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Thermoelectric power of a Hubbard chain with arbitrary electron density: Strong-coupling»mit
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%'e have studied the thermoelectric power of an infinite Hubbard chain with arbitrary electron density in the

strong-coupling limit. Calculations were carried out for the simple Hubbard model and in the atomic limit of
an extended Hubbard model having an arbitrary nearest-neighbor repulsion. %e compare the results to the

measured thermopower of high-conductivity complex salts of tetra-cyanoquinodimethane (TCNQ).

I. INTRODUCTION

The conducting salts of the organic compound
tetracyanoquinodimethane (TCNQ) have been stud-
ied widely on the basis of a variety of models.
Most efforts have focused on the simple salts,
particularly N-methylphenazinium- TCNQ, '

and tetrathiafulvalinium-TCNQ (Ref. 3) and its
analogs. This paper will be concerned with a high-
conductivity complex salts of TCNQ: Q(TCNQ)q,
A(TCNQ)z, and DTC(TCNQ)2. These materials are
composed of separate, uniform chains of TCNQ
and, respectively, quinolinium, acridinium, and

3, 3-diethyltiazolinocarbocyaninium. Measure-
ments of the electrical conductivity, magnetic sus-
ceptibility, and thermopomer show marked simi-
larities among these salts, ' favoring a systemat-
ic interpretation of their properties.

The conductivity of these compounds exhibits a
broad peak centered at a few hundred degrees and
activated behavior at lower temperatures, remi-
niscent of a system undergoing a Mott-Hubbard
transition. ' The susceptibility data are also con-
sistent with this picture, which predicts a uniform
antiferromagnetic exchange along a chain. These,
of course, are the very arguments used by Epstein
et al. to justify the application of the simple Hub-
bard model ' to N-methylphenazinium-TCNQ
(NMP-TCNQ). Some modifications of the Hubbard
model will be necessary and/or desirable to re-
flect the properties of the complex salts. ~~ The
primary source of inspiration here is the thermo-
electric power.

Consider the thermopomer calculated by one of
the authors (G. B. ) for a simple Hubbard chain in
the atomic limit. While this can be fit qualita-
tively to the data obtained for the simple salt NMP
TCNQ by assuming, say, a filling factor p of 0. 9
electrons per site and an on-site Coulomb repul-
sion U of 300 K, the data for the complex salts
cannot be so satisfactorily matched. The model
predicts, for a quarter-filled band, a high-temper-
ature thermopower of —80 pV/'K with a smooth

shift to —60 pV/ K at temperatures kT «U. The
data, illustrated in Figs. 1-3, ~ shorn a constant
high-temperature value of about —60 pV/' K with

a steady decline in magnitude beginning well below
room temperature and persisting to the lowest tem-
peratures measured. This implies that U» kT in
these salts for all experimental temperatures.
Moreover, a more complete description of the
electronic interactions is clearly necessary. Since
the complex salts will have transferred. about —,

'

electron per TCNQ, it is reasonable to postulate
that at least the Coulombic repulsion between car-
riers on adjacent sites must be taken into ac-
count. "

%e therefore propose to discuss the thermopower
of these systems on the basis of the extended-Hub-
bard-model Hamiltonian

in the limit U=~. U and Vare, respectively, the
on-site and nearest-neighbor Coulomb interactions;
t is the nearest-neighbor tight-binding transfer in-
tegral; Ct„(C, ,) creates (destroys) an electron of

spin 0' at the 1th site~ neo= CioCge ls the correspond-
ing number operator; n, = n„+n„. In the present
calculation we shall restrict our attention to bands
less than half-full. Thus the infinite on-site repul-
sion requires n&=0 or 1. %hile the limit U=~ is
taken primarily because it greatly reduces the
complexity of the problem, the evidence for a very
strong on-site repulsion has been indicated above.
Indeed, one may surmise that U should be larger
here than in the simple salts, where the interac-
tion could be reduced by the higher proportion of
polarizable donors.

A superficially similar model has been suggested
by Buravov et aE. ~' as being appropriate to these
complex salts. U=~ is implicitly assumed in the
restriction of the carrier number to zero or one
per site. The intersite electronic interaction con-
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FIG. l. Absolute thermopovrer of Q(YCNQ}2. &, o,
single-crystal data. Solid curve is the result of Eq.
(28} for p = 0.475, V = 80 K.

FIG. 3. Absolute thermopower of DTC(TCNQ}2. o,
singlemrystal data. Solid curve is the result of Eq.
(28} for @=0.485, V=450'K.

sidered, however, is attractive. This was intended
to represent the chemical bonding of the molecules,
vrhich is more likely orving to the fox'mation of elec-
electxon bands. These authors also assume that
the spin degeneracy of the carriers is quenched,
appealing for justification to the behavior of the
magnetic susceptibility at high tempex'atures. The
observed small, somewhat constant susceptibility~
does not x'equire such a conclusion, which is in fact
inconsistent with the Heisenberg model discussed
in Ref. 1. Thus, we believe that the extended Hub-
bard model, although still very schematic, does
present an improved descxiption of the physics in-
volved.

In this connection one additional point should be
mentioned. Both the model of Buravov et al. and

the atomic limit of the extended Hubbard model,
treated in Sec. III of this paper, ultixnately neglect
the carriers' kinetic enexgy in compaxison to the
off-site correlations. %'bile on the basis of the
other transport properties this may be a reason-
able hypothesis, there is no possibility of testing
it within the diffusion formalism used in Ref. 15.
Our model, on the contrary, can be studied for the
case where t is arbitrary and V is zero in order to
establish the plausibility of this assumption. This
is done in Sec. II. In Sec. III me derive our main
result, the thermoelectric power of the extended
Hubbard model in the atomic lixnit. Finally, in
Sec. IV numerical results are presented and com-
pared to the experimental data.

II. THERMOPOVfER: V = 0, t ARBITRARY
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X
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We first rewrite Hamiltonian (1) so as to take
fuQ advantage of the restxiction n, =0, 1. The
terms n„n„vanish identically. In addition,
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can be replaced by C~C„~, which transfers carriers
of either spin but cannot result in a doubly occupied
site. Ne have

H= VQ ngn(, ~
—t Q (CtC),~+H. c. ),
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vrith n, = 0, 1. It is important to keep in mind that
the carrier spins are still doubly degenerate,

Consider now the case V= 9 and t arbitrary.
Upon a Fourier transform of the remaining term,
the Hamiltonian becomes

FIG. 2. Absolute thermopovrer of A(TCNQ}2. x,
single-crystal data. Solid curve is the result of Eq.
P8} for p=0. 480, V=100 K.

e= —2t Q n, cos(ka),
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(4)

T is the temperature, e the absolute value of the
electronic charge, p, the chemical potential and

S(]) 1
p

2 (vv(~)+ v(7)v) d~, (s)

S' ' = 2 Pe (Qv(T)+ v(y)Q) dv,
0

(6)

wh~~~ v(T) = e'"'. In (5) and (6), P= (kT) ', (. . . )
denotes a thermal average, and v and Q are, re-
spectively, the velocity-flux and energy-flux oper-
ators given by

and

v = lim — [n„a]e""
0 kg'

1
Q = lim — [k„H]e'"'.-0 mq

where

g k, = & and Pn) = Nl

the total number operator. For th H lt
(3) we obtain

e ami onian

2ta ~v= „Z n, sin(ka)
k

and

where a is the lattice spacing and the wave vectors
k assume the allowed values 2vn/N, a in the first

rillouin zone. iV, is the total number of sites.
The thermopower for this tight-binding model

could be calculated using ordinary Boltzmann the-
ory. We, however, shall proceed by means of the
Kubo formalism' so as to lay the foundation for the
calculation in Sec. III of this paper. The Seebeck
coefficient S is given by

eTS = —eSQ)/S(1)

f„=(n~) = 2e ")) "'/(1+ 2e ")) "')

+2 e(i ) B(('))-u) )-1

vhere &k= —2tcoska. If, however, we explicitly
account for the spin term in p, by taking

p, = pp —kTln2, (14)

;hen

(I + e8 (8),"PP) )-1 (is)

uo is seen from E(I. (12) to be the chemical poten-
;ial for an ordinary tight-binding band of spin--,'

"arriers with density 2p. Finally, the thermopow-
er is

III. THERMOPOWER: t = 0, V ARBITRARY

We return to the Hamiltonian (2) and proceed to
calculate the thermopower to lowest order in the
transfer. The flux operators are

itav= Z C,Cg,~+H. c. ,

~ 2

Q=
@

QC, C„2
1

i t/'ta
+

@
~ CtC) i(n)-t+n„&)+H. c.

S = So —(k/e) ln2, (Is)

where Sp is the thermopower in the ordinary tight-
binding model and has been calculated by Bern-
stein. This result is plotted as a function of p and
erat in'n Fig. 4. One sees, on comparison with

Figs. 1-S, that the observed thermopower cannot
be represented well by E(I. (16). We conclude
therefore, that off-site correlations must be taken

~ ~

into account.

2t2
n), sin(2ka) .

k

Since [v, H]=0, v(~)=v, and

eTS = —(Qv)/&vv&+ p

=)t I f.(( —f.) ' '() ) os(k )/

(io)
l50

IOO-
P= 0.9

x g f,(1 f,) sin~(ka}, — -l00

where f)) = (n, ) and p is determined by

pN, =(N)= Q f), . (12)
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Since the states are spin degenerate but only sin-
gly occupiable, ~ f, is not the usual Fermi function

FIG. 4. Th ermopower as a function of temperature
and electron density for V=o and t arbitrary
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The first term in (18) does not contribute to lowest
order in I; and henceforward is disregarded. The
time-developed operator v(v) becomes, to lowest
order,

6(r) = ~ exp[i V7
st@ ~

x(n„q+n, q
—n, —n„~+ l)]C,C„q+H. c.

(le)
Referring toEqs. (4)-(6), which relate the thermo-
power of the thermal averages (zv(~)) and (Qv(v)),
we obtain, after carrying out the necessary com-
mutations and using the diagonality of the traces,

p, -eTS gKd Tr[e,((- „,)( „,~ ...)ex@I;)' ( ...+~„,—,— „,~ ()I])
0

"QJ & Tr[e'*, (( — „,)exp[)v ( ...+ ...—,— „,~ ()]],
lt+ 0

where E=H0 —pX, with H0 the off-site interaction.
The time exponentials are simplified and removed from the trace by use of the identity

e"'*= (1 -n, )+n, e" .

(20)

(21)

Now the integrations may be performed. Terms in which a net time exponential survives contribute a fac-
tor 6(V) upon integration. As we are interested in nonzero V, we discard these terms and are left with

P —8T~ ~ WK~ Tr[e n, (l —n„s}2n]~In»s) Z Tr(e n)(1 —n]~&)H1 —nrem) (1 —n„z)+n»&n„2]] .-SK

lk l~

Rewriting the traces in terms of the transfer matrix, we have

i], -eTS Tr[P nPnP(I-n}PnP ' ' ]
V T»' [(f-n)PnP(f-n}P(f-n)+nP(f-n)PnPn]P" ' ' '

where I is the identity matrix,

(22)

(2s)

/0 O

n=l 0

1 ~x Fx

P- ~x xp xg ' x= g

0 1 Mx xy xy

The traces are evaluated in the diagonal representation of the transfer matrix P. The eigenvalues and ei-
genvectors of P are given by

~, ,=-,'fi+2xy~[(1-2xy)'+ax]"'), ~, =O,

(2'f)N~, = B~,—(1+axy)]), g+2xy(l+2xy) .
E(luation (2S) therefore becomes

(p -e&S)/V= 4x (])q(1 —2x/N', )/N', +])~(1 —2x/X~)/Np+ [])~])g(1 —ax/N ))+ ][,])g (1 —ax/N p)]/(N )N g)]

& (][g(l —2x/Ng) (1 -4x/Ng+ 8x /N ~) + 8])mx (1 —2x/Nm}/N2 —4))~X2x(1 —ax/N q+ 12x /N q)/N2

—2X,~',x [1 -4x/N', —4x/N', + 24x'/(N', N', )]/N,'] ' . (28)

This expression ean be computed numerically
once we have the chemical potential, the equation
for which is ~

~x

ex =Px

with solution

p j. -2p 2 & —2p
p(1 p) p(1 p-)-

&&[4p(1 -p)y+(1-2p)']"'. (so)
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FIG. 5. Thermopower as a function of temperature
and electron density for (=0 and V arbitrary.

The thermoelectric power, a function of p and

kT/V, is plotted in Fig. 5.
IV. COMPARISON WITH EXPERIMENT; CONCLUSIONS

The fits of the thermopower calculated in Sec.
III to the data for the high-conductivity complex
salts are indicated by the solid lines in Figs. 1-3.
Th rocedure followed in obtaining these curves
merits some attention. We observe that Eqs. ~

and (30) yield, for temperatures kT» V, an asymp.
totic value of the thermopower given yb

S(T-~) = —(k/e) in[2(I —p)/p] . (31)

Note that this expression does not depend on T or
V, but only on p. Equation (31), by the way, is the
thermopower one would expect for a collection of
noninteracting spin--,' carriers on singly occupiable
sites. Using (31), we have been able to fit the
high-temperature observed constant thermopowers
by fixing the single parameter p and then the low-
temperature data by independent adjustment of V.
These fits predict p —,

' and V- 100 K. The filling
factor is as expected for 2: 1 complex salts, and
the magnitude of V is reasonable given an on-site

0 2irepulsion of over 1000 K.
Of course, a more realistic model would include

a finite transfer integral. In fact, the Hamiltonian
(2) with V and f both arbitrary is known to be iso-
morphic to the anisotropic Heisenberg model, for

which the ground state and first excited states have
been calculated exactly. ' The results, applica-
ble to a one-quarter-filled band, show the onset of
an energy gap for single-particle excitations when
V~ 2t, with EG= V —4t for V» t. If we interpret
the parameter V used in our thermopower fats as
an effective interaction corresponding to this gap
energy, the form of the thermopower curves is re-
tained and an estimate can be made of the "bare"
values Vo given a value for t, from the function
E~(VO/2t) in Ref. 24. Taking t= 240'K, we obtain
for Vo the approximate values 800 K in Q(TCNQ),
and A(TCNQ)z, and 1200'K in DTC(TCNQ)2. Thus,
from the point of view of thermopower, the Hamil-
tonian (2) appears to be a viable representation of
the electronic system in these high-conductivity
complex salts.

Is the model also consistent with the other known

physical properties? We cannot give a definitive
answer to this question, but there are indications
in favor of the model. The transition temperatures
and activation energies of the measured electrical
conductivities are in qualitative agreement with the
predictions of the model. Of course, an accurate
consideration of the conductivity must proceed from
a more sophisticated model which would include
loss mechanisms neglected in the present treat-
ment. While the magnetic susceptibility predicted
on the basis of the Hamiltonian (2) would obey the
Curie law, the observed susceptibility might be
recovered by considering a finite, but still large,
on-site repulsion.

In conclusion, we have seen that the strongly
correlated extended Hubbard model quantitatively
fits the measured thermopowers of a class of high-
conductivity complex salts of TCNQ and may be
qualitatively consistent with other physical proper-
ties of these compounds. The prospect therefore
appears encouraging for the comprehensive theo-
retical description of these systems, with its basis
given by the Hamiltonian (1). Further work, par-
ticularly a detailed conductivity calculation and
continued experimental studies, will provide a test
for the validity of the model as applied to these
systems.
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