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We present the local orbitals for NaF, SrF„and SrC12. We use these results, along with previously reported
local orbitals for NaC1, to calculate the electron density. We find that NaF has 65% more electron density at
the density minimum located along the nearest-neighbor axis than NaC1. In addition, SrF2 has 79% more

density at the minimum than SrC1,. The latter result is in agreement with recently reported experimental

evidence indicating more dynamical charge overlap in SrF, than SrC12. We find the NaC1 electron density

agrees extremely well with experimental results obtained from x-ray scattering measurements. The implications
of the above result are discussed in terms of relative ionicity. Dividing the charge density into ions along the
surfaces of density minima (i.e., along the ionic radii) yields a net charge per ion which is inconsistent with

the actual Coulomb potential in the solids. The reasons for this are discussed.

I. INTRODUCTION

Experimental evidence has recently come to our
attention which suggests that the degree of ionic
charge overlap of SrF, and SrCl, may be opposite
to that which one might naively assume based on
ionicity theories, as those of Pauling' and Phillips.
Indeed, the experimental work of Man and aron'
(see previous article) definitely indicates that there
exists more dynamic charge overlap in SrF, than
in SrCl, . This paper represents an attempt to de-
termine if such results are in disagreement with a
static electron density found from a nonparame-
trized theoretical approach. We find no disagree-
ment.

The local-orbitals method of restricted Hartree-
Fock4 has long been known to provide accurate re-
sults for ionic materials. ' Recently, it has also
been successfully used to treat a metallic solid'
(Ca) and a transition-metal carbide' (TiC) . In all
cases the accuracy achieved has been quantitatively
satisfactory, provided that correlation effects are
added to the Hartree-Fock bands. ' Physical prop-
erties which depend only on the first-order density
matrix, however, are expected to be predicted
well by local-orbitals theory alone. Such proper-
ties are the electron density and the Compton pro-
file.

The concept of ionicity is basically a conceptual
aid. As such it is only useful if it directly relates
to physical observables which may be unambiguous-
ly measured and calculated. Of the many physical
observables which are related to ionicity, the one
which lends itself most strongly to conceptualizing
the nature of bonding is that of the electron density.
The latter permits us to think in terms of ionic
charges, radii, polarizations, and overlaps. We
wish to find if there is a simple relationship be-

tween the electron density and the degree of ioni-
city.

In Sec. II we recall the Adams-Gilbert equation
upon which local-orbital theory is based and dis-
cuss the calculation of the electron density. In Sec.
III we discuss a theoretical basis relating electron
density and the degree of ionicity. In Sec. IV we
present the local orbitals and the electron densities
for the solids in question. In Sec. V we discuss the
comparison with experiment, and we conclude in
Sec. VI.

II. LOCAI ORBITALS THEORY

The Adams-Gilbert equation, '
A A

(F —pAp) Q~g =Egg f~(

provides a means to solve the restricted Hartree-
Fock problem within a nonorthogonal set of func-
tions localized on the atomic sites of a solid. This
method of solution provides computational simplic-
ity with no loss of accuracy. The localized nature
of the functions means that intersite Coulomb and
exchange forces may be expanded in a rapidly con-
verging series which may be terminated at any
point when the desired accuracy is obtained. One
of us (A.B.K.}has shown that sufficient accuracy is
provided upon taking the series to first order in
overlap. " Here I' is the Fock operator, ~t„ is the
ith local orbital about site a, &„ is the eigenvalue,
A is the localizing potential (which we take for
simplicity as a square welP'}, and p is the first-
order density matrix. The latter is written in
terms of the local orbitals and the inverse of the
local-orbital overlap matrix (S,', ») as

p(r, r') = g y. ,( )rS, » y»(r')
ai, bj

We express the local orbitals in terms of Slater-
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TABLE I. Basis functions and local orbitals for NaF.

+.
Na ion

Aoj

F ion

ZQ j

15.949
9.439

11.624
4.384
2.811

14.090
7.921
9.939
3.230
1.834

Cj.oj

0.13398
0.91805

-0.058 14
0.001 48
0.000 65

0.087 84
0.952 02

-0.042 78
0.002 73
0.000 08

Czoj

0.00575
-0.308 67
-0.024 05

0.491 69
0.612 26

0.004 70
-0.272 94
-0.024 66

0.637 07
0.467 48

Ag. Zf j

12.048
5.703
3,33'6

2.146

7.798
3.789
1.946
0.968

C2j

0.007 81
0.230 34
0.455 02
0.384 63

0.022 96
0.333 19
0.522 31
0.261 83

type basis functions. These are obtained from
Huzinaga's optimized atomic bases, "which we use
in the form

X, &(r) Ã, zr"&&' 'e urY, ,

so that,

The electron density at a point r is then

p(r ) = Q Q, )(r ) S,( ai Pa~( ),
a j,bj

where we compute the inverse of the overlap ma-
trix using Lowdin's formula to the quadratic term:

~a j @antm g nil X lmj' (4)
~.l ~ ai=26a~, ag ~.i.~~++ (& 6aa) (-& —6aa) ~a~ an~+, an.

ck

(6)

TABLE II. Basis functions and local orbitals for SrF2.

Sr ion

Apj

Aij

Zp j
40.65
36.f 9
18.91
17.89
9.39
7.38
7.47
4.24
2.67

C2r

Cioj

0.891 96
0.13744

-0.020 37
Q.018 40

-0.044 77
0.066 89

-0.03f 40
0.001 83

-0.000 50

C3i j

C2oj

0.281 49
0.171 45

-0.636 99
-0.499 31
-0.045 97

0.001 06
0.012 14

-0.003 31
0.001 13

C41j

C3pj

O.f 15 29
0.067 82

-0.255 20
-0.393 37

0.359 05
0.672 72
0.143 69
0.01673

-0.001 79

A2j

C4oj

0.040 87
0.023 77

-0.089 38
-0.154 38

0.201 05
0.19593
0.177 85

-0.647 77
-0.536 54

C32

F ion

Apj

25.19
17.35
16.50
10.72
6.91
3.47
2.10

ZQj

0.120 91
0.706 18
0.181 71
0.033 10

-0.002 48
0.000 42

-0.000 18

0.046 13
0.305 62
0.154 96

-0.259 38
-0.884 09
-0.029 25

0.009 14

C~oj

0.028 58
0.060 70
0.098 OV

-0.153 30
-0.265 46

0.654 55
0.458 OV

Czoj Agj

11.25
8.26
5.59
3.61

Zi j

0.326 55
0.144 21
0.597 75
0.014 86

Cztj

14.090
7.92 1
9.939
3.230
1.834

0.087 83
0.952 06

-0.042 79
O.Q02 69
0.000 09

0.004 73
-0.273 32
-0.024 81

0.63942
0.465 29

7.798
3.789
1.946
0.968

0.021 90
0.338 67
0.507 55
0.275 33
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TABLE III. Basis functions and local orbitals for SrC12.

++.Sr ion

Ao~ Zog

40.65
36.19
18.91
17.89
9.39
7.38
7.47
4.24
2,67

C21

C1Q~

0.891 96
0.137 44

-0.020 36
0.018 40

-0.044 79
0.066 92

-0.031 42
0.001 84

-0.000 50

C31

C2oy

0.281 48
0.17146

-0.637 00
-0.499 18
-0.047 04

0.002 72
0.011 31

-0.003 23
0.001 11

C41 J.

C3oy

0.11525
0.067 81

-0.255 16
-0.393 08

0.357 43
0.674 74
0.142 44
0.017 82

-0.002 00

C4p~

0.041 02
0.022 92

-0.086 30
-0.162 72

0.327 83
-0.041. 72

0.322 63
-0.684 85
-0.515 96

C32q

Cl ion

Ap~

25.19
17.35
16.50
1O.72
6.91
3.47
2.10

ZQX

0,120 92
0,706 10
0.18177
0,03311

-0,002 48
0.00042

-0.000 1.8

Cion

0.046 04
0.305 68
0.154 68

-0.258 89
-0.884 06
-0.030 04

0.009 25

C2p

0.020 47
0.085 70
0.073 77

-0.124 83
-0.310 53

0.749 39
0.368 82

C3p~ Zf g

11.25
8.26
5.59
3.61

C21

0.325 81
0.144 87
0.595 18
0.01,8 27

C31

18.9832
14.7941
14.7181
9.6220
6.7665
6.2190
3.2450
2.1679
1.3550

0.456 92
0.534 45
0.028 08

-0.031 02
0.028 01

-0.009 89
0.001 80

-0.001 03
0.000 26

0.11158
0.17363
0.137 55

-0.098 62
-0.776 89
-0.279 62
-0.016 04

0.004 28
-0.001 33

0.047 15
0.030 91
0,060 49

-0.077 70
-0.18160
-0.217 07

0.407 22
0.597 36
0.15977

13.7900
8.8355
5.3987
4.0186
2.4367
1.6382
0.8219
0.4120

0.026 73
0.269 62
0.750 07

-0.025 36
0.025 59

-0.013 20
0.003 44

-0.001 02

0.010 46
0.040 64
0.235 85

-0.11381
-0.402 71
-0.425 36
-0.277 08

0.024 05

We surround the point r with atoms sufficient in
number to characterize the electron density there
completely.

III. ELECTRON DENSITY AND DEGREE OF IONICITY

Although the concept of an ionic solid is an ideal-
ization, many solids approach this limit in that
there is great charge separation and only minor

overlap of the electron densities which may be un-

ambiguously associated with one ion or another.
Thus, the electron density along the nearest-neigh-
bor axis displays a deep minimum, the position of
which determines the ionic radii of the solid.

Although it is simple to describe the ionic and
covalent extremes in terms of electron density, no
simple prescription exists to our knowledge for de-
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FIG. 1. NaF electron density along [100] . FIG. 2. NaCl electron density along [100] .
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FIG. 3. SrF2 electron density along f111] .
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FIG. 4. SrC12 electron density along [111j ~

fining a "degree of ionicity" directly from the elec-
tron distribution. One might suspect that, as we
mentally travel from the ionic to the covalent ex-
treme, the charge clouds associated with each ion
(or atom) would progressively overlap, that charge
would be shifted from one site to the other, and
that the electron density at the midpoint between
nearest neighbors would increase. However, there
exist purely covalent solids with little charge over-
lap (e.g. , inert gas solids) and solids with much
overlap but some ionic character (e.g. , boron
nitride). So investigating the ionic charge overlap
in highly ionic solids does not yield the degree of
ionicity directly. Other effects (relative ion sizes,
the nature of the Coulomb potential, the net ionic
charge, etc.) must be taken into account.

One unambiguous, quantitative method does exist
for directly relating charge density and a degree of
ionicity. We may compare the actual electrostatic
potential in a solid to that produced by an ideal
ionic solid of the same interatomic spacing, com-
posed of nonoverlapping ions with the proper
closed- shell configuration. An alternate quantit-
ative definition would be to compare the ionic part
of the cohesive energy to the total cohesive energy;
however, a difficulty exists in that the ionic contri-
bution cannot be isolated and defined. While a long
range potential may be found, overlapping charge
distributions make the effect of such a potential on
a specific ion a quantity without meaning. Hence,
if one insists on defining a fractional ionicity for a

solid, it is least ambiguous to define the ionicity
in terms of the electrostatic potential.

We may make a thought experiment to realize the
effect on the electrostatic potential of a continuous
progression from an ionic to a covalent solid. We
begin with a purely ionic solid and expand the total
intersite Coulomb potential in a spherical harmonic
expansion (i.e., a Lowdin a-function expansion)
about the center of each ion. The result is the
Madelung potential for each ion site. In an A'B-
solid, one (on B) would be positive, and the other
(on A) ec(nally negative. As the ions overlap and/or
charge is transferred between the ion types, the
above potentials shift unequally. As a completely
covalent solid is reached, both potentials are the
same and both are positive. Evidently, there must
be a more rapid change to the potential at A than
the one at B. At any step, we may take as twice
the "effective Madelung potential" the difference
between the two potentials (or appropriately aver-
aged potentials in more complex solids). Using the
usual formula, we may then ascribe to each atom
an effective net charge. We may take the ratio of
the effective Madelung potential to the ideal one as
a relative ionicity f.

It is certain that our definition of fractional ioni-
city would lead to differences with the values of f
given by other authors. Any difference would obv-
iously be due to differences in the definition of
fractional ionicity. For qualitative purposes, rela-
tive ionicites rather than absolute ionicities are

Ion NaF NaCl SrF2

TABLE IV. Ionic radii (A).

SrC12
TABLE V. Density minima (e /A3) along nearest-

neighbor axis.

Na
Sr
F
Cl

1.06

1.25

1.15

1.67

1.34
1.17

1.46

1.56

NaF
NaCl
SrF,
SrC12

0.116
0.070
0.195
0.109
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TABLE VI. Comparison of NaCl to experiment.

Radii (%ap)
Na
Cl

Minimum (e /A3)

Expt.

21
29

0.069 +0.007

Theory

20.4
29.6

0.070

sufficient.

IV. RESULTS

The local orbitals for NaF, SrF» and SrCl, are
presented in Tables I-III (here we use the normal-
ization convention 1 Q'„d r =1). They are typical
of those for ionic solids, being similar to free-ion
orbitals. The largest overlap integrals between
any local orbitals range from 0.05 for NaF to 0.13
for SrC1,. These low values are also typical of
ionic solids. In Figs. 1-4 the electron density a-
long the nearest-neighbor axis has been plotted for
the solids NaF, NaC1, SrF„and SrCl„where we
have used the previously reported local orbitals for
NaC1." The plots have the same vertical scale,
and the horizontal ranges are set to the nearest-
neighbor distance. One may note the well defined
ionic radii. These are listed in Table IV. The
electron densities at the minima are listed in Ta-
ble V. It is seen that NaC1 has 65% less electron
density at the minimum than NaF. It is also noted
that the comparison of SrCl, and SrF2 yields the
same result with the fluoride having 79% more
electron density at the minimum.

We compare the actual intersite Coulomb poten-
tials at the position of the nuclei with the ideal
Madelung potentials in Table VII. It is seen that,
even though there is more overlap in the fluorides,
they deviate less from ideal ionicity, at least by
the definition of Sec. III. The shifts from ideal
ionicity are indeed different for the two sites, as
was predicted in Sec. III.

We compare our ionicities with those of Phillips2

for NaF and NaC1 and Levine" (based on the
Phillips' and Van Vechten" theory) for SrF, and
SrCl, . As can be seen in Table VD, our definition
yields results in relative agreement with theirs.

An instructive exercise was to integrate the elec-
tron densities on each ion. We divided the ions
along the surface of the density minimum. This
was done for NaC1 and NaF and net positive ion
charges of O.V69 for NaCl and O.VV1 for NaF were
obtained. Thus we conclude that one cannot obtain
the "net ionic charge" from simply integrating the
electron density over ionic volumes defined by this
procedure. The above method yields values in-
consistent with the actual Coulomb potential which
is almost perfectly Madelung like as is evident in
Table VII. If one defines the net or effective ionic
charge from q =RV/n, where V is the actual po-
tential at the nucleus, 8 is the nearest-neighbor
spacing, and a is the Madelung constant, these
solids all have q &0.99.

V. DISCUSSION

Unfortunately, the only relevant experimental
electron density we can find is on NaCl. We com-
pare Schoknecht's" detailed description of the
density along (100) to our calculated values in Ta-
ble VI. We note that there is outstanding agree-
ment as to both the position and magnitude of the
minimum.

We call the attention of the reader to the narrow
nature of the core electron density on the chloride
ion in Figs. 2 and 4. This feature is also seen in a
contour plot of Ref. 16 and thus appears to be a
real feature of the chloride ion.

The low net ionic charge found by integrating the
charge density was at first puzzling, and seemed
out of order with the calculated electrostatic poten-
tial. Our volume integral routine, when integrated
over all space, gave only a 0.1% error in the total
charge per unit cell. This also provided a check
on the charge density program, and indicates that
the net charges are not in significant error. The

TABLE VII. Potentials and fractional ionicities for NaF, NaCl, SrFq, and SrCl&. V is
actual Coulomb potential, V~ is the ideal Madelung potential. The shifts (6) yield a fractional
ionicity (f ) as discussed in Sec. III. Results of Phillips and Levine (fp) are indicated below
ours with reference numbers. Relative ionicities are seen to agree.

Solid
ion Na

NaF
Na

N aC1
Cl Sr

SrF2
Sr

SrC12

Cl

Vg
V

f
fp

-0.8006 0.8006
-0.7984 0.8007

0.0022 0.0001
0.9987

0.946 (Ref. 2)

-0.6558 0.6558
-0.6521 0.6562

0.0037 0.0004
0.9975

0.935 (Ref. 2)

-4.2584 2.1292
-4.2571 2.1297

0.0013 0.0005
0.9997

0.971 (Ref. 14)

-3.5187 1.7593
-3.5155 1.7603

0.0032 0.0010
0.9992

0.968 (Ref. 14)



5602 DWIGHT R. JENNISQN AND A. BARRY KUNZ

problem lies with dividing the solid along the sur-
face of minimum density. Charge on the far side
of the surface from, say, ionA, if possessing a
spherically symmetric component about A, will by
elementary electrostatics produce a long-range
potential as though the spherically symmetric com-
ponent were concentrated at the center of A. Thus
we find a strong long-range potential of much
higher strength in these solids than would be esti-
mated on the basis of the volume integration of the
charge. The result simply indicates the consider-
able interpenetration of the ions, and that the ions
may interpenetrate without weakening the Madelung
potential significantly.

VI. CONCLUSIONS

We find that local-orbitals Hartree-Fock is use-
ful for finding the electron densities of NaF, NaCl,

SrF„and SrC1,. In both types of compaunds, we
find the chloride to have less static ionic charge
overlap. This agrees with the results on dynamical
charge overlap found in the recent experimental
work of Man and Bron' on SrF, and SrCl, . We find
excellent agreement with the experimental electron
density results of Schoknecht" on NaC1.

Our results indicate that, even in highly ionic
solids, appreciable interpenetration exists, and
the solid cannot be viewed electrostatically as
separate ions even though the Coulomb potential is
nearly perfectly ionic. This fact causes one to
question any quantitative use for concepts as ionic
radii and net charge.
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