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A theory of the heat of solution of hydrogen in simple metals is developed and results are presented for the

cases of aluminum and magnesium. The electronic contribution to the heat of solution is treated within the

framework of local pseudopotential theory and is based on linear screening. For the proton contribution it is

necessary to use nonlinear theory for the screening of the proton and a convenient framework for this is the

density functional formalism with exchange and correlation corrections included approximately. The calculated

value of the heat of solution for aluminum is 0,45 eV which compares favorably with the experimental value

of 0.66 eV. The result for magnesium, —0.05 eV, is also in reasonable agreement with the experimental value

of 0.25 eV bearing in mind that the hydrogen heat of solution is obtained as the difference of two energies of
about 15 eV. The energy has also been investigated as a function of the position of the proton in the lattice.

Calculated energy barriers are used to estimate proton diffusion parameters.

I. INTRODUCI'ION

Most simple metals dissolve hydrogen only in
very small quantities. For example, the metals
which are the subject of this investigation, name-
ly Mg and Al, dissolve about 700 parts per million
atomic and 1 (ppma), respectively, of hydrogen at
Btomospheric pressure near their melting points.
In spite of the small quantities dissolved, hydro-
gen in metals is of practical interest because of
problems that arise in manufacturing processes.
One example is the formation of gas bubbles in the
metal after solidification due to dissolved hydro-
gen. ' In the ease of Al, bubbles form near the
surface and lead to blistering.

Hydrogen-metal systems are also of interest be-
cause hydrogen is dissociated upon solution and
leads to the simplest possible impurities. The H'

ion, the proton, is a point charge for our purposes
with no complicating core electron structure.
However, from a theoretical point of view, there
are difficulties in treating this impurity because
the proton-electron interaction is very strong and
cannot be substituted by a weak potential with the
same scattering properties. This replacement is
the foundation of the pseudopotential method which
allows us to treat the properties of simple metals
by perturbation theory.

Apart from the relevance to hydrogen-metal
systems, the behavior of a heavy particle with unit
positive charge in a metal is also relevant to the

positive p. meson which has recently been used as
a solid-state probe. ~ The p, meson with a mass of
about 200 electron masses will interact with the
ions and electrons of a metal in an identical way
to the proton and will differ only in its vibration
motion. Apart from negligible effective-mass
eorreetions, the heats of solution, migration en-
ergies for diffusion, and the like will be the same
for the proton and positive p. meson, but an im-
portant difference will be the larger effective
jump frequency of the p meson. The diffusion co-
efficient for the p meson will be larger than for
the proton by a, factor of about (M/M„)'~ =3.

In an earlier paper, Popovic and Stott calcu-
lated the migration energies for diffusion of hy-
drogen in A1. and Mg using nonlinear-response
theory to obtain approximately self-consistent
electron densities around the proton. The results
for Al were in good agreement with experiment.
Experimental data for Mg were not available. A

particularly interesting point arising from this
investigation was the possibility of hydrogen trap-
ping by vacancies in Al. The energy with the pro-
ton at a substitutional site was calculated to be con-
siderably lower (l. 23 eV) than with the proton at
the most favorable interstitial site. It was pro-
posed that a proton and a p. ' in metals may behave
in a similar way to a positron for which trapping
at vacancies, dislocations, voids and, in general,
regions of low ion density, in some metals is well
documented.
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The heat of solution is another basic quantity of

interest in a study of hydrogen-metal systems.
The only theoretical work on this problem that we
are aware of was reported by Friedel, who treat-
ed hydrogen in copper. We will discuss this work
fully in a later section. An important ingredient
in the theory of the heat of solution is the screen-
ing of a proton in the electron gas. Friedel4
tackled this problem by trying to solve a set of
single-particle Schrodinger equations self-con-
sistently. The screening of a proton in an elec-
tron gas has also been treated using linear-re-
sponse theory. It is clear from the large electron
density near a positron in the electron gas, as
evidenced by the enhanced positron annihilation
rate in metals, and a comparison of linear and
nonlinear response for the electron density around
repulsive point ions, ' that the electron-proton in-
teraction is too strong to be treated adequately
using linear-response theory.

The density-functional formalism developed by
Hohenberg and Kohn and Kohn and Sham provides
the basis for the investigation of the screening of
a proton presented here, and the availability of
fast, large-capacity computers has made tract-
able self-consistent, nonlinear-response calcula-
tions of the screening cloud around a proton.

Even though linear-response theory is inadequate
for describing the screening of a proton in a
metal, it is convenient to develop first of all the
linear-pseudopotential theory of the heat of solu-
tion. The reason for this is that dissolving a hy-
drogen atom in a metal involves two particles, an
electron and a proton. Consequently, there will
be two contributions to the heat of solution. The
electron contribution can be calculated with rea-
sonable confidence using pseudopotential theory.
The terms representing the proton contribution
can then be corrected using the results for the
nonlinear screening of the proton. Since pseudo-
potential theory is used in calculating the electron
contribution, the scope of the method is limited to
the so-called simple metals. Detailed calculations
have been performed for the cases of hydrogen in
aluminum and magnesium, and in both of these
cases the heat of solution has been measured.

Before proceeding with the detailed theory some
general arguments will be presented that will sim-
plify the formulation. First, the heat of solution
will not depend on the change in volume of the
sample so long as the concentration of hydrogen
is small. The argument is similar to that for the
case of a vacancy in a metal 3nd will not be re-
peated here. This allows the assumption of con-
stant-volume conditions to be made in the calcu-
lations. Second, the heat of solution will not de-
pend on the state of the metal surface. The spill-
ing out of electrons from the surface of a metal

produces a surface dipole potential which is a
major contribution to the electron work function. "
The magnitude of the surface dipole potential is
sensitive to the purity and general state of the
metal surface, but since the hydrogen atom to be
dissolved is electrically neutral there will be no
change in energy, due to the surface dipole, as it
passes through the surface.

The experimental heat of solution, which is ob-
tained as the slope of the logarithmic plot of the
solubility versus 1/T at constant hydrogen pres-
sure, is equal to the change in energy of a hydro-
gen atom dissolved in the metal compared with
the energy per hydrogen atom in a hydrogen mol-
ecule. To create a free electron and proton from
the hydrogen molecule, 2. 26 eV per atom is re-
quired first of all to dissociate the molecule,
and then the atom must be ionized which costs a
further 13.60 eV, amounting to a total of 15.86 eV
for the process. The observed hydrogen heat of
solution ~H„will be

~H„= 15.86+ ~Hei-p eV,

where AH„~ is the heat of solution for a free
electron and proton from vacuum, and it is this
latter quantity that will be calculated.

The heat of solution is measured at high tem-
peratures, but the small value of about 6x 10 ~ eV
for the proton zero-point energy, using the vibra-
tional frequencies estimated in Sec. VII, indicates
that it is a good assumption to neglect the motion
of the proton and perform the calculations for a
rigid arrangement of the ions. It is further as-
sumed that the proton resides at the octahedral
site in both aluminum and magnesium. The ener-
gy for different positions of the proton has been
investigated, and the results justify this assump-
tion with certain reservations in the case of al-
uminum. Lattice relaxations about the proton
have been neglected. A comparison can be made
with the case of vacancies in aluminum' and mag-
nesium' for which the calculated relaxation en-
ergies are about —0.03 eV. The forces acting on

neighboring ions due to the proton, calculated us-
ing the results for the screened electrostatic
potential, are of the same order as in the case of
a vacancy and, consequently, the relaxation en-
ergies cannot be very different. In refinements
of the theory it will certainly be desirable to take
account of lattice relaxation, and this can be done
using standard lattice statics techniques. '

When lattice relaxations are neglected it is
straightforward to calculate the energy of the sys-
tem for different positions of the proton. Popovic
and Stott estimated the maximum height of the
energy barrier for the proton jumping from one to
a neighboring interstitial site, and compared these
with experimentally determined activation ener-
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gies for diffusion, Additional details of the mi-
gration energy barriers will be presented in this
paper, and vibrational frequencies of the proton
will be estimated. A comparison will be made
with the results for activation energies calculated
using linear screening for the proton.

The theory of the hydrogen heat of solution will
commence with a review of local-pseudopotential
theory in Sec. II. Section III is devoted to the
linear-pseudopotential theory of the heat of solu-
tion, regarding the proton as a point charge with
the form factor

1.105 0.458ZV„=Z
$

~ o. D())( r, Z(K) w(2)),

—4~Z D sinqR)r(r()=, "~(( —B)c qos)R
~oq

(8)

and appropriate uniform charge backgrounds, so
that individual terms in Eq. (4) a.re finite

where (3/4v22) =(0,/Z) '=n, is the mean electron
density and A0 is the atomic volume. Introducing
the pseudopotential form factor W(q) given by

W„(q) = —47r/A2q . (2)

(Atomic units are used throughout with 5=m. = e = 1.
The unit of energy is 2V. 26 eV and the unit of dis-
tance is the Bohr radius, 0. 529 A. ) SectionIVde-
scribes the necessary corrections to the heat of
solution due to the nonlinear screening of the pro-
ton. In Sec. V the density-functional formalism
is used to treat the nonlinear screening of a pro-
ton in the electron gas, and the method used to
obtain an approximate self-consistent solution is
described in Sec. VI. ln Sec. VII the energy bar-
riers for proton diffusion are calculated. Conclu-
sions are drawn and further applications of the
theory are discussed in Sec. VIII.

The second term in (4) is the electrostatic ion-
ion interaction energy. Ii can be evaluated using
an Ewald method and may be expressed in the
form

WZ~
V, =lim ~S(q)~ E,(q) —Z

2)00

where

(8)

+,(V) = (»Z'/f~de) exp(- 0'/4&)

and S(q) is the structure factor, which is given in
terms of the ion position 8& by

II. PSEUDOPOTENTIAL THEORY —TOTAL CRYSTAL
ENERGY

S(q)=N '+exp(iq R,.).
j

(9)

A local pseudopotential W(r) which is a simpli-
fied Heine-Abarenkov model potential is used for
the electron-ion interaction in the calculations.
If Z is the valence,

W(r) =
—ZD/R, r &R,
—Z/r, r &ft,

(3)

where the core radius A, and D, which deter-
mines the depth of the potential inside the core,
are adjustable parameters.

Following Harrison the total energy V of X
pseudoions immersed in an electron gas calculat-
ed to second order in perturbation theory may be
expressed as the sum of three terms

v'=fi(zv. , + v, + v,).

in Eq. (4), V„ is the energy per electron for the
uniform, interacting electron gas plus the aver-
age value of the electron-ion interaction. It does
not depend on the detailed arrangement of the ions,
but only on the density. Using the analytic form
proposed by Pines and Nozidres, ' V„may be
written

For a perfect crystal,

V, = n Z'i'/2r„

where n is the Ewald constant having the values
—1..791 75 for the fcc lattice and —1.79166 for the

hcp structure.
The last term in (4) is known as the band-struc-

ture energy and is given by

«o=& 2 l»(q)W(q)I'Z(q).
q/0

For a local pseudopotential g ls given by

1 Q() 1 —e (q)
g(q) 2 4v/q2 1 f(q)

The function f(q), which accounts for exchange and
correlation corrections and depends on the mean
electron density, also appears in the electron di-
electric function

nq 2 Bk~ 2k~ —q

(13)

In the calculations we have used the parametrized
form for f(q) proposed by Singwi et al. "
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Consider the total energy when a proton and an
additional electron are introduced into the metal.
The changes in each of the three contributions in
Eq. (4) will be considered in turn.

The total electron-gas energy in Eq. (4) (XZV, y)

will be modified owing to the introduction of an
additional electron. This will change the numbe r
of electrons to NZ+1 and the Fermi wave vector
to kz = kz(1+ I/3NZ), giving for the change in en-
ergy to order unity

k
A(NZV„) = V„(k~)+ ~

BkF
(14)

Note that the average value of the electron-ion in-
teraction Eq. (7) does not change with k~ because
the atomic volume per host ion remains the same.

The electrostatic energy XV, will change be-
cause of the addition of a proton. Since lattice
relaxations around the proton are neglected, the
change in the total electrostatic energy due to the
Coulomb interaction between the proton and the

TABLE I. Table of lattice parameters, c/a ratio,
binding energy per atom, and model-potential param-
eters for Al and Mg.

Equations (4)-(11) for the total energy are va. lid
for any configuration of identical ions. When all
of the ions are not the same the expression must
be slightly modified, and this will be carried out
in Sec. III for the case of a hydrogen impurity.

The pseudopotential parameters have been
chosen so that the observed equilibrium lattice
parameter and the binding energy for the perfect
crystal are given accurately to second order in
perturbation theory using Eq. (4). In previous
calculations of the vacancy formation energy and
volume, "' the pseudopotential parameters were
fitted to the observed equilibrium lattice condition
andbulk modulus. In the case of the heat of solu-
tion, the observed binding energy rather than the
bulk modulus was felt to be a more appropriate
second quantity for the fitting since energies rela-
tive to the vacuum level are of interest. The bind-
ing energy per atom is merely V /N The. equi-
librium lattice condition given explicitly to second
order by Popovic ef af. ' is obtained from (SV /
85), 0=0, where 5 is a uniform dilation. Table I
lists the observed lattice parameters, the binding
energies, and the deduced pseudopotential param-
eters for aluminum and magnesium.

III. LINEAR-RESPONSE THEORY FOR HEAT OF
SOLUTION

ions, together with a neutralizing uniform nega-
tive background, will be

~(xv. , ) = n„z'"/r, (15)

The cons tant n „depends on the position of the
proton with respect to the ions and the crystal
structure. It can be calculated by Ewald's meth-
od. Assuming that the proton occupies an octa-
hedral site, n~ = —0. 425 86 for the fcc structure
and nH = —0.42732 for the hcp structure, with the
c/a ratio appropriate to Mg.

The band-structure energy in Eq. (4) (NV, )

changes owing to the introduction of the proton and
the additional electron. In considering this term
it is convenient to introduce the set of reciprocal-
lattice vectors K„ for the fcc lattice in the case of
Al and the hexagonal lattice in the case of Mg. In
terms of K„, the structure factor for Al can be
chosen to be

S(q) =P 5., & (16)

and for Mg, if p2 is the position of the second atom
in the unit cell,

S(q) = —,'ll+ exp(iq. p2)JIQ&; x .

4(NV, ) =~ icos'( —,.'K„p,)W'(K„) g(I7„)

+P W(K„)W„(R„)(cos(K„~ p„)+cos [R„~(p2 —p„)])
rrCO 0

+ N P W„(q)g(q).
qW 0

(18)

For fcc crystals the result has the same form
with p2=0.

Adding up the changes in the energy given by
Eqs. (14), (15), and (18), the expression for the
heat of solution of ionized hydrogen is obtained,

~,) p
——hH~ + AH~,

where

~H, = V„(k ) ~ "(k )+c„BV,) Z2/3

(19)

Qwing to the presence of the proton, NS(q) W(q) in
Eq. (11) becomes NS(q)W(q)+ W„(q) e px(-iq p„),
where p is the position of the proton and k~
changes because of the additional electron. Again,
noting that the atomic volume per host ion Oo re-
mains constant, a straightf orward calculation
yields for the change in the band-structure energy
to order unity for the hcp structure

a (A) c/a V~/N (a. u. ) kFR~ +~g cos (-,'K„.p2) W (K„) g(R„)
n~o Bk

(20)

Al. 4. 031 ~ ~ ~

Mg 3.193 1.624
—2. 082
—0. 855

1.285 0. 3969
1.227 0. 4507 depends only on the properties of the perfect crys-

tal, and
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TABLE II. Results of calculations of proton correlation energy with x~=2. 064
a. u. appropriste to Al. Trial potential parameters and V&~t/Z& are given for dif-
ferent values of the charge Z& on the heavy impurity, calculated using nonlinear
Hartree theory and the nonlinear theory with exchange and correlation correc-
tions. The final row lists the resulting proton correlation energies obtained using
(26) and the result obtained using linear-response theory.

Trial potential parameters
A 8 Linear theory

V„,/Zp (a. u. )

Nonlinear
(Hartree)

Nonlinear
(exch+ corr)

0. 5

1.0

l. 101
0. 899

l. 159
0. 987

l.219
1.075

l.273
1.153

l. 024
l. 348

l. 001
1.290

0. 977
1.229

0. 954
l. 171

—0. 194

—0„423

—Q. 220

—1.186

Proton correlation energy
Eeorr (a. u —0.401

~2 =g W(R„}W„(K„)(cos(K„p„)

+ cos[K„{p„-p2) j }+X 'g W„(q)g(q)

(21)
depends upon the presence of the proton through
the form factor W„.

The hydrogen heats of solution for Al and Mg,
calculated from Eqs. (1) and (21) using the model-
potential parameters listed in Table I, are quoted
together with the results of the nonlinear-screen-
ing theory in Table V. The hydrogen heat of so-
lutions for Al has been measured by Eichenauer
and for Mg by Popovic and Piercy, and their re-
sults are also quoted in Table II. The linear
theory is seen to be inadequate giving values that
are too large. It also predicts incorrectly that
the heat of solution for Mg is larger than for Al.

Linear theory is proba, bly providing an adequate
treatment of AH, since this term does not depend
on the screening of the proton, and consequently
Eq. (21) underestimates AH2. In order to obtain
better agreement with experiment it is essential
to go beyond linear theory in treating the screen-
ing of the proton. A self-consistent nonlinear
theory of the screening of a proton will be devel-
oped in Sec. Dland applied in a more careful
treatment of the hydrogen heat of soLution.

IV. NONLINEAR CORRECTIONS

proton. Equation (21) can be written

r H, =ps(q) W{q)n" '(q)

+—g exp(iq. p„)W„(q)n"'(q),

where n" '(q) is the displaced electron density
around the proton in an electron gas calculated to
first order in lV„, and is given by

(22)

&"'(q) =2@(e)Ws(q) exp(- fq p„) (23 }

AH, =g S(q) W(q)n(q) + E (2
@0

where n(q), expressed in terms of the displaced
density Ln(r) around the proton, is

The first term in Eq. (22) is the interaction ener-
gy between the electron screening cloud around
the proton and the ions. The second term is the
leading term in a perturbation expansion for the
electron-proton correlation ener gy E „for an
electron gas. This correlation energy does not
involve the surface dipole potential since the pro-
ton is not introduced into the electron gas through
an external surface; rather it is the change in
ground-state energy as the electron-proton inter-
action is slowly turned on.

The nonlinear response of the electrons to the
presence of the proton can be accounted for by
modifying Eq. (22) to read

The term AH2 in the expression for the heat of
solution can be rewritten in a more transparent
form so that it is clear how to make corrections
that take into account nonlinear screening of the

OO

n(q) = ch 4mh'bn(r)
0

The electron-proton correlation energy can be

(25)
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+Carr
'

C-fo ~ o (z„)) (26)

calculated conveniently by introducing An(Z~, r),
the displaced density around a heavy impurity,
with electric charge Z~e where Z~ ranges from 0
to 1. The derivation uses Feynman's theorem and
follows precisely that given for the electron-posi-
tron correlation energy by Hodges and Stott, ' and
the result is

V„,(r) = 6E„[n]/6n(r). (31)

Up to this point the scheme for calculating the
ground-state density is exact; but in practice, ap-
proximations are involved because of an incom-
plete knowledge of the functional E„,[n]. A real-
istic approximation for the case of a slowly vary-
ing density replaces the nonuniform electron sys-
tem locally by a uniform electron gas of mean
density n(r), a,nd

where E„= drn(r)e„(n(r)), (32)

V)„——— dr ~ An Zq, r)

V. NONLINEAR PROTON SCREENING

In this section the method used for calculating
the screening cloud around a proton and a frac-
tionally charged positive impurity is described
and compared with earlier calculations.

The theoretical foundation of the method used
here to treat the screening of the proton has been
developed by Hohenberg and Kohn and Kohn and
Sham and is usually referred to as the density
functional formalism. Results of the formalism
pertinent to this work will now be presented.

The central result of interest is the existence of
a one-body local potential V,«(r) which, through
the one-body Schrodinger equation

[ —~V + Vrr(r)]fr(r) =er(cr(r), (27)

generates the set of wave functions g,. and energy
eigenvalues g„ from which the exact ground-state
density of the system may be obtained using the
independent-particle result

n(r) = g ~(};(r)~ (28)
6]CQ

where p. is the electron chemical potential. The
effective potential may be expressed in the form

is just the electron-proton interaction energy for
the charge Z~e. Using Eqs. (24)-(26), corrections
to the hydrogen heat of solution taking into account
the strong nature of the electron-proton interac-
tion can be made in terms of the displaced elec-
tron density around a fractionally charged positive
impurity in the electron gas.

where e„,(n) is the exchange and correlation ener-
gy per electron for a uniform electron gas of den-
sity n; consequently,

v..( )= o..( ( ))=r, ~
C n=n(P)

(33)

p, „,(n) is the exchange and correlation part of the
electron chemical potential for the uniform elec-
tron gas. This approximation has been used, and
the parameterized form for p.„,proposed by Hedin
and Lundqvist, based on the work of Singwi et
al. ,

'~ has been adopted for the detailed calcula-
tions, In the calculations the zero of potential
was chosen so that V,«(r) -0 as r- ~.

It is straightforward to apply Eqs. (27)-(33) to
the case of a heavy positive particle with charge
Z~e in a uniform electron gas. In view of the
spherical symmetry it is convenient to express
the single-particle wave function in terms of par-
tial waves R»(r) which satisfy the usual radial
Schrodinger equation

c
1 a' l(f~l)

87
; ~ v„,( ) ~, —

ag) R,.( )=o. (34)
2y'

For the continuum states &~ =-,'k, where k is the
electron wave vector labelling the states, and the
zero of energy is taken to be the potential far from
the impurity. S-type bound states sometimes oc-
cur, and for these cases the wave functions will
be denoted by Ro(r).

Since the impurity must be completely screened
at large distances r V,«(r) = 0 as r- ~, and the
radial wave functions for the continuum states will
have the asymptotic form well known from partial-
wave analysis

V.„(r)= v(r)+ v„(r), (29)
Rr(,(r) = cosgr jr (kr) —sinrlrnr(kr), (36)

where V(r) is the total electrostatic or Hartree
potential

)

V(r) = V„,(r)+ dr'
tr —r'I (30)

where the phase shifts g, depend on k and j, and ng

are the spherical Bessel and Neuman functions,
respectively. For a bound state with energy c, &0,
the asymptotic form is

and V„ is the functional derivative of a universal
exchange and correlation-energy functional E„[n]
of the particle density n:

rR (r)-e

where ko=(-2&,)'

(36)
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The change in density induced by the impurity
particle can be expressed in terms of the radial
wave functions

kg
b.n(r) =—2 dA' k Q(21+ 1)

7i
Q l =0

~( [R„(r)]'—j', (ur)}+2[R,(r)]',

where R, is normalized so that

(38)

The sum over angular momentum quantum num-
bers l in Eg. (38) converges rapidly. This is be-
cause the effective potential is localized so that
radial wave functions for large l will differ little
from the corresponding unperturbed functions, j,
being dominated by the centrifugal term in Eq.
(34).

In order to have complete screening of the im-
purity the total displaced charge must balance the
charge of the impurity. This condition can con-
veniently be expressed in terms of the phase
shifts evaluated at the Fermi level, the result

Z~ = —Q(2l+ 1)n, (kr)
7J f Q

is the well-known Friedel sum rule. In applying
Eq. (39) account is taken of displaced charge in
the form of bound states through the condition
q, (0) =nw, where 2n(2l+ 1) is the number of bound
electrons with quantum number E.

The electron-proton correlation energy may be
calculated using Feynman's theorem and the dis-
placed density around a positive impurity with
charge Z~e, as indicated in Sec. IV. Alternative-
ly it can be calculated by substituting the electron
density around the proton into the energy functional
of the density. However, the latter method would
involve a large degree of cancellation between dif-
ferent terms, particularly between the change in
the sum of eigenvalues and the Hartree electro-
static self-energy term. There is no problem of
this type in using the coupling-constant method,
and so that: approach has been used for the calcu-
lations.

The scheme described above may be viewed as
a nonlinear self-consistent Hartree calculation
with approximate corrections for exchange and
correlation. However the density functional for-
malism is in principle exact; it also gives a guide
to how exchange and correlation effects should be
included and generally places the scheme on a
firmer theoretical footing. The self-consistent
Hartree method, where the effective potential is

merely given by V(r) [Eq. (30)], has been used to
treat the nonlinear screening of repulsive point
ions and the results used to estimate vacancy for-
.mation energies. 2~

Nonlinear-response calculations of the electron
distribution around mobile and fixed point charges
in an electron gas have been reported by Sjolander
and Stott, ~ The work of these authors was based
on an extension of the theory of an electron gas
developed by Singwi et al. ' to a two-component
system. The method dealt well with repulsive im-
purities and gave similar results to the self-con-
sistent Hartree method for heavy impurities, but
it proved inadequate for treating the screening of
a positron for larger values of r, and broke down

for the proton throughout the metallic range of

electron densities. The symptom of this break-
down was an excessive pile-up of charge near to
the attractive impurity particle, and since itis the
kinetic-energy cost that limits electron localiza-
tion, it could be this aspect of the problem that is
treated improperly in this method. Also the pres-
ence of resonant states or actual bound states is
not accounted for in the method. The method has
since been refined by Bhattacharyya and Singwi '
by taking some account of three-particle correla-
tions, and has been used successfully to treat the
positron annihilation rate. These authors also
used the method to calculate the electron density
around a proton in an electron gas with r, =2 a. u.
close to that adopted here for Al. Their results
will be compared with the results for Al presented
later in Sec. VI.

The screening of heavy, positively charged im-
purities is more difficult to treat than the case of
the light positron or a repulsive particle because
of the possibility of resonances or actual bound

states occurring. The most straightforward way
to account for these possibilities is to solve ex-
actly an appropriate single-particle Schrodinger
equation. A calculation of this type for the case of
a proton was first reported by Friedel who ex-
amined the hydrogen-copper system. The start-
ing point of this calculat;ion was a proton with one
bound electron which was stabilized by Slater ex-
change between it and parallel-spin conduction
electrons. No valence-valence exchange was in-
cluded, and there were no correlation corrections.
Friedel corrected for the presence of the ions and
estimated the hydrogen heat of solution for copper
to be 0.2 eV, in reasonable agreement with the
recent experimental value of 0. 57 eV. Friedel
calculated the wave function of the bound electron
in the field of the proton and conduction electrons
so that at large distances from the proton the
bound electron moves in an unscreened Coulomb
field, which will give an overestimate of the bind-
ing energy and is unrealistic.
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The procedure outlined earlier and adopted for
the calculations is not directly applicable to spin-
polarized screening. However, an exchange-cor-
relation potential for use with a spin-polarized
ground state has been proposed by von Barth and
Hedin, 6 and with substantially more computational
effort this case could be investigated. We do not
think that the single-bound-electron configuration
is relevant to simple metals since, for a high
electron-gas density, the random-phase approxi-
mation (RPA) should be good and there will be no
bound states. And for low electron density, where
exchange should be most important, the limiting
ease will be the ground state of the H ion in the
Wigne r lattice.

VI. APPROXIMM E SELF-CONSISTENT SOLUTION

The formalism described in Sec. V is similar to
that used in self-consistent-field calculations for
atoms, and it is well known that these converge
well; .a reasonable trial function after a few itera-
tions yields good self-consistency The immediate
difficulty in the screening of a proton in an elec-
tron gas lies in conserving the number of particles
and ensuring complete screening at large distances
from the proton: for the atom with a relatively
small number of electrons this is no problem. The
trial potential and any other generated by iteration
does not necessarily satisfy the Friedel sum rule
and will behave incorrectly, V,« - I/r, at large
distances. It might appear appealing to treat the
screening problem by considering a finite number
of particles in a large box. March and Murray '
have performed such calculations to treat the
screening of a pseudoion without attempting self-
consistency. They concluded that a prohibitively
large number of particles (10 or more) would be
necessary to make effects due to the box boundary
conditions negligible.

A self-consistent solution of Eqs. (34)-(38}was
first attempted by starting with a trial potential
V,«(r) = V„„,(r, o.) containing a single parameter
e whach was determined so that the Fr~edel sum
rule, Eq. ('39), was satisfied. Using this potential
and Eqs. (34}-(38)a new potential was generated
and adjusted so that the Friedel sum rule was
again satisfied. In spite of many differentsorts of
adjustments this procedure was not convergent,
and in successive iterations the violation of the
Friedel sum rule increased.

The procedure final. ly adopted achieved good
self-consistency and started with a two-parameter
trial potential, V, „„,(r, a. p). The parameters o
and P were determined so that the Friedel sum
rule was satisfied by both the trial potential and
the potential generated from it using Eqs. (34)-
(39). A number of analytic forms for the trial
potential were tried and they all gave very similar

results, the electron-proton correlation energy
not differing by more than 0. 5% or less than 0. 1

eV. A trial function of the form

re y g( r): 8 (40)

was found to be most flexible since a and P could
be chosen to produce the correct Friedel sum
rules for any value of Z~ between 0 and 1, with or
without exchange and correlation corrections in
the potential, for both aluminum and magnesium
electron densities.

The details of the computational procedure will
now be described systematically. Starting with
the trial potential, Eq. (40), with the parameter
P fixed, the parameter n was calculated so that the
Friedel sum rule was satisfied to high accuracy.
The radial Schrodinger equation was solved nu-
merically in steps of 0. 05 a u. out to a radius Ro
= 10 a. u. using a method described by Fox and
Goodwin ' (method VII). The potential was put to
zero for ~&RO, the numerical solution matched to
the analytic solution given by Eq. (35), and the
phase shifts found. The analytic solution was later
used for r &Ro. Radial wave functions with 0 ~k
&k„were required to construct the displaced elec-
tron density, Eq. (38), and for the integration over
A the Gauss integration formula of the 48th order
was used. Seven partial waves were used in the
sum over / in Eq. (38). The phase shifts q, (kr)
were very small (-10 ) so that little error was
introduced by neglecting the changes in wave func-
tions with l &6. In some eases an s-like bound
state appears with go- p as k-0. The bound-state
wave function and energy were found by matching
the numerical solution for y &Ro to the asymptotic
solution given by Eq. (38) at r=RO. Theparam-
eters e and P and the electron-proton correlation
energy were changed by less than &% by doubling
Ro, halving the integration interval, or using the
64- rather than 48-point Gauss integration formula.
Once the displaced charge is known the new effect-
tive potential can be found, for which the Friedel
sum is then calculated. This whole procedure is
then repeated with an adjusted value of P until the
correct Friedel sum is obtained.

Values of the parameters e and P determined
in this way for different values of Z~, together with
the corresponding interaction energies and the re-
sulting electron-proton correlation energies, are
given in Tables II and III for Al and Mg elect:ron
densities, respectively. Results are presented
for linear-response theory, the self —consistent
nonlinear Hartree approximation, and the full self-
consistent nonlinear theory including exchange and
corr elation.

Line ar - response theory underestimates substan-
tially the magnitude of the electron-proton correla-
tion energy. The results for the displaced den-
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TABLE III. Results of calculations of proton correlation energy with x~=2. 642

a. u. a,ppropriate to Mg. Trial. potential parameters and V«, /Z& are given for dif-
ferent values of the charge Z& on the heavy impurity, calculated using nonlinear
Hartree theory and the nonl. inear theory with exchange and correlation corrections.
The final row lists the resulting proton correlation energies obta, ined using (26) and

the result obtained using linear-response theory.

Trial potential parameters
Q' P

V„,/Z, (a. u. )

Nonlinear Nonl. inear
Linear theory (Hartree) (exch+ corr)

0. 25

0. 5

1, 0

0, 969
0.665

l. 046
0.811

l. 123
0. 949

l. 197
1.063

1.042
l. 630

l. 008
l.485

0. 976
l. 355

0. 943
l. 237

—0. 168

—0. 937

—0.201

—1, 157

proton correlation energy
Econ

sities indicates that this arises fxom a less pro-
nounced pile-up of electrons near the impurity.
Exchange and correlation corrections also play an

important role giving considerably lower energies
than simple Hartree calculations. The full calcu-
lations revealed shallow bound s-states for Z~ = 1,
with energies approximately 0. 005 a. u. for Mg
and 0. 0005 a. u. for Al. In the ease of Mg, the

bound electrons contributed 30% of the total elec-
tron density at the proton; for Al they contributed
only about 10%, which indicates a spatially more
extensive bound state for Al compared with Mg,
which is consistent with the smaller binding ener-
gy, The bound states around the proton should

merge with the continuum for larger electron-gas
densities than those considered. There were no
bound states for the smaller values of Z~ investi-
gated. Hartree screening did not give a bound

state for Al and gave but a very shallow one for
Mg.

The single-particle eigenstates and in particular
the bound state are not relevant to the single-par-
ticle excitation spectrum as measured approxi-
mately in a soft-x-ray emission experiment or by
x-ray photoemission. The density functional for-
malism as presented earlier deals only with the
ground-state energy and particle density. In any
case, an experiment involving the excitation of one
or more particles could not be used to distinguish
between shallow bound s-states ox incipient bound
~-states in the continuum, because the lifetime of
holes deep in the Fermi sea is short, leading to
poor energy resolution (a hole near the bottom of
the conduction band would be about l. 3 eV wide ).

Table IV presents phase shifts for k= kz ob-

tained from the calculation including exchange and

correlation. For both Al and Mg the rapid de-
crease of phase shift with increasing / is evident.
The large s-wave phase shift also indicates that

the scattering at k = kz is predominantly s wave.
The most dramatic differences between linear-

and nonlinear-response theory can be seen in the
displaced electron densities around the proton,
which are illustrated in Figs. 1 and 2 fox Mg and

Al, respectively. At the proton site the electron
pile-up is about ten times greater than the linear-
response result for Mg and about six times for Al,

For comparison the electron density in atomic hy-

drogen is presented. It is smaller than in the
metal in the region near the proton, but of the

same order of magnitude. The densities calculated
using the Hartree method are also presented, and

as expected the density near the proton is under-
estimated. This is because the exchange-correla-
tion hole axound an electron, when it is near to the

proton, leads to reduced screening of the proton
charge and consequently to a more attractive po-
tential than the electrostatic potential without

many-body corrections. The electron density at
the proton site is roughly four times larger than

TABLE IV. Phase shifts calculated at k =0+ for a
proton in a uniform electron gas of mean density appro-
priate to Al and Mg.

Al 1.081 0.1210 0. 0196 0, 0033 0. 0005 0.0001
Mg l.272 0.0796 0. 0095 0, 0012 0, 0000 0.0002
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0
I i '~. L

20
r (a.u.)

3

F/G. 1. Displaced electron. density, D~ (y) =n(x) -no
in units of no plotted against r (a. u. ) for a proton in. a
uniform electron gas of mean density appropriate to Al
(r~=2. 064 a. u. ). Results are presented for the non-
linear theory with exchange and correlation corrections
(solid line}, the nonlinear Hartree theory (dash line),
linear response theory (dotted line), and for the hydro-
gen a.tom (dash-dot line).

that at a positron in the electron gas. This is be-
cause the positron, with the mass of an electron,
recoils after a collision, and in the center-of-mass
frame the ratio of kinetic-to-potential energy is
greater than for the proton, leading to weaker
scattering. The electron density varies rapidly
near the proton, and the local density approxima-
tion for the exchange-correlation potential will
probably be poor in this region Fortunately, near
the proton the effective potential will be domi-
nated by the Hartree potential (V- —1/r) and er-.
rors in V„„should not greatly effect the density.
However, the approximation used for V„, is cer-
tainly the most serious in the whole procedure

Friedel oscillations in the charge density are
clearly exhibited in Figs. 1 and 2 Similar os-
cillations are present in the Hartree and effective
potentials which are not shown. Both nonlinear-
response calculations yield density oscil. lations
which are shifted in phase by about 90' from those
for linear response. This is an important char-
acteristic of nonlinear response, particularly since
the interaction energy between the screening cloud
and the surrounding ions depends crucially on the
relative positions of the density maxima and the
pseudoions. The oscillations have the expected
asymptotic form r cos(2kzr+ P). Linear response
leads to similar oscillations but with phase angle

P = 0. The electron density around a proton cal-
culated self-consistently using the nonlinear theory
with exchange and correlation, and the results of
Bhattacharyya and Singwi mentioned earlier,

agree quite well. The electron density at the po-
sition of the proton obtained by these authors is
about 25% larger than the value obtained by linear
extrapolation to x, = 2 a. u. of the results presented
here. However, charge neutrality is px csex ved
by a substantially larger first oscillation in the
density than that illustrated in Fig. 1. It would be
valuable to compare the two methods for larger
values of y, to confirm that the excessive charge
pile-up encountered in the method of Sjolander and
Stott' for lax"ge x, has been eliminated by the re-
f inements of Bhattacharyya and Singwi ~5

The electx'on-photon coxrelation energy and the
electron density around the proton calculat d using
nonlinear-response theory can be substituted di-
rectiy into Eq. (24) to yield a corrected vain. for
4Hz, and hence the hydrogen heat of solution can
be obtained assuming that the proton resides at the
octahedral interstitia1. position, Results are pre-
sented in Table V for AH& Ecorr AH3, and the hy-
drogen heat of solution 4H„calculated using lin-
ear-response theory, the nonlinear Hartree ap-
proximation, and the full nonlinear theory includ-
ing exchange and correlation.

It was mentioned earliex that linear-response
theory for the scx eening of the proton greatly
overestimates the heat of solution. Table V in-
dicates that nonlinear Hartree theory does not
bring much, improvement, and this is mainly due
to the underestimation of the electron-proton cor-
relation energy, In order to obtain better agree-
ment with experiment it is essential to include ex-

30

20

4nI„

10

0, i i i ~4 I

0 1
( )

2 s

PIG. 2. Displaced electron density, An(~) =n(~) -no
in units of eo plotted a.gainst w (a. u. ) for a proton in a
uniform electron gas of mean density appropriate to Mg
(r, =2. 642 a, u. ). Results are presented for the non-
l, inear theory with exchange a,nd correlation corrections
(solid line), the nonlinear Hartree theory (dash line),
linear response theory (dotted 1.ine), and for the hydro-
gen atom (dash-dot line).
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TABLE V. Summary of contributions to the hydrogen
heat of solution calculated fox' Al and Mg along with the
experimental results.

ZH( (a. u. )

gV& (a. u. )

Linear theory
Nonlinear theory (Hartree)
Nonlinear (exch+ corr)

—0.1472

0.0382
0. 0806
0.1033

0. 0003
0.0294
0. 0447

gH~ (au. u)

Linear theox'y
Nonl.'near (Hartx'ee)
Nonlinear (exch+ corr)

—0, 3626
—0.3708
—0, 4189

Lineax theory
Nonlinear (Hartree)
Nonlinear (exch+ corr)

Expel lmental 0.66
(Ref. 19)

2. 89
2. 03

-0.05

0.25
(Ref. 20)

The formulas derived for the heat of solution axe
valid for any position of the pxoton in the metal.
But for the calculations presented so fax it has
been assumed that the proton resided at an octa™
hedral site in both Al and Mg. This is a reasonable
first assumption in view of the symmetry and the
fact that the octahedral site situates the proton as
far as possible from the repulsive metal ions.
However, neglecting relaxation of the ions about
the proton, the energy of the system as a function
of the position of the proton E(ps) can be investi-
gated with little additional computation. Of all
the terms in &H, and nH3, given by Eqs. (20) and

(24), respectively, which together with Eq. (1)
give the heat of solution, only two depend on the
relative positions of the proton and ions, and apaxt
from a constant

g8/3
&(ps) ~s(ps) =+ P ~(q)s(q) Ii'(q),

pf40
(41)

where e& is the Ewald constant for the electx'o-

change and correlation corrections The full
theory underestimates the heat of solution by about
0. 2 eV for Al and 0. 3 eV for Mg. However the
theory correctly yields a lower heat of solution fax
Mg unlike the linear and nonlinear Hartree ap-
proximations. The heat of solution is given as the
difference of energies of about 15 eV and its value
for Al and Mg is roughly 0. 5 eV. In view of this
cancellation the discrepancies between the full
theory and experiment can be regarded as small.

VII. DIFFUSION AND POSITION OF HYDROGEN

static interaction between the ions and the proton.
In an earlier paper Popovic and Stott reported
calculations of the activation energies for diffusion
of hydrogen in Al and Mg based on Eq. (41) and
using the full nonlinear-response displaced den-
sity. In a classical model of diffusion the activa-
tion enex'gy E is the height of the energy barrier
ovex which the particle must be thermally excited
in order to diffuse, and the diffusion constant is
proportional to the Boltzman factor e

In this section results are presented for E(pa)
calculated for a. number of positions of the proton
along the principle diffusion routes, and using the
nonlinear-response displaced density ln Eq. (41).
These results indicate the shape of the energy bar-
rier. In the ease of Al symmetry considerations
indicate that the jump of the proton from one to a
neighboring octahedral site must be accomplished
via an intermediate tetrahedral site. In the case
of Mg there are two possibilities for diffusion.
The proton can jump in the direction of the e axis
directly from one octahedral site to a neighboring
one or, alternatively, diffusion can take place in
the basal plane via an intermediate tetrahedral
site. Taking the energy at the octahedral sites to
be zero, E(p„) has been calculated for eleven equi-
distant positions of the proton on the straight lines
joining the different sites. The results are pre-
sented in Table VI. As reported earlier, in the
case of Al the energy calculated for an octahedral
site is lower than for a tetrahedral site, whereas
for Mg the two sites have indistinguishable ener-
gies. This justifies the assumption of the octa-

2
3

5
6
7
8
9

11

Al
oct tet

0.00
0.02
0.08
0.16
0.26
0. 35
0.41
0.40
0. 31
0.20
0.13

0.00
0. 02
0. 06
0.13
0.20
0.26
0, 27
0.24
0.15
0. 05
0.00

Mg
oct -oct

0. 00
0. 03
0. 10
0.20
0. 30
0. 34
0. 30
0.20
0. 10
0. 03
0. 00

E (ev) O. 41 (1.81) O, 27 (1.61) O. 34 (1.67)

TABLE VI. Energy change in eV for 11 equidistant
positions of the proton on the straight lines joining ad-
jacent sites of high symmetry, Hesul, ts are given for Al
for the octahedral-octahedral jump and for Ng for both
the octahedral-tetrahedral jump in. the basal plane and
the octahedral-octahedral jump along the e axis. The
heights of the energy barriers corresponding to the mi-
gration energies are given in the last row. The re-
sults of a lineax'-response theory are also given in paren-
thesis.



THEORY OF THE HEAT OF SOLUTION OF HYDROGEN IN Aj. . . 601

hedral site for the proton in calculating the heats
of solution.

The results indicate that diffusion of the prot;on
in Al is limited by the energy barrier around the
octahedral site. The height of this barrier gives
a migration energy of E =0.41 eV, which is in
good agreement with the most recently reported
experimental values of 0. 47 Rnd 0. 52 eV. I The
migration energies have also been estimated using
linear-response theory for the screening of the
proton with n~~'(q) instead of the full nonlinear den-
sityinthe second term of Eq. (41). The linear-re-
sponse theory grossly overestimates the height of
the potential barrier, giving for Al, E =1.81 eV.
This discrepancy again emphasizes the impor-
tance of the phase of the density oscillations to
the interaction of the proton screening cloud with
the surrounding ions. Another quantity relevant
to the proton diffusion is the frequency of vibra-
tion v of the proton in the direction of the barrier
about the equilibrium position. This can be esti-
mated by fitting a harInonic-oscillator potential to
the energy barrier about the octahedral position
to obtRln R fox'ce coDstRDt K, RDd then lf Mp ls the
proton mass, v - (1/2m) (K/M~) ~ . For Al, v- 1 & 10" sec '.

In the case of Mg no experimentally determined
migration energies are available. However, re-
cent unsuccessful attempts to quench hydrogen in

Mg could be explained by fast diffusion, which
would be consistent with the small calculated mi-
gration energies given in Table VI. As in the case
of Al, linear-response theory overestimates the
migration energies for Mg, and the results are
E =1.67 eV for the octahedral-octahedral jump
and F. = 1.61 eV for the octahedral-tetrahedral
jump. The vibrational frequencies are estimated
to be about 7&101 sec I for both types of diffusion.

In the calculations no account has been taken
of relaxation of the ions around the proton. The
forces acting on the neighboring ions could be cal-
culated from the displaced electron density, and
the relaxed positions of the ions then estimated
using the standard methods of lattice statics. This
would be a lengthy calculation and probably un-
profitable in view of the small relaxation-energy
contribution to the vacancy formation energy.
The relaxation energies for the more confined
saddle-point configurations of the proton mill prob-
ably be larger than that at the equilibrium position,
leading to smaller migration energies than those
calculated, although this should be a small effect.
The binding energy of a proton to a vacancy in Al
should also be slightly affected by relaxation. The
relaxation enexgy for the proton should be smaller
when the proton is in a substitutional position than
when it is interstitial, leading to a binding energy
somewhat smaller than the 1.23 eV calculated

earlier using (41).'

VIII. MSCUSSION

The theory of the heat of solution of hydrogen in

simple Inetals has been developed and applied to
Al and Mg. The heat of solution was first calcu-
lated by treating the screening of the proton and
the screening of the ions, described by local mod-
el potentials, using linear-response theory. The
calculated values were much larger than the ob-
served heats of solut;ion. However, it was noted
that the heat of solution can be divided into sepa-
rate contributions, one fx om the additional electron
and the other from the proton. The electron con-
tribution should be given well by low-order per-
turbation theory with the ions described by a local
model potential, but for the proton contribution it
ls DecessRx'y to go beyond llneRI'-I'esponse theox'y
todescribe the screening of the proton. Approxi-
mate]y self-consist. ent nonlineax -response calcu-
lations of the electron density around a proton in
the electron gas have been performed. The meth-
od was based on the density functional formalism
of Hohenberg and Kohnlo and Kohn and Sham with
an approximate treatment of exchange and correla-
tion. The results clearly demonstrated the inade-
quency of linear-response theory for proton
screening and they were used to obtain corrected
values for the heat of solution which were in good
Rgl'eeIQent with expel lment.

The energy of the hydrogen-metal system was
investigated as a function of the position of the
proton along principal diffusion routes. These re-
sults complemented the migration energies for
diffusion presented previously' and enabled an esti-
mate of the vibrational frequency of the intersti-
tial proton to be made. Linear-response theory
of the screening of the proton was also used to
estimate the migration energies and lead to gross
overestimates. This was due to a poor descrip-
tion of the oscillations in the electron density
around the proton. The phase of these oscillations
plays a crucial role in the interaction energy of
the electron screening cloud around the proton with
the neighboring ions.

The heat of solution was calculated assuming the
proton to be Rt an octahedral site. This is a rea-
sonable assumption in the case of Mg since Popo-
vic and Stott found the octahedral and tetrahedral
sites to have almost identical energies. The
situation for Al requires more discussion. In
this case Popovic and Stotts found that the calcu-
lated energy for the octahedral site was 0. 13 eV
lower than that for the tetrahedral site, indicating
that the octahedral is the stable interstitial site.
However, the proton at R substitutional site in Al
was found to have an energy 1.23 eV lower than
the octahedral site energy. This energy would be
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gained by a proton falling into an existing mono-
vacancy.

Assuming a value E„=O.67 eV for the vacancy
formation energy, this implies a positive heat of
solution for substitutional hydrogen of 0. 1 eV
which is contrary to experiment. E~ and the local
density approximation for exchange and correla-
tion is a source of error, but agreement between
theory and experiment for the heat of solution for
Mg and the migration energy for Al was within

0. 3 eV. However first-order perturbation theory
for treating the lattice is probably a poorer ap-
proximation for a substitutional than for an inter-
stitial impurity, and errors of as much as the va-
cancy formation energy could be introduced into

E~. Despite these uncertainties in the calculated
results we believe that proton binding to a vacancy
in Al is likely.

The generally good agreement between theory
and experiment suggests that the density functional
formalism with the local density approximation for
exchange and correlation leads to a good descrip-
tion of the screening of a proton in the electron
gas. This method, together with the treatment of
the electron-ion interaction using a model poten-

tial and low-order perturbation theory, could be
used to study many other properties of hydrogen
in simple metals. For instance, the interaction
of the screened proton with dislocations and im-
purities is of great practical interest and could be
treated in a straightforward manner.

The dependence of the electron-proton correla-
tion energy for an electron gas on the mean elec-
tron density and the displaced electron densities
around the proton for a range of mean densities
have been investigated, and the results will appear
elsewhere. Spin-polarized screening of the proton
in the electron gas has not been considered here,
and we do not believe that it is relevant to hydro-
gen in simple metals for the reasons stated earlier.
However, it may be relevant to hydrogen in fer-
romagnetic metals and alloys and should be studied
in this regard.

The screening of ions with Z & 1 could be studied
using similar techniques to those employed here.
The particular case of 2 =2 is of interest since
experimental data on He-W indicate that one or
more He atoms may be trapped by vacancies paral-
leling the suggestion that hydrogen is trapped at
vacancies in Al.
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