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A group-theoretic method is described for analyzing the long-wavelength lattice vibrations of polar crystals

made up of deformable and polarizable ions. A set of 3 r-dimensional matrices is constructed (where r is the

number of ions in a primitive unit cell of the crystal), each of which commutes with the dynamical matrix for

such crystals, and which also provides a representation of the point group Go(fc; —fc), which is the subgroup

of the point group of the space group of the crystal whose elements (R) have the property that Rk = + k. Here

R is a 3 X 3 real, orthogonal matrix representative of the symmetry operation R, while K is a unit vector in

the direction of the wave vector k of the long-wavelength lattice vibrations being studied. Reduction of this

matrix representation yields the symmetries of the long-wavelength normal modes of the crystal, and the

forms of the corresponding eigenvectors can be obtained by projection-operator techniques. Additional

degeneracies imposed by time-reversal symmetry are automatically taken into account in this treatment, which

is illustrated by applying it to an analysis of the long-wavelength vibration modes of graphite.

I. INTRODUCTION

The use of group-theoretic methods for the de-
termination of the symmetry properties of the nor-
mal vibration modes of perfect and imperfect
crystals is now a well-established tool in theoret-
ical and experimental studies of the dynamical
properties of crystals. In the case of perfect
crystals, with which we will be exclusively con-
cerned in this paper, the classification of the sym-
metry properties of the normal modes is according
to the irreducible multiplier representations of the
point group of the wave vector of the modes, i. e. ,
the subgroup of the point group of the space group
of the crystal which leaves the wave-vector invari-
ant modulo a translation vector of the reciprocal
lattice.

However, all of the group-theoretic methods
developed to date for this purpose are deficient in
their application to the classification of the syrn-
metry properties of the long-wavelength vibration
modes of polar crystals. This is because by being
based on the point group of the wave vector, which
is k=0 for such modes, they neglect the lowering
of the symmetry of the crystal by the macroscopic
electric field associated with the long-wavelength
longitudinal-optical modes in polar crystals (in
the electrostatic approximation) . This lowering
of symmetry can result in the splitting of degen-
eracies among the long-wavelength optical modes
pr edic ted on the basis of the geome trical sym-
metry of the crystal alone. A well-known example
of this is the Lyddane-Sachs-Teller splitting be-
tween the frequencies of the transverse- and longi-
tudinal-optical modes in diatomic cubic crystals
with two ions in a primitive unit cell. According
to an analysis based on the point group of the wave
vector k=0, which is 0„for crystals of the rock-
salt structure, the three optical modes for such

crystals should transform as the basis functions
for the three-dimensional irreducible represen-
tation 1 s (Ref. 9); these modes should therefore
be triply degenerate. In fact, it is well known
that two of the three optical modes (the transverse
modes) are degenerate, while the third (the longi-
tudinal mode) is higher in frequency than the de-
generate pair, and that this difference is due to
the macroscopic electric field associated with the
longitudinal mode, which stiffens the effective
force constant determining its frequency.

In this paper we present a group-theoretic anal-
ysis of the long-wavelength vibrations in polar
crystals, which takes proper account of the pres-
ence of the macroscopic electric field in such
crystals. It is not limited to point-ion models of
such crystals, but incorporates the deformability
and polarizability of the ions. There are no re-
sults here that cannot be obtained by combining the
analyses in Refs. 4 and 7, for example. However,
because the lack of a group-theoretic discussion
of the long-wavelength vibrations in polar crys-
tals in the literature on the subject is noted from
time to time, ' ' it was thought to be useful to
present in one place the results necessary for
carrying out such an analysis. The results ob-
tained here are illustrated by applying them to the
long-wavelength vibrations of graphite. A brief
account of some of the latter results has appeared
els ewher e. '3

II. GENERAL THEORY

The equations of motion for an arbitrary crys-
tal made up of deformable and polarizable atoms
takes the following form in the long-wavelength
limit":

~are, (sl j) =pe.s(«'~k)res(a'~)),
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where the elements of the dynamical matrix
6 8(vv' I k) are given by

f ~(~v') 4v 1
(M„lIf„,)'", ", (M„M„,)'"

x k~g„ I(,') y„g„gg') (2 2)
(2. 8)

The effect of a space-group operation on the equi-
librium position vector of the If, th atom in the 1th
primitive unit cell, x(bc), is expressed by

{8i
v(S) + x(m) }x(lz) =-8 x(fr) + v(S) + x(m)

=x(Z,K) .

ln this expression f z(vv') are the force constants
between the sublattices w and &' corresponding to
all the short-range forces acting between the
atoms, including the force associated with the
Lorentz field, M„is the mass of the zth kind of
ion, v, is the volume of a primitive unit cell,
z (z) is the transverse effective charge tensor
for the xth kind of ion, k is a unit vector in the
direction of the wave vector k, and E~ is the longi-
tudinal-optical frequency dielectric constant,
which is defined in terms of the optical-frequency
dielectric tensor &„"„by

f~~(KK') = Q S»„s~,f„~(mt''), (2.e)

s,.(K) =g S„,S.„z,„(K),

In what follows we will use capital letters to ex-
press the indices of the site into which a given
site, denoted by lower case letters, is sent by a
space- group operation.

%hen an operation from its space group is ap-
plied to a crystal, the coefficients f ~(m'}, z», (x),
and &"„„transform according to

EI. =Q k»6»„k„ (2. 8) ~»» = E S»»s-e». . (2. 11)

The second term on the right-hand side of Eq.
(2. 2} represents the o. Cartesian component of the
force on the sublattice x owing to the macroscopic
electric field set up by the long-wavelength longi-
tudinal-optical vibration modes.

The coefficients f ~(g )x, z (x), and e»„,ap-
pearing in Eqs. (2.2) and (2. 3) satisfy several in-
variance conditions which simplify Eqs. (2. 1)-
(2. 3) for a given crystal.

The first kind of condition on these coefficients
are simple symmetry conditions which can be
stated

f ~(x~') =f, (x'I')

6 ll P EPff ~

(2.4)

(2. 5)

The second type of condition on these coeffi-
cients follows from considerations of infinitesimal
translational invariance, and can be expressed as

g f »(~~'} =0=+f 8(xx') (2. 6)

z, (~)=0. (2. 7)

The final conditions on these coefficients follow
from the symmetry and structure of the crystal.
Let us denote an operation of the space group of
the crystal in the Seitz' notation as {8I v(s)+x(m)}.
Here S is a 3&3, rea1. symmetric matrix repre-
sentative of a proper or improper rotation be-
longing to the point group of the space group, v(S}
is a displacement vector which is smaller than any
of the primitive translation vectors of the crystal,
and x(m) is a translation vector of the crystal.

When we combine Eq. (2.2) with Eqs. (2. 9)-
(2. 11) we find that the dyna. mical matrix
6 ~(wx'I k) transforms according to

e g(KK
i
8 k) = Q ~S„qs~6„(6m'

i
k), (2. 12)

e,~(~~'isk) =Q s „(~~,is)8„,(v, ~, ik}
yfC~ if'

xsgp(lcplc iS) (2. 14)

Let us denote by G,(k; —k) the point group (a
subgroup of Go) whose elements {fl}have the prop-

when the crystal is subjected to a space-group
operation.

With every operation {8lv(S) + x(m)} of the space
group of the crystal, we associate a 3z&3y ma-
trix (where y is the number of atoms in a primi-
tive unit cell), &,~(zz' I S) defined by

s.,(x~'i S) =S.,b(», Z, (x';8))

=s, '(~'~is) .

We denote by Eo(x'; S) = K' the sublattice into which
the sublattice w' is sent by the space-group oper-
ation {8Iv(S)+x(m)}. This correspondence is
unique despite the fact that with each matrix
s,~(vz'IS) there is associated an infinity of space-
group operations described by different choices of
the lattice translation vectors {x(m)}. The num-
ber of matrices {S,(~x' lS)}is equal to the number
of proper and improper rotation {88 in the space
group of the crystal, i.e. , to the order of the
point group Go of the space group, or to the order
of the crystal class.

It is readily verified that Eq. (2. 12) can be re-
written in terms of the matrices {S ~(zv'I S}as
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erty that

Rk =~k.
Then, because 6 ~{««' l k} is even in k,

8, (««'( —k) = & (««'Ik),

(2. 15)

(2. 16)

we see from Eq. (2. 14) that if we restrict our at-
tention to the subgroup of the point group of the

space group of the crystal, which we have denoted

by Go(k; —k), the transformation law for the dy-
namical matrix becomes

«(««g fR))k«g («y«[Rg) = s g(««(RyR2) . (2. 18}

Consequently, the reduction of the representation
of Go(k; —k) provided by the {8 ~(««'IR)) yields
the symmetries of the long-wavelength vibrations
of a crystal, which correspond to the wave vector
k.

The number of times the sth irreducible repre-
Jh

sentation of G~(k; —k) is contained in the represen-
tation by the {8 z(««'I R)) is given by

}{(R)}('"*{R) (2. 19)
~ zcao(k;-a)

where k is the order of the group Go(k; —k), X
' (R)

is the character of the rotation R in the sth irre-
ducible representation, and

}{(R)=ps ..(«« ~R) =Q s .+5{«,E,(«;R)} .

= (2 1 + 2 cosmos) ns (2. 20)

In this expression y~ is the angle through which
the crystal is rotated by the operation R, the +
sign obtains if the rotation is a proper rotation
and the —sign obtains if R is a rotation reflection.
n~ is the number of sublattices which are left in-
variant by the space-group operation correspond-
ing to the rotation R.

It should be pointed out that in view of the defi-
nition of the group Go(k; —k) provided by Eq.
(2. 15), and the results expressed by Eqs. (2. 14),
(2. 16), and (2. 17), the present treatment incor-
porates any degeneracies among the long-wave-
length vibration modes of polar crystals which
have their origin in time-reversal symmetry.
Degeneracies imposed by spatial symmetry alone
would be obtained by restricting attention to the

e,~(««'~k) =Q Qs «(««, ~R)
gk~ 5KB

xe„,(«,«~
~
k)s,~ («3«'

~
R) . (2. 17)

Thus the set of matrices {& ~(««'IR}) commutes
with 'the dynamical matr1x 8~g{K« I k) ~

The matrices {8,~(««' IR)) also provide a repre-
sentation of the group Go(k; —k),

point group Go(k), whose elements {R)have the
property that Rk =k.

The forms of the eigenveetors corresponding to
a mode of particular symmetry can be obtained by
projection operator techniques. If we introduce
an arbitrary 3y component vector P whose compo-
nents a,re {g («)J where n=«, y, z and «=1, 2, . . . ,

then the vector

W. («~s~) = Q 1",'J, (R)*
R&go~ ky 0)

&g S,~( ««'~R)g, («') (2.21)

for any fixed X' transforms according to the Ath

row of the sth irreducible representation of Go(k;
—k), where I"'"(R) is the matrix representation
of the operation P in the irreducible representa-
tion s. In case the sth irreducible representation
occurs N, times in the reduction of the represen-
tation of Go(k; —k) provided by the matrices
8 ~(««'IR), the vector W, («l sX) generated by Eq.
(2.21) is a function of N, parameters. ln general,
the values of these parameters can be determined
only by substituting the vector into the eigenva, lue
equation [Eq. (2. 1)].

III. APPLICATION TO THE LONG-WAVELENGTH
VIBRATIONS OF GRAPHITE

We now apply the preceding results to the case
of the long-wavelength vibrations of graphite.
Graphite belongs to the nonsymmorphie space
group De~. The primitive translation vectors of
this crystal are

1 A

&g=aa(Qi, —i ), t, =m, , t, =c«, (3.1)

x(1) =(O, O, --,'c)

x(2) =(',Qa, 2a, --.'c)

x(3) =(3+a, o, —,'c)

x(4) = (0, 0, —,
' c) .

(3.2)

We ean use the conditions expressed by Eqs.
{2.4)-(2. 7) and Eqs. (2. 9)-(2.11) to determine the
independent nonzero components of the tensors
&,"„,z„(«),andf„~(««') for graphite.

where z„z3,and z, are three unit vectors along the
Cartesian x, y, and z axes, respectively. We pick
the origin of coordinates midway between two near-
est neighbors along the z axis {at the center of in-
version for the crystal). There are four atoms in
a primitive unit cell. The basis vectors {x(«)},
which give the positions of these four atoms with
respect to an origin which in the 1th primitive unit
cell is given by x(l) = l,t, + inta+ l,t„where l„lm,

and Es are any three integers to which we refer
collectively as E, are
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From Eq. (2. 11) and the fact that the point group
of the crystal is De„,we find that E~„is diagonal
and has only two independent elements

0 0

TABLE I. Atomic-force-constant matrix for the
short-range forces (only the nonzero elements are dis-
played).

K/K'

0 &"„„0
0 0

(3.3)

From Eq. (2. 10) we find that if we use the oper-
ations of De„which are not associated with an
interchange of sublattices, viz. , the operations E,
2C~, 3Ca', c„,2Sz, and sc~, the tensor z (v) is
diagonal for every ~,

a(11)
a (11)

b (11)

a (12)
n (12)

b (12)

a (13)
a (13)

b (13)

a (14)
a (14)

b (14)

a (12)
n (12)

b (12)

a (22)
a (22)

b (22)

a (23)
n (23)

b (23)

n 03)
a (13)

b (13)

a (23)
a (23)

b (23)

a (22)
a (22)

b (22)

a(13) n (12)
n (13) a (12)

b (13) b(12)

n (14)
a (14)

bO4)

n (13)
a(13)

b (13)

a (12)
a (12)

b (12)

a (11)
a (11)

b (11)

„„(x)0
z(~) = 0 z„„(~) 0

0 z„(~)
(3.4)

a (11)= —[ a (12) + a (13) + a (14) )

b (11)= —[b(12) + b(13) + b(14) ]

a(22) = —[a(12) +a(13) +a(23) ]
b (22) = —[b(12) + b(13) + b(23) t

When we use the remaining operations of De„,
which are associated with interchanges of the sub-
lattices, we find that

z, (1) —z„(4), z, (2) =z, (3) . (s. 6)

o o

z(1) = z(4) = —z(2) = —z(3)=

o .;)
(3.7)

Turning now to the elements of the force-con-
stant matrix(f 8(KK )j, we find from Eq. (2. 9) by
the use of the operations of De„which are not as-
sociated with an interchange of sublattices that

f z(vw') is diagonal in o. and P,

f~,(~~') = 5maf~(~~') = 5~,f~(~'~),

where

f„(KK)=f(Kx)ef (KK)

(S.8a)

(s. 8b)

and where we have also used Eq. (2.4). From the
operations of De„which are associated with the
interchange of sublattices we find with the aid of
Eq. (2. 9) tha. t

f (11)=f (44), f (22) =f (33),

f (12) =f (43), j' (13)=j" (42) .
(3.9)

Finally, the condition expressed by Eq. (2. 6)
yields for the diagonal elements

From the infinitesimal translational invariance
condition, Eq. (2. 7), we find in addition that

z (1) = —z„(2). (s. 6)

Combining the results expressed by Eqs. (3.4)-
(3.6), we find for the effective charge tensors of
graphite

f,(11)= —[f,(12) +f,(13)+f„(14)],
f,(11)= —[f,(12) +f,(13)+f,(14)],
f„(22)= —[f„(12)+f„(13)+f„(23)],
fg(22) = —[fg(12) +fg(13) +fg(23) ] .

(s. 10)

I'=2I",e2I",c) 2I', o 2I', (3.12)

in the notation of Koster et al. The polar vector irre-
ducible representations are I'a (basis function z) and
I', [basis functions (x —fy), —(x+iy)] Conseque. ntly,

The form of the force-constant matrix is shown in
Table I.

If the phonon wave vector k tends to zero along
the z axis, so that k =- (0, 0, 1), the point group
Go(k; —k) is D6„. The 24 operations of the point
group and the corresponding characters calculated
from Eq. (2. 20) a.re

R E C2 2C3 2Ce 3C2 3C2' I cr„2Se2$3 Od Ov

lt(R)120 0 0 0 —40 4 0 —8 4 0

(3.11)
Here C~ is a twofold rotation about the y axis and
about two other axes in the xy plane, rotated from
it by + 60', C2' is a twofold rotation about the x
axis and about two other axes in the xy plane ro-
tated from it by + 60', cr„is a reflection in the
plane containing the z axis and one of the C2' axes,
and cr„is a reflection in a plane containing the z
axis and one of the C~ axes. The 12 operations E,
2C3, 3Cz, I, 2Se, and 30„,comprising the point
group D3d have no nonprimitive translation asso-
ciated with them; the remaining 12 operations are
accompanied by a displacement through the vec-
tor v(R) =+ zc.

The reduction of the representation of D~ pro-
vided by the matrices {8 z(xx'IR)) by the use of
Eqs. (2. 19), (2. 20), and (3.11) yields



we can write for the representations according to
which the acoustic and optical modes transform

r„=I';oI';
I'„,=2I",C) 2I",OI", O I'; .

(3.13a)

(3. isl )

Q M (s
~ j)w (s

~
j') = 5~~.

obeyed by the eigenvectors, we find that when j'
refers to an acoustic branch, while j refers to an
optical branch, in view of Eq. (3.14),

w (1 [j) + w (2
f j) + w, (3

fj)+ ~ (4
fj) = 0,

(3.16)
a =x, y, z, j = optical.

The modes of I"~ symmetry are Raman active,
those of I'3 and I'5 symmetry are infrared active,
and the modes of I", symmetry are silent. Thus,
with A along the z axis graphite possesses two
doubly degenerate Raman-active optical modes of
I'6 symmetry, one nondegenerate infrared-active op-
tical mode of I'3 symmetry, and one doubly degenerate
infrared-active optical mode of I', symmetry.

In Table II we list the components of the vectors
fW (s I sa7.)f defined by Eq. (2.21) for k = (0, 0, 1).
Because graphite is monatomic, the components
of the exact eigenvectors (w (el j)f of the matrix
obey two conditions which enable us to determine
completely the eigenvectors which correspond to the
infrared-active modes, even though they occur twice
in the reduction [Eq. (3.12)]. As a consequence of
infinitesimal translation invariance, the eigenvectors
of the three k =0 acoustic modespossess the property
that w, (slj)/(M„)' is independent of s. Conse-
quently, for graphite we have that

w (i~j) = w. ( 2~j) =w (s~j) =w (4~j),
Q =x, y& zy j = acoustic ~

From the orthonormality condition

TABLE III. (un-normalized) eigenvectors for the
Baman- and infrared-active modes for k = (1,0, 0).

w„(])
w„(I)
w, g. )

w„(2)
w, (2)
m; (2)
w„(3)
m, (3)
w, (3)
8'„(4)
m, (4)
w, (4)

0
0
b

0
0

—b

0
0

0
0
b

0
0

—b

0
0

0
0
b

0
0

—b

0
0

0

0 0 0
0 0

0 0 0
0 0 b

IT7 0 0
0 b

0 0 b

0 0
0 b 0
0 0 0
a 0 0
0 a 0

a = b for acoustic modes
a = —b for optical modes

This condition states that the center of mass of a
primitive unit cell is stationary in any optical
mode of graphite. The consequences of Eqs. (3.14
(3. 14) and (3.16) are incorporated into the results
for the eigenvectors (W (v I sa7)) displayed in Ta-
bles II and III.

the phonon wave vector % tends to zero along
the x axis so that k =(1, 0, 0), the point grouP
Go(k; —k) is Ds„. The eight operations of this
group and the corresponding characters calculated
from Eq. (2.20) are

8 8 C O'C" I
X(R)12 0 0 —40 4 4 0

Here Cz, Cz and Czr' are rotations by 180' about
the z, y, andx axes, respectively; and o„,o~, and
v„are reflections in the xy, zx, and yz planes, re-
spectively.

Reducing the representation of the group Dz~
provided by the matrices (8 s{ss' I R)j yields

1 =2I",o21",e 2I",e2I', o 2I', O2I'4 . (3.16)

w, (y)

w, (i)
Wx (2)
w, (2)
w (2)
w„(3)
w (3)
w (3)
w„(4)
w. (4)
w, (4)

A
—iA

0
8

—28
0

-8
iB

0
-A
iA

0

A*
iA~

0
8*
iB*

0
—8+

0
—A~

A A*
—iA iA*

0 0
8

—iB iB~
0 0
8

0 0
A A*

—iA jA*
0 0

a = b for acoustic modes
a=-b for optical modes
A =8 for acoustic modes
A = —8 for optical modes

TABLE II. (un-normalized) eigenvectors for the
Raman- and infrared-active modes for k = (0, 0, 1).

The polar vector irreducible representations of
the group Dm„are I'3, 1"3, and I'4, for which the
basis functions are y, z, and x, respectively. Con-
sequently, the irreducible representations of Dm~

according to which the acoustic and optical modes
transform are

I" =1" 6 I' oX' (3.19)

r.„=-sr',e 2r', 9 2r', ~ r;o r;s r; . (3.20)

The modes of I l I p and 1"3 symmetry are Raman
active and the modes of I'~, I', , and 14 symmetry
are infrared active. In Table III we have tabulated
the vectors (W (s I sa7.j defined by Eq. (2. 21) for
k = {1,0, 0).

Finally, in Table IV we list the squares of the
frequencies of the Raman- and infrared-active
modes af graphite for k=(0, 0, 1) and k=(1, 0, 0).
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TABLE IV. Squared frequencies of the Raman- and
infrared-active optical modes of graphite for k = 0., 0, 0)
and k= (1,0, 0).

k = (0, 0, 1)

)off —f214+ 1722 —fl23+ [(fuff —fff4 —@22+.+23) + 4(gf2 fff3) j
1 I 2 2 f/21

, 2 &~f1 -f'14+ 22-f'23 —[(fI« -~f4-ff22+fI23) 2 1/2l

2 (bf1 + b14) +
12

0

, 2 — 2(~ff ~f4)Mt'
5

group of the crystal. Consequently, the eigenval-
ues $«a~} and the eigenvectors ($ (« l j)) can be ob-
tained from the results of Tables II and IV, re-
spectively, where in the latter table we must re-
strict our attention to the results quoted for 1, =—(0,
0, 1), and must set ef = 0. In this way we obtain the
results

f.(i",) =f,(i', ) =0, f,(I;)=(ef/&M)(4e), (3.24a)

«', =(2/M)(5„+5„), (3.24b)

f(1' )=JM(4A) f{1' )= M(-4~)ej e1'

Mc I-+ =~ 2

k=(l, o, o)

' i'«-'14'"» -'23" [( «-&14 —22" &23) '4«12-&13) j
2 2 1/2

2 ia 11
—a„+a22 —a» —[(a« —1714 —a22+ a») + 4(a» —af3) j

1 2 2 1/21 f„(r-„)= (4A*), f,(r») = (4A*),ei

(3.25a)

2 ibff

..-' ibff —bf4 b22 —b23 —[(bff —b14 —b22 & b23) -' 4{bf2 —bf3) I' 'l

M. , 2 — 2(bff b14)Mj i.- =

0

A'J~I2- =- 2(aff + af4) 16", (ef )2/f, ,~,

—,
' ia„-a«--a»-a»+ [(a„-a«—a22-. a23) -' 4(a» -a») ]

2-.. 2 1/2i

iaaf

f ff f4 ~ 022 P2') [(fl ff t7 14 f72' fI23) + 4 (Qf2 ff f3) j
1 f'

2 2 f /2}.

2 (ff f f
+ g 1 4 )

MC I.-.=
0

f,(I"Sa) = 0,
«r- —(2/M)(a„+g„).

(3.25b)

(3.25c)

Only the contributions from the infrared-active
optical modes have been included in obtaining the
results expressed by Eqs. (3.24) and (3.25). This
is because, by the definition of infrared-active
modes, it is only these modes which give rise to
nonzero coefficients (f, (j)j.

From the orthonormality condition satisfied by
the eigenvectors ($ («l j)j,

g(.(e~j) &*.(~~j') =-5,,

4 ~f.(j}f*.(j)
E~ „&0)= C~„+

~ 4 n.
~

—(d
(3.21)

.
) ~e, («)] («I j)

~a vM„
In these expressions (X&) and (g («: I j)j are the 3r
eigenvalues and the corresponding unit eigenvec-
tors of the matrix f ~( «)/«( „M~M)'~:

(3.22)

They are obtained by substituting the vectors listed
in Tables II and III into the eigenvalue equation
[Eq. (2. I}]and making use of the results given by
Eqs. (3.3) a.nd (3.7) a.nd Table I.

The preceding results can be used to obtain the
dielectric constants of graphite. Quite generally,
the dielectric constant of any crystal in the ab-
sence of spatial dispersion and damping can be
written in the form 7

we find that

= e„(~)
4v 4(ef) 1"'v. M (2/M)(5„+5„)—&

(3.28}

(3.29)
It should be noted that the frequency for which
e„(u&)= 0 is just the frequency of the longitudinal-
optical mode of I'a symmetry for k = (0, 0, 1) is as
it should be. Similarly, the frequency at which
e„„(v)= 0 is the frequency of the longitudinal-
optical mode of I"~ symmetry for k=(1, 0, 0) is as
it should be.

(3.27)

Substituting Eqs ~ (3.24), (3 ~ 25), and (3 ~ 27) into
Eq. (3.21) we obtain as the only nonzero elements
of the dielectric tensor a~„(e)

)
4v 4(ef)' 1

), , &, ( '~j ) = «, &.( ~j) .f„(««')
8 K K

According to Eq. (2. 14) the matrix 8 z(m'l3)
commutes with the matrix f a(m')/(M„M„.) + for
each operation S of the point group G0 of the space
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