the percolation threshold. For
low values of C(& 0. 1}the conductivity is given by

f(x, C) = x/(1 —C/C") . (3.3)

In view of the 10/0 uncertainty in the value of C*

for the continuous percolation problem, ' ' ' the
best procedure to analyze the conductivity data for
a microscopically inhomogeneous material which
corresponds to class 8 is to adopt the EMT for
C& 0.4 and utilize the results of numerical simula-
tions for C&0.4.

These quantitative classical results for the con-
ductivity are applicable provided that the phase-
coherence length of the conduction electrons within
the metallic regions is considerably shorter than
the correlation length 5. For Nax%03 bronzes
near X= 1, the conductivity is - 10' (0 cm) ' and the
metallic regions correspond to the propagation
regime where the mean free path l considerably
exceeds the lattice spacing. In that case scatter™-
ing of metallic cluster boundaries ' reduces the
local conductivity a'0(c) below the metallic conduc-
tivity oo of the homogeneous material at C= 1. A

modified theory, which incorporates boundary scat-
tering results in the change of Eci. (2. 2) tom"

o = a()f(x, C),

x —(7y /(To,
(3.2)

a = &roD(c)f,
f=f(C, x(C)),

where I.o and o, correspond to the conductivities at
C = 1 and at C = 0, respectively. The effective-
medium theory (EMT) for the conductivity

f(x, C) = a+ (a'+ —,
' x)'",

a = 2[(2C- 2)(1 —x)+k x],
(3. 3)

IO

M3 j
O X"-l2 IO

+X= IO2
x X=5wlo
eX= IO

was found accurate for 0.4&C&1.0 for all values
of the conductivity ratio x, in agreement with Kirk-
patrick's original work. Serious deviations from
the EMT occur for C&0. 4 for small values of x
(&0.03). This is not surprising, as the EMT,
which rests on a mean-field approximation for the
local conductivity, overestimates the percolation
threshold for x=0, CzMT= —,', and can in general be
expected to result in too low values of 0 for C&0. 4
and 0~~ x& 3X 10

In the range 0&C&0.4, two cia.sses of materials
are encountered: (a} For materials characterized
by a high conductivity ratio x& 3x10 the EMT,
Eq. (3. 3), faithfully reproduces the numerical re-
sults throughout the whole C range. (b) For ma-
terials characterized by a low conductivity ratio,
x ~ 5 x 10, Kirkpatrick's scaling law

IO

—EMT

I X=

2 X=

3 X=

4 X=

5 X=

IO-4

L2~ IO 3

IO

5xlo 2

IO'

FIG. 4. Results for numerical simulations of continuous
percolation. . The conductivity of a simple cubic network
of conductances 00 and o~ with nearest neighbor band
correl, ation was calculated for a 18x18x18 network.
Values of the conductances are 00=1 (with probability C)
a, nd 0&=10, 5x10 2, 10 2, ]..2x].0 3, and 10 (with
probability 1 —C). The percolation threshold for this
model is C*=0.18, reducing to C*=0.15+0.02 when

spatial propagation. of bond correlation to second-nearest
neighbors is incorporated. The results of the numerical
simulations are compared with the EMT, Zq. (3.3).
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D(C) =s/[(I - C)+sj,
«(C) = x/a(C),
z=gb/I .

(S.6c)

(S.6d)

(S.6e)

~o =ex)
~ EXPERI

Equations (S.6) and (S.3) constitute a modified ef-
fective-medium theory (EMT-s). For materials
of class A, the EMT-z is applicable throughout the
entire range 0& C&1. For materials of class B,
the EMT-8 is valid oIlly fox' 0. 5 & C» 1.0 while fol
C&0. 5 we have utilized Eq. (S.6) where f, Eq.
(3.6b), was obta, ined from numerical simulations of
o/os in a correlated cubic network, with x(C) given
by Eq. (3.6d).

%e are now in a position to analyze the conduc-
tivity data for alkali-tungsten bronzes. Fitting the
theory to the experimental transport properties of
the microscopically inhomogeneous material re-
quires the following information: (a) Identification
of the limits of the inhomogeneous transport
regime, (b) establishing the relation between C
and the composition X, and (c) determining the val-

ues of the transport coefficients at the limits C=0
and C = 1. We have already considered (a) and (b)
in Sec. II, where we have shown that MxWQ3
bronzes are microscopicaQy inhomogeneous
throughout the entire composition range 0&X&1
and that C=X. What is now required is an esti-
mate of the conductivity ratio x= o,/os, where o,
and oo are the local conductivities in the metallic
and the semiconducting regions, respectively. A
rough estimate of the local conductivity g, in the
semiconducting regions can be obtained from the
experimental data3 for pure WQS. The electrical
properties of WO, were explained as that of an ex-
trinsic semiconductor with shallow donor levels
originating from interstitial metal atoms. The
highest value of the conductivity recorded for dif-
ferent samples at 300 'K is - 5 (Q cm) ', which may
be taken as an order of magnitude estimate for 0, .
A linear extrapolation of the conductivity data to
C =X=1 results in the px'eliminary estimate oo- »&10' (A cm) ' at 300 'K, so that x- 10 4. This
low value of the conductivity ratio implies that
alkali-tungsten bronzes correspond to materials
of class (b).

Our numerical simulations show that the EMT
holds accurately for 0.4& C &1.0. Moreover, the
EMT in this composition range reduces to its x =0
form

o/o, =(-z'C ——,'), x&5x10-', 0.4&C&1 (S.V)

for low values of x as we are dealing with here.
Accordingly, we have attempted to correlate the
experimental data at 4. 2, 300, 523, and 773 'K for
0. 5& C& 1, summarized in Figs. 5-7 with Eq. (S.V),

which just implies a linear o-vs-C relation at each
temperature. The experimental o data at 4. 2 and

at 300 'K fall systematically below the linear o-vs-
C relation at constant T implied by the EMT. %e
have therefore fitted the data to the EMT-g, Eqs.
(3.6a)-(S.6b), which for the present case takes the
form

~ = o, (-'. C ——,')z/[(1 —C) +z j,
x& 5x 10, 0.5 & C & 1.0 . (S.6)

PIG. 5. Analysis of the electrical conductivity data of
NaxW03, 0.5&X&1.0 at 4. 2'K (Refs. 8 and 9) in terms
of the modified effective-mediUm theory (EMT-Z), Eq.
(3.5) and {3.6). The best fit obtained for ao=6x10
(Qcm) and z=0. 12 is shown by the solid curve.

os=s Sf/4s 5, (S.9)

where 8 is the area of the Fermi surface. Equa-
tions (3.6e) and (3.9) result in

We have adjusted two parameters vo and z at each
temperature to get the best fit. A least-square
analysis results in the values of co and z summa-
x ized in Table I. The results axe shown in Figs.
5-7. The fit to the EMT-z is excellent at 4. 2 and
at 300 K. At higher temperatures, z is sufficient-
ly large so that there is little difference between
the EMT, Eq, (S.V), s.nd the EMT-z, Eq. (3.8).

The conductivity oo at C =1 is
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EMT-z 1.0

TABLE I. Parameters from analysis of electrical-
conductivity data for alkali-tungsten bronzes.

Z =0.83

cTO =O.

~ EXPERI

5 -I -I

0.8
4. 2
300
523
773

6. Ox10
0. 88 x10
0. 42 x10
0.26 x10

0. 12
0. 83
1 ~ 8
2. 8

T CTp z
('K) [(0cm) j from a(C)

4. 8 x10-3
2.4x10 '
1.7x10 '

0. 4
1.5
3.1

1 ~dcT z
crp dT f dlncr

Zap

0. 72 x105
0. 73 x10
0. 75x10
0. 73 x10

E

0.6
Cs

O

b

0.4

~z is taken from the concentration dependence of 0..

We are now able to provide an adequate inter-
pretation of the available experimental data for the
temperature dependence of the conductivity' in the
range 300-800 'K for 0.88& C&0.49. The tem-
perature coefficient of o is

0.4 0.6
I I I

0.8

0.2

OQ
1.0

1 So'(C, T)
o(C, T) dT

and from Eqs. (3.8) and (3.10) we have

1 doo(T) z(T)
(1') dT 1 —C (T)).

(3.12)

(3.13)

FIG. 6. Analysis of the electrical con.ductivity data
of NaxWO3, 0. 5 ~X&1.0 at 300'K (Refs. 8-10) in terms
of the modified effective-medium theory (EMT-Z), Eqs.
(3. 5) and (3.6). The best fit obtained for cT0=0. 88 (Qcm) '
and z = 0. 83 is shown by the solid curve.

oj)z = e Sb/2v h . (3.10)

(3.11)

This result is of considerable interest, as rough
quantitative microscopic structural information has
been obtained from electrical conductivity data in
the composition range where the EMT-z is appli-
cable.

The quantity 00z is independent of temperature
over a broad range, as is evident from the data
summarized in Table I. For our model of alkali-
tungsten bronzes, the metallic volume fraction C
remains equal to I, independent of temperature.
The local electronic structure remains that of
MWO, so that S in (3.9) and (3.10) is temperature
independent. The constancy of o0z implies that b

is temperature independent, an important result
which is consistent with our proposal of negative
surface energy.

From these values of z a rough estimate can be
obtained for b. From Eq. (3.10), we have b=(2m~k/
e S) (ooz), where ooz =7.2x10~ (Qcm) ', as obtained
from Table I. For S, we take 4~k~, where k~ is
the radius of a sphere in k space holding —,

' of an
electron per W atom in each of the three bands.
The corresponding value of b is

b=45 A .

EMT-Z

---EMT

EXPERIMENTAL DATA

~ T =523
i' ELLERBECK ET AL.

o T=77f

—0.5

0.4

0.3

O

OZ

O. l

I

0.4
I

0.6
I

0.8
OD

I.O

FIG. 7. Analysis of the electrical conductivity of
NaxWO3, 0. 5 ~X& l. 0 at 523 K and 773 K (Refs. 8 and 9)
in terms of the EMT-z (solid curves) and the EMT (dashed
curves). The EMT-Z was fit taking 00=0.42 &10 (Qcm) '

and z=l. 8 at 523 K and 00=0.26&&106 (Q cm) and z
=2. 8 at 770 K. The EMT Eq. (3.5), utilizes the values
of 00=0. 37 (Qcm) at 523'K and a0=0. 23 (Qcm) at
773 K.
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MxWO8—
Temperature Coefficient of (T

o ~B
0

0
O

CU

C)
p
~s

0

0.Z

T= 300 K

T= 523 K

T =773 K

04
1-C

0.6

FIG. 8. Linear plots of the reciprocal value of the
temperature coefficient of the conductivity, Eq. (3.11)
vs (1 —C) for T =300, 523, and 773 K. Data from Ref. 8.

Thus, the composition dependence of y originates
from the temperature dependence of z. Above
300'K, the temperature coefficient of o was ex-
pressed in the form r(C, T) = —(a, +2a2T)/(a, +a&T
+a2T'), where the coefficients a„a„and a2 were
tabulated by Ellerbeck et al. and T is given in de-
grees centigrade. From the linear plots of [y(C,
T)] ' vs (1 —C) at constant T, Fig. 8, we have ob-
tained the values of z presented in Table I. These
data derived from the temperature coefficient of
the conductivity are in reasonable agreement with
the z values obtained from the composition depen-
dence of the conductivity. We have thus obtained
so far a coherent quantitative interpretation of the
conductivity data throughout the range 0. 5& C &0.9.

The effective medium theory breaks down at C
values lower than 0. 5 and the EMT-z is little dif-
ferent there. We have analyzed in Fig. 9 all the
available experimental conductivity data in the
range 0.22 & C&0.9 at 300 'K utilizing the results
of numerical simulations corrected for boundary
scattering effects. In the range C =0.22-0. 5 we
have used the numerica. l results for f(x(C), C) [Eg.
(3.6b)], where x(C) =x/D(C), as simulated for a.

cubic network with correlated bonds. We have
chosen x = 10, which corresponds to our rough
estimate of x given above, but the numerical re-
sults for C &0.22 are not sensitive to the precise
value of x for x &5x10 ~. From the available ex-
perimental information, a more accurate value of
the conductivity ratio cannot be determined. Above
C&0. 6 f(x(C), C) is again taken from the EMT-z,
which faithfully reproduces the numerical results.
An excellent fit between the experimental data and
the results of numerical simulations is obtained
over more than two orders of magnitude variation

IQ

b

b

IQ

-3
IQ

IQ
0.0 0.2

L
0.4 0.6 0.8

in cr. The conductivity data exhibit the variation
expected for the continuous percolation problem.
We feel that these results provide overwhelming
support for the validity of the cluster model for
alkali-tungsten bronzes.

Hall-effect data are available for NaxWO3 in the
composition range X =0.87-0.22. The EMT
yields' for the Hall coefficient R and for the Hall
mobility p,

u/40 =g(» y f ) = [1 —B(1 xy)]f-
R/Ro —-h(x, y, f) =[1 —B(1—xy)]f

(2f+1) (1 —C)
(2f+1)2(1 —C)+(2f+x)2C '

t = Pi/Po ~

(3.14)

where p,o and p., are the Hall mobilities in the
metallic and in the semiconducting regions, being
given by the Hall mobilities at C =1 and at C =0,
respectively. EMT-z yields correspondingly

R = hRO, p. =gD(C) pg,

g =g(C, x(C), y(C),f), h =g/f,
x(C) =x/D(C), y(C) =y/D(C) .

(3.16)

In the interpretation of the electrical transport
data of NaxWO, we are interested in low values of

x, =10 . On the basis of numerical simulations
of 0 we have concluded that the EMT or the EMT-z
hold for C&0.4 and we infer that the same will ap-
ply for R and p, . In the range 0.4&C&1.0, p, and

FIG. 9. Analysis of all the available electrical con-
ductivity data of Na+WO3 at 300'K in the range 0.22 &X
&0. 9. The experimental points were normalized by ao
= 0. 88 &&10, which corresponds to the values extracted
from the analysis of 0. via the EMT-Z in the high (C& 0. 5)
range. The solid curve represents the results of numeri-
cal simulations (with x=10 4) for the conductivity in a sc
network incorporating nearest-neighbor bond correla-
tions and introducing boundary scattering corrections
with z=0. 83.
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p/ pp = y(1 —C/Cs MT) +x(3 —C/Cs Mr)

x (1 —C/C ) (1 —xy) C, (3.18)

where CEMT 3 is the percolation probability in the

14

l2—

IO—

I

I

I

I

I

I

I

EMT -Z

X= IO

Y=o,s
Z =0&5

Ro--32XIO [cm /Cj

~ EXPERIMENTAL DATA

T =300 K

rn
E

cf
O
CL

0.2 0.4 0.6
I

0.8

FIG. 10. Analysis of the Hall-effect data (Hefs. 9 and
10) for NaxWO3 at 300 oK in. terms of the effective-medium
theory. Solid line presents the calculation by the EMT,
Eq. (3.13), of the EMT-Z, Eqs. (3. 14) and (3.15), with
x&10 3, and corresponds to the range 0. 4& C &1, where
the effective-medium theory is reliable. Dashed line for
C& 0. 4 represents the calculation of R via the EMT-Z,
with x = 10 4, y = 0. 5, and z = 0. 83.

R are close to their x =0 value, and these trans-
port properties are practically independent of y.
We also note that boundary scattering corrections
do not affect the value of R in this range of C. For
C&0.4 for low values of C, as we are concerned
with here, the EMT or the EMT-z provide only a
qualitative interpolation formula. A quantitative
formal theory or numerical simulation is not yet
available for the galvanomagnetic properties below
C =0.4. We can, however, make an intelligent
guess for the behavior of R and p. in the low range
of C (&0.1). There EMT yields

0'/op = (1 C/CsMr) (3.16)

R/R =(y/x)(1 —C/C*„) +(3 —C/C*„) (1 —xy)C,

(3.17)

EMT. If we reinterpret Eq. (3.16) by replacing
the EMT value of C* by the actual value of 0.17,
we obtain Eq. (3.5) for the conductivity at low C.
In a similar way we shall replace CE„T by C* =0.17
in Eqs. (3.17) and (3.18) for R and p, . As we shall
subsequently show that y/x-10' for alkali-tungsten
bronzes we get

R =Ri(1 —C/C*)

p, = pi(1 —C/C*),
(3.18)

for 0& C ~0.1 in this system. Unfortunately, no
data are available for C =X ~0.1.

In the absence of a quantitative theory or numer-
ical simulations for the galvanomagnetic proper-
ties we have compared the available data for
NaxWO, at 300 'K with EMT-z. A linear extrap-
olation of the Hall data to C =X=1 results in the
estimate Rp = 3&&10 cm' C ' which together with
the value op =0.88 & 10P (0 cm) ' at 300 'K results in

pp =28 cm V ' sec . The value of p., can be rough-
ly estimated from the Hall mobility in pure WO3,

p, y 16 cm V 'sec
Thus y = ii, /iip -0. 5, as appropriate for a mate-

rial undergoing a continuous metal-semiconductor
transition, where we expect y to be of the order of
unity. In Fig. 9 we present the available Hall-ef-
fect data together with the fit to the EMT-z for 0.22
&C&1.0. In the range 0.4&C&1, this fit is identi-
cal to the EMT, resulting in the simple relation
R/R, =4/(3C+1). A good fit of the Hall-effect data
in the range C&0.4 was obtained by taking Rp =3, 1
x10 cm C ', while the two experimental points
available in the range 0.2 & C &0.4 can be qualita-
tively fit by the EMT-z with the values x=10 ' and
z =0.83 obtained from the analysis of conductivity
data together with y =0.5. It should be borne in
mind that in the latter range the EMT-z provides
only qualitative guidance for the variation of R
with C.

In view of the quantitative agreement of cr and R
with the predictions of the EMT-z in the range
C &0.4, good agreement is obtained for the depen-
dence of the Hall mobility on the metal concentra-
tion in the range 0.4&C&0.9, as is evident from
Fig. 10. In the lower concentration range C &0.4
the EMT-z results in a minimum in the p, -vs-C
curve at CFMT —3 The EMT-z fails in the low C
range (&0.4). This is also evident from the be-
havior of ii expected from Eq. (3. 18). As numeri-
cal simulations for R and p, are not available, we
have compromised by using a hybridized theory
(HT), expressing ii in terms of Eq. (3.15) vPith f
derived from numerical simulations. The result-
ing curve, labeled as the HT in Fig. 11 results in
a minimum at C*=0.17. It appears that for an in-
homogeneous material characterized by a low val-
ue of x and a high value of y-1, the Hall mobility
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FIG. 11. Analysis of the Hall mobility data (Refs. 9
and 10) for NaxWO& at 300'K. Solid lines represents the
results of the EMT-Z x=10, y =0. 5 and z=0. 83. Dashed
line corresponds to the HT. Dotted line for C ~ 0.1 cor-
responds to Eq. (3.19).

will exhibit a minimum in the vicinity of the con-
tinuum percolation threshold.

We believe we have built up strong evidence for
the nonrandom clustering model in alkali-tungsten
bronzes. In this matexial, the metal-nonmetal
txansition proceeds via the inhomogeneous trans-
port regime, where percolation effects result in a
continuous change of the conductivity. The inter-
pretation of the onset of the metal-nonmetal transi-
tion in terms of a threshold for continuous percola-
tion is drastically different from the Mott transi-
tion in a microscopically homogeneous system, as
in the present case the conduction electrons are al-
ways confined to locally metallic regions. There
are common unifying features of the variation of
the electronic structure and the transport proper-
ties in all microscopically inhomogeneous materi-
als, such as the one component systems, expanded
liquid Hg in the density range 9.2-8.0 g cm 3, 26'

and liquid Te over the temperature range 1100-
690 K,

' and the two-component systems metal-
ammonia solutions (MAS), in the metal concentra-
tion range 2.3-9 mole%, ' and alkali-tungsten
bronzes over the entixe metal concentration range.

In both MAS and in MIW03 the correlation length b

is independent of the metal concentration, the pri-
mary variable of state. In the former case there
are bimodal concentration fluctuations, while in
the latter microscopic metallic clusters are sta-
bilized by a negative surface energy. It should,
however, be noted that in liquid MAS b provides an
average measure of the effects of dynamic local
clustering, and the correlation length for concen-
tration fluctuations will be temperature dependent,
while in solid M„WO, the clustex structure and
therefore b are independent of temperature. It is
quite remaxkable that from a caxeful analysis of
the conductivity data in M~WO, we were able to ob-
tain structural information concerning the M-M
correlation length in this system. The value of
b= 45 A for solid MIWOS is considerably larger
than for one and two component liquid systems
studied by us, i.e. , b=15 A for expanded fluid Hg
in the density range 9.2-8.0 g cm 3, 36~ b=4 A for
Te in the temperature range 1100-690 'K, ' and b

=15 A for Li-NH3 solutions at 223 K. ' The cor-
relation length extracted from the transport data in
Mg W03 should be subj ected to a direct experimen-
tal test. Structural studies, such as small-angle
x-ray and neutron scattering and electron micros-
copy, should be initiated to provide direct evidence
for the existence of microscopic inhomogeneities
in alkali-tungsten bronzes. Some electron mi-
croscopic studies already exist for Ko TWO, in the
hexagonal phase. ~~ These show evidence for near-
est-neighbor clustering of low occupancy channels
of K sites of order 100 A long or longer. There
is also evidence for short-range ordering of these
clusters with an average distance between them of

0
50 A. Our isotropic approximation to the site cor-
relation function represents a simplification of the
observed structure.
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