Electronic charge distribution and the degree of ionicity in crystalline NaF, NaCl, SrF_2 , and $SrCl_2$ as found by the local-orbitals Hartree-Fock method*

Dwight R. Jennison and A. Barry Kunz

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (Received 23 June 1975)

We present the local orbitals for NaF, SrF_2 , and $SrCl_2$. We use these results, along with previously reported local orbitals for NaCl, to calculate the electron density. We find that NaF has 65% more electron density at the density minimum located along the nearest-neighbor axis than NaCl. In addition, SrF_2 has 79% more density at the minimum than $SrCl_2$. The latter result is in agreement with recently reported experimental evidence indicating more dynamical charge overlap in SrF_2 than $SrCl_2$. We find the NaCl electron density agrees extremely well with experimental results obtained from x-ray scattering measurements. The implications of the above result are discussed in terms of relative ionicity. Dividing the charge density into ions along the surfaces of density minima (i.e., along the ionic radii) yields a net charge per ion which is inconsistent with the actual Coulomb potential in the solids. The reasons for this are discussed.

I. INTRODUCTION

Experimental evidence has recently come to our attention which suggests that the degree of ionic charge overlap of SrF_2 and $SrCl_2$ may be opposite to that which one might naively assume based on ionicity theories, as those of Pauling¹ and Phillips.² Indeed, the experimental work of Man and Bron³ (see previous article) definitely indicates that there exists more dynamic charge overlap in SrF_2 than in $SrCl_2$. This paper represents an attempt to determine if such results are in disagreement with a static electron density found from a nonparametrized theoretical approach. We find no disagreement.

The local-orbitals method of restricted Hartree-Fock⁴ has long been known to provide accurate results for ionic materials.⁵ Recently, it has also been successfully used to treat a metallic solid⁶ (Ca) and a transition-metal carbide⁷ (TiC). In all cases the accuracy achieved has been quantitatively satisfactory, provided that correlation effects are added to the Hartree-Fock bands.⁸ Physical properties which depend only on the first-order density matrix, however, are expected to be predicted well by local-orbitals theory alone. Such properties are the electron density and the Compton profile.

The concept of ionicity is basically a conceptual aid. As such it is only useful if it directly relates to physical observables which may be unambiguously measured and calculated. Of the many physical observables which are related to ionicity, the one which lends itself most strongly to conceptualizing the nature of bonding is that of the electron density. The latter permits us to think in terms of ionic charges, radii, polarizations, and overlaps. We wish to find if there is a simple relationship between the electron density and the degree of ionicity.

In Sec. II we recall the Adams-Gilbert equation upon which local-orbital theory is based and discuss the calculation of the electron density. In Sec. III we discuss a theoretical basis relating electron density and the degree of ionicity. In Sec. IV we present the local orbitals and the electron densities for the solids in question. In Sec. V we discuss the comparison with experiment, and we conclude in Sec. VI.

II. LOCAL-ORBITALS THEORY

The Adams-Gilbert equation,9

$$(\hat{F} - \hat{\rho}\hat{A}\hat{\rho})\phi_{ai} = \epsilon_{ai}\phi_{ai} \tag{1}$$

provides a means to solve the restricted Hartree-Fock problem within a nonorthogonal set of functions localized on the atomic sites of a solid. This method of solution provides computational simplicity with no loss of accuracy. The localized nature of the functions means that intersite Coulomb and exchange forces may be expanded in a rapidly converging series which may be terminated at any point when the desired accuracy is obtained. One of us (A.B.K.) has shown that sufficient accuracy is provided upon taking the series to first order in overlap.¹⁰ Here \hat{F} is the Fock operator, ϕ_{ai} is the *i*th local orbital about site a, ϵ_{ai} is the eigenvalue, \hat{A} is the localizing potential (which we take for simplicity as a square well¹¹), and $\hat{\rho}$ is the firstorder density matrix. The latter is written in terms of the local orbitals and the inverse of the local-orbital overlap matrix $(S_{ai,bj}^{-1})$ as

$$\rho(\mathbf{\vec{r}},\mathbf{\vec{r}'}) = \sum_{a\,i,\,b\,j} \phi_{a\,i}(\mathbf{\vec{r}}) S^{-1}_{a\,i,\,b\,j} \phi^{\dagger}_{b\,j}(\mathbf{\vec{r}'}).$$
(2)

We express the local orbitals in terms of Slater-

13

5597

Na ⁺ ion						
A_{0j}	Z_{0j}	C _{10j}	C _{20j}	A_{1j}	Z_{1j}	C _{21j}
0	15,949	0.133 98	0.00575	0	12.048	0.007 81
0	9,439	0.91805	-0.30867	0	5.703	0.23034
2	11.624	-0.058 14	-0.02405	0	3,336	0.45502
1	4.384	0.001 48	0.491 69	0	2.146	0.384 63
1	2.811	0.00065	0.61226			
F^{-} ion						
0	14.090	0.087 84	0.00470	0	7.798	0.022 96
0	7.921	0.952 02	-0.27294	0	3.789	0.33319
2	9,939	-0.04278	-0.02466	0	1.946	0.522 31
1	3.230	0.00273	0.637 07	0	0.968	0.261 83
1	1.834	0.000 08	0.46748			

TABLE I. Basis functions and local orbitals for NaF.

type basis functions. These are obtained from Huzinaga's optimized atomic bases,¹² which we use in the form

$$\chi_{imj}(\mathbf{\dot{r}}) = N_{ij} \gamma^{A_{ij+l-1}} e^{-Z_{ij}} \gamma Y_{im}, \qquad (3)$$

so that,

$$\phi_{a\,i} \equiv \phi_{anlm} = \sum_{j} C_{nlj} \chi_{lmj}. \tag{4}$$

The electron density at a point
$$\mathbf{\tilde{r}}$$
 is then

$$\rho(\mathbf{\ddot{r}}) = \sum_{a\,i,\,b\,j} \phi_{a\,i}(\mathbf{\ddot{r}}) S_{a\,i,\,b\,j}^{-1} \phi_{b\,j}^{\dagger}(\mathbf{\ddot{r}}), \qquad (5)$$

where we compute the inverse of the overlap matrix using Löwdin's formula to the quadratic term:

$$S_{ai,bj}^{-1} = 2\delta_{ai,bj} - S_{ai,bj} + \sum_{ck} (1 - \delta_{ac}) (1 - \delta_{bc}) S_{ai,ck} S_{bj,ck}.$$
(6)

Sr ⁺⁺ io	m							
<i>A</i> _{0j}		Z _{0j}	C _{10j}		C 20 j	С	30 <i>j</i>	C 40j
0		40.65	0.8919	6	0.281 49	0.1	1529	0.04087
1		36.19	0.1374	4	0.171 45	0.0	67 82	0.02377
1		18.91	-0.0203	7	-0.63699	-0.2	55 20	-0.08938
2		17.89	0.0184	.0	-0.49931	-0.3	93 37	-0.15438
2		9.39	-0.0447	7	-0.04597	0.3	59 05	0.201 05
2		7.38	0.0668	9	0.001 06	0.6	72 72	0.19593
3		7.47	-0.0314	:0	0.01214	0.14	43 69	0.17785
3		4.24	0.0018	3	-0.00331	0.0	1673	-0.64777
3		2.67	-0.000 5	0	0.00113	-0.00	01 79	-0.53654
A_{1j}	<i>Z</i> 1 <i>j</i>	C 21.	i	C _{31j}	C _{41 j}	A_{2j}	Z_{2j}	C _{32j}
0	25.19	0.120	91 0.	04613	0.028 58	0	11.25	0,326 55
0	17.35	0.706	18 0.	305 62	0.06070	0	8.26	0.14421
1	16.50	0.181	71 0.	15496	0.09807	0	5.59	0.59775
1	10.72	0.033	10 -0.	259 38	-0.15330	0	3.61	0.01486
1	6.91	-0.002	48 -0.	884 09	-0.26546			
2	3.47	0.000	42 -0.	02925	0.65455			
2	2.10	-0.000	18 0.	00914	0.45807			
F ⁻ ion								
A _{0j}	•	<i>Z</i> _{0j}	<i>C</i> _{10<i>j</i>}		C _{20j}	A_{1j}	Z_{1j}	C 21 j
0	14	.090	0.087 83		0.00473	0	7.798	0.021 90
0	7	.921	0.952 06	-	-0.27332	0	3.789	0.338 67
2	9	.939	-0.04279	-	-0.02481	0	1.946	0.507 55
1	3	.230	0.002 69		0.63942	0	0.968	0.27533
1	1	.834	0.000 09		0.46529			

TABLE II. Basis functions and local orbitals for SrF_2 .

Sr ⁺⁺ i	ion							
A ₀ ,	ŧ	Z_{0j}	C_{10j}	C 20 j		C _{30j}		C 40j
0		40.65	0.891 96	0.281	48	0.115	25	0.041 02
1		36.19	0.13744	0.171	46	0.067	81	0.022 92
1		18.91	-0.020 36	-0.637	00	-0.255	16	-0.08630
2		17.89	0.01840	-0.499	18	-0.393	08	-0.16272
2		9.39	-0.04479	-0.047	04	0.357	4 3	0.32783
2		7.38	0.066 92	0.002	72	0.674	74	-0.04172
3		7.47	-0.031 42	0.011	31	0.142	44	0.322 63
3		4.24	0.001 84	-0.003	23	0.017	82	-0.68485
3		2.67	-0.000 50	0.001	11	-0.002	00	-0.51596
A_{1j}	Z_{1j}	C_{21j}	C ₃₁	С	41 j	A_{2j}	Z_{2j}	C _{32j}
0	25.19	0.12092	0.04604	0.0	20 47	0	11.25	0.325 81
0	17.35	0.70610	0.30568	s 0.08	8570	0	8.26	0.144 87
1	16.50	0.18177	0.15468	3 0.0'	7377	0	5.59	0.59518
1	10.72	0.03311	-0.258 89	-0.1	24 83	0	3.61	0.018 27
1	6.91	-0.00248	-0.88406	6 -0.3	1053			
2	3.47	0.00042	-0.030 04	L 0.74	49 39			
2	2.10	-0.00018	0.00925	5 0.3	68 82			
Cl ⁻ ion								
A_{0j}	Z_{0j}	C _{10j}	C_{20j}	C _{30j}	A_{1j}	Z_{1j}	C_{21}	j C _{31 j}
0	18.9832	0.456 92	0.111 58	0.04715	0	13,7900	0.026	73 0.010 46
0	14.7941	0.53445	0.17363	0.03091	0	8.8355	0.269	62 0.040 64
1	14.7181	0.028 08	0.137 55	0.06049	0	5.3987	0.750	07 0.23585
1	9.6220	-0.031 02	-0.098 62	-0.07770	1	4.0186	-0.025	36 -0.11381
1	6.7665	0.028 01	-0.776 89	-0.181 60	1	2.4367	0.025	59 -0.40271
2	6.2190	-0.00989	-0.27962	-0.21707	1	1.6382	-0.013	20 -0.425 36
2	3.2450	0.001 80	-0.01604	0.40722	1	0.8219	0.003	44 -0.277 08
2	2.1679	-0.001 03	0.00428	0.59736	1	0.4120	-0.001	02 0.024 05
2	1.3550	0.00026	-0.001 33	0.15977				

TABLE III. Basis functions and local orbitals for $SrCl_2$.

We surround the point \vec{r} with atoms sufficient in number to characterize the electron density there completely.

III. ELECTRON DENSITY AND DEGREE OF IONICITY

Although the concept of an ionic solid is an idealization, many solids approach this limit in that there is great charge separation and only minor

FIG. 1. NaF electron density along [100].

overlap of the electron densities which may be unambiguously associated with one ion or another. Thus, the electron density along the nearest-neighbor axis displays a deep minimum, the position of which determines the ionic radii of the solid.

Although it is simple to describe the ionic and covalent extremes in terms of electron density, no simple prescription exists to our knowledge for de-

FIG. 2. NaCl electron density along [100] .

FIG. 3. SrF₂ electron density along [111].

fining a "degree of ionicity" directly from the electron distribution. One might suspect that, as we mentally travel from the ionic to the covalent extreme, the charge clouds associated with each ion (or atom) would progressively overlap, that charge would be shifted from one site to the other, and that the electron density at the midpoint between nearest neighbors would increase. However, there exist purely covalent solids with little charge overlap (e.g., inert gas solids) and solids with much overlap but some ionic character (e.g., boron nitride). So investigating the ionic charge overlap in highly ionic solids does not yield the degree of ionicity directly. Other effects (relative ion sizes, the nature of the Coulomb potential, the net ionic charge, etc.) must be taken into account.

One unambiguous, quantitative method does exist for directly relating charge density and a degree of ionicity. We may compare the actual electrostatic potential in a solid to that produced by an ideal ionic solid of the same interatomic spacing, composed of nonoverlapping ions with the proper closed-shell configuration. An alternate quantitative definition would be to compare the ionic part of the cohesive energy to the total cohesive energy; however, a difficulty exists in that the ionic contribution cannot be isolated and defined. While a long range potential may be found, overlapping charge distributions make the effect of such a potential on a specific ion a quantity without meaning. Hence, if one insists on defining a fractional ionicity for a

TABLE IV. Ionic radii (Å).

Ion	NaF	NaCl	\mathbf{SrF}_2	\mathbf{SrCl}_2
Na	1.06	1.15		•••
\mathbf{Sr}	• • •	• • •	1.34	1.46
F	1.25	•••	1.17	•••
C1	• • •	1.67	•••	1.56

FIG. 4. SrCl₂ electron density along [111].

solid, it is least ambiguous to define the ionicity in terms of the electrostatic potential.

We may make a thought experiment to realize the effect on the electrostatic potential of a continuous progression from an ionic to a covalent solid. We begin with a purely ionic solid and expand the total intersite Coulomb potential in a spherical harmonic expansion (i.e., a Löwdin α -function expansion) about the center of each ion. The result is the Madelung potential for each ion site. In an $A^*B^$ solid, one (on B) would be positive, and the other (on A) equally negative. As the ions overlap and/or charge is transferred between the ion types, the above potentials shift unequally. As a completely covalent solid is reached, both potentials are the same and both are positive. Evidently, there must be a more rapid change to the potential at A than the one at B. At any step, we may take as twice the "effective Madelung potential" the difference between the two potentials (or appropriately averaged potentials in more complex solids). Using the usual formula, we may then ascribe to each atom an effective net charge. We may take the ratio of the effective Madelung potential to the ideal one as a relative ionicity f.

It is certain that our definition of fractional ionicity would lead to differences with the values of fgiven by other authors. Any difference would obviously be due to differences in the definition of fractional ionicity. For qualitative purposes, relative ionicites rather than absolute ionicities are

TABLE V. Density minima $(e^-/\text{Å}^3)$ along nearest-neighbor axis.

NaF	0.116
NaCl	0.070
\mathbf{SrF}_2	0.195
\mathbf{SrCl}_{2}	0.109

	Expt.	Theory
Radii ($\% a_0$)		
Na	21	20.4
C1	29	29.6
Minimum ($e^{-}/Å^{3}$)		
	0.069 ± 0.007	0.070

TABLE VI. Comparison of NaCl to experiment.

sufficient.

IV. RESULTS

The local orbitals for NaF, SrF_2 , and $SrCl_2$ are presented in Tables I-III (here we use the normalization convention $\int \phi_{a,i}^2 d\vec{r} = 1$. They are typical of those for ionic solids, being similar to free-ion orbitals. The largest overlap integrals between any local orbitals range from 0.05 for NaF to 0.13 for SrCl₂. These low values are also typical of ionic solids. In Figs. 1-4 the electron density along the nearest-neighbor axis has been plotted for the solids NaF, NaCl, SrF₂, and SrCl₂, where we have used the previously reported local orbitals for NaCl.¹³ The plots have the same vertical scale, and the horizontal ranges are set to the nearestneighbor distance. One may note the well defined ionic radii. These are listed in Table IV. The electron densities at the minima are listed in Table V. It is seen that NaCl has 65% less electron density at the minimum than NaF. It is also noted that the comparison of SrCl₂ and SrF₂ yields the same result with the fluoride having 79% more electron density at the minimum.

We compare the actual intersite Coulomb potentials at the position of the nuclei with the ideal Madelung potentials in Table VII. It is seen that, even though there is more overlap in the fluorides, they deviate less from ideal ionicity, at least by the definition of Sec. III. The shifts from ideal ionicity are indeed different for the two sites, as was predicted in Sec. III.

We compare our ionicities with those of Phillips²

for NaF and NaCl and Levine¹⁴ (based on the Phillips² and Van Vechten¹⁵ theory) for SrF_2 and $SrCl_2$. As can be seen in Table VII, our definition yields results in relative agreement with theirs.

An instructive exercise was to integrate the electron densities on each ion. We divided the ions along the surface of the density minimum. This was done for NaCl and NaF and net positive ion charges of 0.769 for NaCl and 0.771 for NaF were obtained. Thus we conclude that one cannot obtain the "net ionic charge" from simply integrating the electron density over ionic volumes defined by this procedure. The above method yields values inconsistent with the actual Coulomb potential which is almost perfectly Madelung like as is evident in Table VII. If one defines the net or effective ionic charge from $q = RV/\alpha$, where V is the actual potential at the nucleus, R is the nearest-neighbor spacing, and α is the Madelung constant, these solids all have q > 0.99.

V. DISCUSSION

Unfortunately, the only relevant experimental electron density we can find is on NaCl. We compare Schoknecht's¹⁶ detailed description of the density along (100) to our calculated values in Table VI. We note that there is outstanding agreement as to both the position and magnitude of the minimum.

We call the attention of the reader to the narrow nature of the core electron density on the chloride ion in Figs. 2 and 4. This feature is also seen in a contour plot of Ref. 16 and thus appears to be a real feature of the chloride ion.

The low net ionic charge found by integrating the charge density was at first puzzling, and seemed out of order with the calculated electrostatic potential. Our volume integral routine, when integrated over all space, gave only a 0.1% error in the total charge per unit cell. This also provided a check on the charge density program, and indicates that the net charges are not in significant error. The

TABLE VII. Potentials and fractional ionicities for NaF, NaCl, SrF_2 , and $SrCl_2$. V is actual Coulomb potential, V_{μ} is the ideal Madelung potential. The shifts (δ) yield a fractional ionicity (f) as discussed in Sec. III. Results of Phillips and Levine (f_p) are indicated below ours with reference numbers. Relative ionicities are seen to agree.

Solid	NaF		NaCl		Srl	F ₂	\mathbf{SrCl}_{2}	
ion	Na	F	Na	Cl	Sr	F	Sr	C1
VM	-0.8006	0.8006	-0.6558	0.6558	-4.2584	2.1292	-3,5187	1.7593
V	-0.7984	0.8007	-0.6521	0.6562	-4.2571	2.1297	-3.5155	1.7603
δ	0.0022	0.0001	0.0037	0.0004	0.0013	0.0005	0.0032	0.0010
f	0.9987		0.9975		0.9997		0.9992	
f _P	0,946 (Ref. 2)		0 .9 35 (F	lef. 2)	0.971 (F	lef. 14)	0 .96 8 (F	lef. 14)

problem lies with dividing the solid along the surface of minimum density. Charge on the far side of the surface from, say, ion A, if possessing a spherically symmetric component about A, will by elementary electrostatics produce a long-range potential as though the spherically symmetric component were concentrated at the center of A. Thus we find a strong long-range potential of much higher strength in these solids than would be estimated on the basis of the volume integration of the charge. The result simply indicates the considerable interpenetrate without weakening the Madelung potential significantly.

VI. CONCLUSIONS

We find that local-orbitals Hartree-Fock is useful for finding the electron densities of NaF, NaCl,

- *Work supported in part by the U.S. Energy Research and Development Administration contract No. E(11-1)-1198, the NSF grant No. DMR 72-03026, and Aerospace Research Laboratories, USAF, WPAFB, Ohio, contract No. F33615-72-C-1605.
- ¹L. Pauling, *The Nature of the Chemical Bond*, 3rd ed. (Cornell University, Ithaca, 1960).
- ²J. C. Phillips, Rev. Mod. Phys. <u>42</u>, 317 (1970).
- ³Andrew Man and Walter E. Bron, preceding paper, Phys. Rev. B <u>13</u>, 5591 (1976).
- ⁴See, for example, A. Barry Kunz, Phys. Rev. B <u>8</u>, 1960 (1973), and references therein.
- ⁵For example, on LiF, Daniel J. Mickish, A. Barry Kunz, and T. C. Collins, Phys. Rev. B <u>9</u>, 4461 (1974); on MgO, Sokrates T. Pantelides, Daniel J. Mickish, and A. Barry Kunz, Phys. Rev. B <u>10</u>, 5203 (1974). An objective comparison of all theoretical methods and alkali halide experimental results may be found in R.T. Poole *et al.*, Phys. Rev. B <u>11</u>, 5179 (1975); <u>11</u>, 5190 (1975).

⁶Daniel J. Mickish, A. Barry Kunz, and Sokrates T. Pan-

 SrF_2 , and $SrCl_2$. In both types of compounds, we find the chloride to have less static ionic charge overlap. This agrees with the results on dynamical charge overlap found in the recent experimental work of Man and Bron³ on SrF_2 and $SrCl_2$. We find excellent agreement with the experimental electron density results of Schoknecht¹⁶ on NaCl.

Our results indicate that, even in highly ionic solids, appreciable interpenetration exists, and the solid cannot be viewed electrostatically as separate ions even though the Coulomb potential is nearly perfectly ionic. This fact causes one to question any quantitative use for concepts as ionic radii and net charge.

ACKNOWLEDGMENTS

We wish to thank A. Mann and W. E. Bron for making the results of their experiment available to us prior to publication.

telides, Phys. Rev. B 10, 1369 (1974).

- ⁷Dwight R. Jennison and Wendell S. Williams, Bull. Am. Phys. Soc. <u>20</u>, 299 (1975); and unpublished.
- ⁸Sokrates T. Pantelides, Daniel J. Mickish, and A. Barry Kunz, Phys. Rev. B 10, 2602 (1974).
- ⁹W. H. Adams, J. Chem. Phys. <u>34</u>, 89 (1961); <u>37</u>, 2009 (1962); T. L. Gilbert, in *Molecular Orbitals in Chemistry, Physics and Biology*, edited by P.-O. Löwdin and B. Pullman (Academic, New York, 1964), p. 405.
- ¹⁰A. Barry Kunz, Phys. Status Solidi <u>36</u>, 301 (1969).
- ¹¹A. Barry Kunz, Phys. Rev. B 7, 4021 (1973).
- ¹²Sigeru Huzinaga (unpublished).
- ¹³A. Barry Kunz, Phys. Rev. B 4, 609 (1971).
- ¹⁴B. F. Levine, J. Chem. Phys. <u>59</u>, 1463 (1973).
- ¹⁵J. A. Van Vechten, Phys. Rev. <u>182</u>, 891 (1969); <u>187</u>, 1007 (1969).
- ¹⁶Von G. Schokneckt, Z. Naturforsch A <u>12</u>, 983 (1957). A contour plot of this reference is reproduced in C. Kittel, *Introduction to Solid State Physics* (Wiley, New York, 1971), p. 111.