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Optical absorption, reflectivity, and photoconductivity in the near-uv range (1950-3200 A) of a thin film of
hexagonal boron nitride were measured. The m»~ absorption peak was observed at 6.2 eV. A sharp fall at
abeet 5.8 eV was attributed to the direct band gap. The temperature dependence of the band gap was found

to be less than 4 X 10 ' eV/X. Self-consistent tight-binding band-structure calculations were performed on a
twe4imensiona1 hexagonal crystal model, using H~miltonian matrix elements calculated by semiempirical
LCAO (linear combination of atomic orbitals) methods. The calculated value for the band gap of hexagonal
SN was in reasonably good agreement with the experimental value obtained in the present work, as well as
with values reported earlier from electron-energy-loss and photoelectron-emission measurements. The
calculations also predicted a very small change in the band gap with temperature, in agreement with the
experimental observations.

I. INTRODUCTION

Hexagonal boron nitride is very similar to
graphite. The band structure of graphite has been
investigated extensively, and a great deal of
theoretical work (mostly recent) has also been
done on hexagonaL boron nitride. ' ' Still, the cal-
culated theoretical values for the direct optical
band gap Ee in hexagonal boron nitride are quite
scattered and range between E,= 2. 45 eV (Hef. 4}
and 5.4 eV (Hef. 2).

Many workers have attempted to determine E,
experimentally. The experimental methods used
were soft-x-ray photoemission, electron spectros-
copy, ~ electron .energy loss, ' optical reQection, 9'
and optical absorption in thin films. 4 The ex-
perimental values found for E, range between 3.6
eV (Hef. 6} and 5.9 eV (Hef. 15).

From reQectance measurements on hexagonal-
boron-nitride powders, Larach and Shrader con-
cluded that E~& 5.5, and Chayke' found that
reQectivity increases at energies higher than 4. 1
eV. The latter also observed another prominent
peak at 6.2 eV.

Determination of E~ by optical-absorption mea-
surements of hexagonal-boron-nitride films was
carried out by Band and Roberts ' who gave the
value E~=3.8 eV, by Noreika and Francombe's
who obtained E,=4.9-5.2 eV, by Baronian who
obtained E~ = 5.9 eV, and by Zupan and Kolar'4
who gave the value E,=4.3 eV. It should be noted
that all the absorption measurements, except those
by Saronian, were taken on comparatively thick

films (&6000 A}, which limited the range of the
measurements to energies below 5. 5 eV.

In the present work we report results of optical
measurements of hexagonal BN in the range 3.9-
6.4 eV, and give band-structure calculations on the
same crystal. The experimental values are shown
to agree well with the calculated ones.

II. EXPERIMENTAL RESULTS

Our measurements were carried out on thin
hexagonal BN films grown by Baronian~s on quartz
substrates, using chemical vapor deposition. The
films were polycrystalline, with their optical axis
perpendicular to the substrate. We report here
results obtained on a film of thickness d =680 + 50
A, as determined interferometrically.

Optical-absorption measurements were carried
out with a Cary 14-R spectrophotometer. The
samples were mounted in an optical cryostat pro-
vided with a heater, which permitted measure-
ments at various temperatures in the range 4.2-
700 K. BeQection measurements were carried
out at normal incidence and room temperature, in
a system constructed by Naveh. "

Photoconductivity measurements were also per-
formed on the same film, using two evaporated
aluminum electrodes. The space between the
electrodes was illuminated with monochromatic
light obtained from a stabilized high-pressure
xenon lamp in conjunction with a Hilger D-285
monochromator. The observed photocurrent was
very weak, even with widely opened monochromator
slits, which decreased the accuracy of the mea-
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Figure 1 shows the absorption coefficient K of

the hexagonal BN film at room temperature, in the
range 1950-3300 A (6.36-3.SV eV). The absorption
coefficient was obtained from the approximate
formula T = exp(- IM}, where T is the transmittance
and d is the film thickness. T was determined by

comparing the intensity of the light whj. eh emerged
through the sample, with that passing through the
substrate alone. Absorption coefficients computed
from the experimental data given by Reed and
Roberts, "and by Noreikk amd Fraacombe~ are
also given in Fig. 1, for comparison. Figure 2
shows the absorption of the hexagonal SN sample
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FIG. 2. Absorption coefficient of the BN film at 4.2 and 800 'K.
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where X„(r-R„)is an atomic orbital with p=2s,
2p„2p„, 2p, centered on site e at unit cell n and

N '~~ is the normalization factor. The crystal
eigenfunctions ii&(K, r }are generated by forming
linear combinations of these hv Bloch functions.
The combinations coefficients C„(K)are solutions
of the secular equations:

fy

Q Q[F,„'(K) —Sg(K) $~(K)]C,q(K) =0, (2)
14~1 N~f

FIG. 3. Reflectance factor of thin BN fQm at room
temperature.

at liquid-helium temperature and at 600 'K. If
there is a shift of the high-temperature s ectrum
to longer wavelengths, it is less than 10 (or
less than 4x 10 ' eV/'K) being an order of magni-
tude smaller than the corresponding shift in cubic
III-V compounds. I

Figure 3 shows the reQection factor R of the
sample'~" as measured at room temperature.
A peak near 2300 A is indicated. This was the
short-wavelength limit of our reflection measure-
ments setup, and its accuracy is therefore lower
than that of the corresponding high-wavelength
data.

Figure 4 shows the photocurrent excitation
spectrum of the hexagonal BN sample at room
temperature, and also that of a pyrolitic BN (PBN}
sample. The spectra were corrected for the in-
tensity distribution of the exciting light. Both
spectra are practically the same, showing quite
a sharp peak at about 2300 A. The dependence of
the photocurrent on light intensity was almost
linear throughout a wide range of intensities.
The photocurrent was found to increase gradually
with temperature over the whole range of our
measurements (100-400 'K).

III. BAND-STRUCTURE CALCULATIONS

-=g e'g & If"(0-m),

3 .(K) =pe'g' 0'&x™(r-R )
l
x', (r - R„)&

= g eiK'Rm3a0(0 m)

The origin unit cell is chosen at Ro and E de-
notes the Hartree-Fock energy operator. The
matrix elements H„"I(0 —m) [E11. (3)] can be cal-
culated either in the conventional tight-binding
scheme or in the self-consistent approach. In
the former case, fixed free-atom (or free-ion)
potentials are used to generate the crystalline
potential and thus the H„„'(0-m) elements do not
depend on the complete set of the occupied band
eigenvectors, but rather on the pair of basis or-
bitals y„and g„. In the self-consistent scheme,
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where the matrix elements between the Bloch
functions are given by

~'.(K) =pe'"'+~ 0'(x„(r-R,) l+lx'(r-R„)&

The band structure is calculated here by a self-
consistent modification of the tight-binding ap-
proximation. Previous calculations on hexagonal
BN were performed by Nakhmanson and Smirnov4

by the orthogonal-plane-wave (OPW) method, by
Doni and Parravicini~ who used the experimentally
adjusted tight-binding method, and by Zupan' and
Zunger5 who applied various semiempirical
molecular-orbital (MO) methods to the tight-
binding scheme.

Bloch functions 4„(K, r} centered on crystal
sublattice sites a =1, 2. . .h and composed of
atomic orbitals i1 =1, 2. . .o are defined by:
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FIG. 4. Excitation spectrum of the photoconductivity
of pyrolitic BN (PBN) and a thin film of BN at room tem-
perature.
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i =1.. .ehN, (5)

is employed, the BZ integration is replaced by a
direct sum, yielding

N c

(6)
T ' indicates the normalization of the crystal func-
tion 4, (r ) Eq. (5) and N„de ntoes the number of
occupied levels in the crystal. The diagonal P„,(0)
element represents the p, -orbital charge on site a
due to all occupied levels in the crystal. The net
atomic charge is given by

ty

q.„=z.„-P J„„(o), (7)

on the other hand, charge redistribution effects
are considered, and the free-atom potentials are
allowed to modify in the crystalline environment
either by introduction of screening or by re-
evaluating them at each iteration cycle on the basis
of the calculated valence charge density. The
elements of the valence-charge-density matrix
are defined in terms of the expansion coefficients
(C „(K})of all (oh)„occupied bands by

(ah) Oc

P„„(n—m) = —
l~

dK Q nyC (K) 5„'~(K)
~ BZ )=1

y elrY &Kg-t~) ya(r~ R ) $6(r~ R ) (4)

where 0 is the volume of the occupied part of the
Brillouin zone (BZ) and n& is the occupation number.
Equivalently, when a direct linear combination of
atomic orbitals (LCAO} expansion of 4&(r ) in terms
of the N crystal orbitals

Cf h

4, (r ) = T ' Q Q Q D"„,y„(r —R„);
a=1 y, =1 e=i

H„"„(O—m) = —,
' C (H„-„+H") S „'„(O —m), (8)

where the overlap integral S „6(0—m) is calculated
from Slater-type atomic orbitals X„and X„cen-
tered on sites a and 6, respectively, in unit cells
located at R0 and R„, respectively. The diagonal
elements H „„represent the valence-state ioniza-
tion potential of the orbital located at site a and is
determined from spectroscopical data, ~ while G

is the empirical Wolfsberg-Helmholz constant,
taking the value 1.75. '9 The relation of the EXH
approximation to the Hartree-Fock scheme has
been previously discussed by Blyholder and
Coulson, and by Gilbert. 2 The method has been
previously used successfully for computing the
electronic structure of many organic molecules'9'
as well as boron-nitrogen compounds. 'Qb

B. Iterative extended Hiickel (IEXH)

In this self-consistent refinement of the simple
EXH method, the matrix elements are allowed to
modify according to the self-consistent charge
in the system under consideration. ~~'~4 The off-
diagonal matrix elements are given by the Cusachs
approximation~' which is second order in the over-
lap integrals and thus better accounts for the
kinetic-energy contribution to the matrix element

H, '„(O —m} = [H;„(q.,}+H'o(q, )]

x gl--.')S„'„(0-m}))S„6„(0-m).
(~)

The overlap integrals are calculated from Slater's
atomic orbitals as in the EXH method. The diag-
onal matrix elements are taken to depend ex-
plicitly on the charge

H;„(Q.„)=H:„(0)+q.„~:„gQ,.r.„,„. (Io)

where 2 „is the a-core charge. In self-consistent
schemes, the elements H „(0—m) are expressed
by the P 5(0 —m) elements or by the net charges
Q „, these quantities being determined by all
occupied crystal eigenvectors, while in non-self-
consistent treatments, the Q „'s are implicitly
assumed to attain their free-atom (or free-ion)
values (equal to zero for neutral atoms and to the
ionic valency for free ions). In what follows, we
will use several of the self-consistent as well as
non-self-consistent approximations to the H ~(0 —m}
elements adopted in semiempirical MO calculations
in molecules. The band structure of hexagonal
boron nitride will be computed using these methods,
examining the role of self-consistency. The ap-
proximations to be considered are the following.

A. Extended-Huckel (EXH)

In this non-self-consistent approximation, '9 the
off-diagonal matrix dernents are given by

H„"„'(0) is the atomic p-orbital energy of the neu-
tral (Q „=0) atom, determined either from atomic
spectroscopy or from Hartree-Fock calculations
on neutral atoms. ~ b"„ is the change in the p, -
orbital energy of atom &n due to the presence of a
nonzero charge Q „on this site. It is evaluated
from the interpolation scheme suggested by Cusachs
and Reynolds based on spectroscopically mea-
sured orbital energies of atoms carrying different
charges. In the calculation of the net atomic
charges Q „, we adopt the procedure of Rein et
al. , ~3 avoiding the arbitrary partitioning of the
heteropolar bond charge into equal parts. ~~ The
net charges are calculated from both the one-center
and the two-center contributions to the charge
moment, thus preserving the nonspherical charac-
ter of the bond. y „~ denotes the average two-
center Coulomb interaction between an orbital on
atom an with that on atom Pm and is calculated
analytically for Slater orbitals following Ref. 28.
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Expression (10) for the diagonal element has a
simple physical interpretation. The first term
represents the contribution of an isolated neutral
atom, the second term corrects for deviation from
neutrality at a particular site due to the bonding
in the crystal, while the third term represents
screened Madelung-type electrostatic forces
exerted by the rest of the crystal. In many applica-
tions of the iterative extended HQckel. method in
molecular calculations, only the first two terms in
Eq. (10) are retained. In the calculations to be
presented we examine both this approach (denoted
as simple IEXH or SIEXH) and that based on all
terms in Eq. (10) (denoted as (MIEXH).

C. Complete neglect of differential overlap (CNDO)

In this scheme, the matrix elements are given by

EP„'„(0—n) = —P ', S „'„(0—n) —-' P„'„(0—n) y

EP„„=—'(I +—A ) —(Q + —' [P„„(0)—1I) y

eff Aap

where Po
6 is the bonding parameter, P ~(0 —n)

represents the (pa) —(v5} elements of the bond
order and charge matrix in the zero-overlap ap-
proximation. y,„p are the two-center integrals
evaluated in the Mataga approximation, ——,(I,+ A )
are the Mulliken-type atomic electronegativities,
and Jap is the net electronic charge on atom a.

In view of the substantial electronegativity dif-
ference between the atoms constituting the primi-
tive cell of boron nitride (electronegativities on
the Pauling's scale: boron 2.0 and nitrogen 3.0)
one would expect significant charge redistribution
to occur in the crystal. Self-consistent APW
(augmented plane wave) and ~'OPW calculations on

other binary solids, have indicated that self-
consistency is indeed essential for obtaining a
reliable band structure. Non-self-consistent
tight-binding calculations previously performed
on boron nitride2 yielded poor agreement with

optical data unless the various matrix elements in-
volved were scaled to yield a better fit. A self-
consistent tight-binding calculation [Eqs. (1)-(7)]
on the other hand, necessitates the somewhat in-
volved computation of the charge-density matrix
through numerical integration Eq. (4) in the Bril-
louin zone. 3 ' 3 This procedure will be used here
for computing the band structure of hexagonal
boron nitride, when the BZ integration in Eq. (4)
is replaced by a sum over 180 R points in the ~
irreducible section of the BZ. The results of this
calculation will be compared with those yielded by
the clugter band-structure calculation. The latter
approach is based on the observation that in cova-
lent structures, the EP„o(0 —n) elements are mainly

affected by the charge distribution of a relatively
small number of atoms surrounding the 0 —n bond.
Thus, one might hope to approximate the self-
consistent limit of these elements by evaluating
them from a self-consistent LCAO calculation of a
finite cluster of atoms that are arranged geo-
metrically according to the known crystal packing.
The cluster's wave function assumes the form
given in Eq. (5), and the charge matrix elements
are computed in direct space in Eq. (6). The
dependence of the H„'„(0—n) elements on the size
of the cluster should then be examined by increas-
ing the cluster size and seeking the convergence
limit of the elements where the Ito position is taken
at the center of the cluster and the distance
IR Rp ) is limited to be much smaller than the
cluster's radius. In predominantly covalent
structures, where the chemical bonding is deter-
mined by the charge distribution in the vicinity of
the bonds, this procedure should rapidly converge
yielding thereby the self-consistent value of the
interaction matrix elements. These are then used
to compute the band structure throughout the BZ
using Eqs. (1)-(3). Such an approach is attrac-
tive because it supplies a means of correlating
the electronic structure of isolated molecular
fragments with related solids. It was previously
adopted by Coulson et gE. "'"in calculating the
z band structure of graphite and boron nitride by
employing matrix elements obtained from cal-
culations on benzene and borazine molecules, re-
spectively. A similar idea was recently adopted
by Zupans for hexagonal boron nitride in which the
atomic potentials of boron and nitrogen atoms
needed for solving Eq. (2), were transferred from
the separate CNDO calculation on the NSB and BSN
clusters, respectively. To approximately preserve
the correct hybridization of the central atom in
these clusters, one is forced to artificially reduce
the number of electrons of the "ligand" atoms to
one-third, generating thereby for the central atom,
a different electronic environment than it would
have in the crystal. Also, due to the presence of
three "dangling" bonds on the edges of these
clusters, the potential at their center may exhibit
severe distortions (see below).

A more general approach used here employs finite
molecular clusters to obtain self-consistent ma-
trix elements for band-structure calculations.
We first solve for the eigenvalues of a sequence of
finite boron-nitridelike clusters of gradually in-
creasing size (Fig. 5}using the SIEXH and CNDO
methods. We seek the convergence limit of the
various matrix elements H „6(0—n), relating pairs
of atoms up to second neighbors (n=0, 1, 2}, where
the atom situated at Rp is chosen as the innermost
atom of each cluster (see Fig. 5) and the elements
are taken from the last self-consistent iteration.
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potentials

FIG. 5. Molecular hexagonal BN clusters. Open and

dark circles denote different types of atoms. The verti-
cal arrows on clusters 1, 2, 3, 4, and 7 denote the direc-
tion in which electrostatic potentials are computed
(Table I and Fig. 6}. The four central atoms that are
considered for matrix elements calculations are joined
by heavy lines (clusters 5-7}. R~N was taken as 1.446 A..
The numbering in cluster 7 (see Table I) denote selected
points for computing comparative potentials. Taking
point 1 as the origin (R~=0) the distances are: R2
= —($+6) Res=-0. 733 A, Ra=($+6)Res=0. 733 A, R4
= f Res=2. 410 A, R&

———2Rss ———2.169 L, where 6 was
taken as 0.01 A..

The geometry of these finite clusters is chosen to
simulate the experimentally known hexagonal-

0
boron-nitride structure with R» =1.446 A.
Hydrogen atoms attached to each atom on the edges
of the cluster (with boron-hydrogen distance

0

R» =1.2 A and nitrogen-hydrogen distance R»
= 1.1 A} to saturate the "free valences" of the
otherwise dangling bonds. Addition of hydrogen
atoms to the cluster's surface, has been shown~

to suppress efficiently the charge inhomogeneity
on the various sublattices in the cluster model.

In order to estimate the largest 0 —n distance
within which the perturbations exerted by the
cluster's surface do not penetrate, we use the
electrostatic Poisson potential obtained from the
cluster's wave functions as a monitor. We thus
solve for the electronic Poisson potential
V„„(r—R) from

V'V.„,(r —R) = 4vp(r —R), (13)

where p(r —5) is the electron density distribution
obtained from the wave functions 4', (r) (directly
calculated from the solution of the clusters LCAO
equations)

Noc

p(1 R} Z kf(1 2 ''' N)
j=1

x p, (r, , r3, . . . , r„)dr~ ~ ~ dr„. (14)

The total electrostatic potential is obtained as a
sum of V„(r—R) from Etl. (13) and the nuclear

V(r, —R) = —V„(r,—R)+ Q IR„-r, +a I

(15)
where d is the position vector of site 0. in the unit
cell.

In recent works~7 it has been demonstrated that
the CNDO wave function reproduces quite ac-
curately the electrostatic potential as calculated
by ab initio wave functions for small and medium
size molecules. The Poisson potential V(r —R}
generated by all occupied MO's, can be analytically
computed+ when the atomic basis set employed
in the SCF-Mo (self-consistent-field molecular
orbitals} calculation is represented by Gaussians.
Since we use a Slater rather than a Gaussian basis
set, we expand each Slater orbital in a series of
Gaussians using the 6 —G expansion of Hehre. 3

IV. RESULTS AND DISCUSSION

A. Crystalline band structures

The band structure of the two-dimensional boron
nitride along the P- I' —Q —P direction (notation
of Ref. 2) as calculated by the various approxima-
tions to the tight-binding matrix elements, is
revealed in Fig. 6. Three orders of neighbors were
retained in the calculation of overlap-depended
matrix elements, while the screened electrostatic
terms were summed within a constant radius of 65
A. In the case of self-consistent computation, 180
inequivalent K points in the* irreducible part of
BZ were employed for the integration of the density
matrix. The iteration cycle is terminated when
the charges and one-electron energies in suc-
cessive iterations agree within 10 ~e and 10 a.u. ,
respectively. Interband transitions at some high-
symmetry points are given in Table I and com-
pared with the available experimental data. The
present optical study indicates that the band gap
occurs at 5.8 eV and an intense peak is observed
at about 6.2 eV. These are assigned to the direct
w- w gap at P,-P, and to the saddle-point transi-
tion Q2- Q2, respectively. Both the noniterative
EXH calculation and the fully self-consistent
MIXDQi calculation retaining all terms in the
Hamiltonian, yield very close results and agree
quite favorably with the experimental data, while
the simple iterative scheme retaining only the
first two terms in the Hamiltonian (SIEXH) signifi-
cantly underestimates the band gap at P &- P2 and
yields lower values for the other transitions given
in Table I. The l.atter calculation also does not
reveal any o —v overlap at the zone center (I",—I' 3)
due to an upward shift of the valence w band and a
downward shift of the conduction m* band. The
existence of such a o —m overlap has been previous-
ly established in the related systems of graphite4' 4~
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of two-dimensional hexa0, -
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and borazine~~'45 (1.2 eV) and seems to be con-
sistent with the interpretation of the x-ray photo-
emission data of hexagonal boron nitride. 4~

An examination of the various terms appearing
in the Hamiltonian elements [Eq. (5)] reveals
the reason for the contrasting behavior of SIEXH
compared with both EXH and MIEXH results. The
simple iterative scheme (SIEXH) tends to lower the
atomic orbital energies of the positively charged
boron sublattice, and to increase the atomic orbital
energies of the negatively charged nitrogen sub-
lattice [Eq. (5)j. These changes, associated with

the one-center terms are very sensitive to the
charge redistribution relative to the neutral atoms,
due to the substantial magnitude of the 6"„terms,
the latter being of the same order as the zero-or-
der H™„'(0)terms. ~ In the absence of the electron
repulsion effects due to other centers, the one-
center terms tend to neutralize the strong charge
build-up characterizing the noniterative scheme

(Qs = —Q„=1.27e in EXH) resulting in low ionicities

(Qs = —Q~ = 0.30 e in SIEXH) and a decreased band

gap (E,= 3.7 eV). The lowering in the boron orbit-
al energy and the increase in the nitrogen orbital

TABLE I. Interband transition energies in hexagonal boron nitride, calculated from the
crystal band structure, as compared with experimental data. All values given in eV.

Crystal band structure
Optical data

Transition EXH SIEXH MIEXH (Present work)

Experimental data

Electron energy
loss Photoelectrons

&i-P2
(m

Q2- Q2

(~~ 71')

Q2 Q2

(o m*)

r-r3 3

(o o ~)

92- Qg

(~ ~oe)

5.5 3.7

6.3 6.0

9~ 4 8.9

8.2 9.2

15.0 14.1

5.1

9.3

10.4

14.9

5.8

6.2 6.3, 6. 2

9 4c

14 1c

4. 4, '3.6'

K. Hamrin eta/. Ref. 7.
V. A. Formichev, Ref. 6.

'R. Vilanove, Ref. 8.
M.J. Cazaux, Ref. 40.

'%V. J. Choyke, Ref. 10.
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energy due to the linear one-center terms is most
pronouncedly revealed by the decrease in the band

gap between the zone corner P, and P~ states that
are pure nitrogen and boron 2p, Bloch states,
respectively, while the zone center (I') and zone-
edge (Q} points are affected to a smaller extent
due to interference of boron and nitrogen Bloch
functions at these points in the BZ (compare Figs.
6(a} and 6(b). This leads to an increased dis-
persion of the mbands, a a- m separation and, an
increase in the m valence-band width and to a de-
crease in the ionization potential (= —SNI) in the
SIEXH results relative to the EXH results.
%hen the two-center electrostatic terms are in-
cluded in the Hamiltonian elements (MIZKH), they
tend to cancel the one-center terms due to the
alternating signs of the charges on the two sub-
lattices. The electrostatic terms thus screen
effectively the one-center terms, resulting in a
much lower dependence of the atomic orbital en-
ergies on charges (and hence the iteration pro-
cedure converges more rapidly) and in a reduction
in the degree of charge neutralization characteriz-
ing the SIEXH scheme. The noniterative EXH
method thus becomes a good approximation to the
complete self-consistent MIEXH method regarding
one-electron energies, whereas the latter method
is still better for charges (QN = —Q„=O. 55 e in

MIEXH}. The inclusion of the Madelung-type terms
results in an over-all stabilization of the bands.
Owing to the larger stabilization of the bonding va-
lence bands, the onset of o -a~ transition (I'2- I",)
increases to 10.4 eV and a smaller increase oc-
curs in the saddle-point transitions at Q (see Table
I). The o'- v overlap at the valence-band zone
center increases to 2.2 eV and the m band width to
5. 1 eV. This behavior of the Madelung-type
terms is consistent with the apparent success of
the simple EXH method and explains the abnormal-
ly low-energy gap previously obtained in SIEXH
calculations. '7 Similar near-cancellation effects
between Madelung and linear terms in the charge
have been previously observed in heteropolar
molecules. 4 '~ Inclusion of spherical Madelung
terms has been shown to increase the ionicities
and the energy of the lowest transition, and to re-
duce drastically the charge dependence of the or-
bital energies. '8'~ Further examination of ma-
trix-elements effects on the calculated optical
spectra of boron nitride, using our band structure,
would help to assess these results.

It is interesting to compare the characteristics
of the band gap in the hexagonal and the cubic
modifications of boron nitride in view of the vari-
ous terms determined the diagonal and nondiagonal
matrix elements. The lowest band gap in cubic
bo~on nitride is indirect and involves the energy
difference between the conduction X, state and the

ff N, N
(O} Q g22 Qa

SN

and a homomolar E~„ term, proportional to the
interaction element between the two sublattices

Egh 22I22(EBN}

(16}

In these expressions Q, denotes the positive net
charge of the B'co N o~ system and MQ, /R»
represents the classical Madelung term. In hex-
agonal, boron nitride, the direct gap involves the
P& and P2 states. The irreducible representations
of the hexagonal group at these points does not
allow any mixing between the Bloch states belong-
ing to the different sublattices~ and consequently,
tPe band gap in the hexagonal form is purely
heteropolar [Eq. (16)]. Thus, in terms of the
dispersion dielectric theory of Phillips and Van
Vechten, ~ cubic boron nitride exhibits an average
homopolar-heteropolar gap E'"2"= (E2„+E2„)'~2
while hexagonal boron nitride exhibits a purely
heteropolar gap E,"'"=E, .

In the homopolar analogous of boron nitride,
namely diamond and graphite, the E, terms
vanishes by symmetry due to the chemical equiva-
lence of the two sublattices. Thus in the hexag-
onal graphite E =0, since mixed E „terms are
not involved in the energies of the zone-corner
states, while in diamond, the zone-center direct
gap is E~=E~„.

It has been pointed out by Phillips'3 that the Q,
=0 approximation for the heteropolar band gap in

diamondlike binary crystals grossly overestimates
the true value, while inclusion of the linear Q, b,

terms alone, yields a largely underestimated
value due to the absence of a sufficiently large
covalent term to oppose the charge redistribution.
This difficulty is not present in the dielectric-
dispersion model '3 since the use of the Penn
model with empirical static dielectric constants,
automatically accounts for the correct magnitude
of the gap. It is shown here, that inclusion of the
Madelung-type terms in the self-consistent LCAO
scheme, provides for the correct forces opposing
the neutralization effects (introduced by the linear

zone center valence I'» state. 5 '" The irreducible
representations of the cubic space group at these
points~ allow mixing of the Bloch functions belong-
ing to the boron and nitrogen sublattices both at
I'» and at X, and consequently the band gap E
involves both a heteropolar E, term proportional
in the first neighbor approximation to the dif-
ferences in orbital energies of the two atoms in the
unit cell:

Etc +20,22(QN) +22, 22(QN)

= a" 0 Qa» MQ

BN
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FIG. 7. Density of states in two dimensional hexag-
onal boron nitride, computed from the MIEXH self-
consistent band structure.

Q, d terms), yielding thereby a proper value for the

gap and reasonable charges.
The particular form of the P, -P~ band gap in

hexagonal boron nitride given by Eq. (16) has an
interesting implication on the temperature depen-
dence of the gap. Assuming that the major con-
tribution to this dependence results from the tem-
perature effect on the lattice constant, one would
predict a very small temperature coefficient to
the gap, resulting from the small indirect con-
tribution of the lattice constant to the ionicity Q,
through crystal-field screening effects. The in-
terband transitions at the I' and Q points, on the
other hand, involving homopolar E~„ terms that
are proportional to the interaction matrix element
between neighboring boron and nitrogen atoms,
will reveal a much stronger temperature depen-
dence since the nondiagonal H2s~s2~(R») terms
are governed by overlap-depending short-range
interactions. To test these model conclusions,
we have computed the band structure of hexagonal
boron nitride for a range of R» distances corre-.
sponding to the experimental bond lengths in the
temperature range of 0-700 C, employing the
known thermal expansion coefficient in the layer
plane. 36 Fitting the results to a simple relation
E =E (0) —pT we obtained p=1. 17x10 ~ eV/'Kby
the CNDO method, p=1.0x10 ' eV/'K by the
SIEXH method, and p=9x 10 8 eV/'K by the
MIEXH method. These compare reasonably with
the experimental upper bound of p ~4x10 5 eV/'K.
In the non-self-consistent EXH calculation, the
diagonal [Hz~', z~(0) —Kf~ z~(0)] term does depend on
distance and hence a zero-temperature coefficient
is revealed. When additional neighbors are in-
cluded in Eq. (16), the gap is shown to depend on

[Hz~&, z&(2) —If~~ z~(2)], i.e. , on the second-nearest-
neighbor B-B and N-N pairs. This contributes
a small part to p and indeed the EXH band cal-
culation yields a small value of p=7. 8x10 8 eV/'K.

The saddle-point m- ~ transition at Qa reveals
a much higher temperature coefficient: P=2. 1
x 10 3 eV/'K (MIEXH result), which is of the or-
der of magnitude observed in zone-center transi-
tions in binary diamond and Wurzite crystals. '

The density of valence states in hexagonal boron
nitride (Fig. 7) was calculated from the MIEXH band
structure using 9800 K points interpolated by the
Lagrange formula from 180 directly calculated
K points in the irreducible section of the BZ. The
peaks in the density of states are assigned to the
saddle-point singularities at the Q points. Photo-
electron spectroscopy~ in hexagonal boron nitride
reveals four peaks in the valence band, with bind-
ing energies (in eV) relative to the Fermi level
EJ. of 19.4+E~, 11.4+E~, 9.0+ EF, and 3.9+ E~.
If the Fermi level is assigned to the center of the
forbidden gap, the four calculated singularities
(MIEXH results) occur at 19.5~ Ez, 8. 8~ E„,
7.8+ E~, and 3.4+ E~, respectively. These agree
favorably with the experimental data, . The inter-
pretation of the x-ray spectra of boron and nitrogen
in boron nitride46 suggested that the Fermi energy
is slightly shifted from the center of the gap to-
wards the conduction band. Such a shift would im-
prove the agreement between the calculated and
observed photoelectron transitions. Since the work
function of boron nitride is not known accurately,
it is not possible to determine absolute ionization
energies from the experimental binding energies.

The results of the present calculation agree
favorably with the result of Doni and Parravicini~
using an empirical non-self-consistent tight-
binding scheme. The latter authors obtained a gap
of 5.4 eV, a n - g* transition energy of 6.6 eV
and a valence-band minimum at 16.2+ Ez (2S„
band minimum). Although the over all shape o-f the
bands are similar in both calculations, Doni and
Parravicini obtained zero overlap between the a
and w bands at the I'2 —I", points and their bands
are narrower than ours (v width —1.2 eV, total
valence width —13.6 eV compared with 5. 1 and
17.3 eV, respectively, in the present calculation).
The non-self-consistent OP%' calculation of
Nakhmanson and Smirov yields a small band gap
of 3.6 eV and a very large valence-band width of
27. 8 eV. X-ray spectra of boron nitride indicate
a total valence-band width of about 18.6 eV.

B. Cluster band structure

In this section we discuss the band structure of
hexagonal boron nitride in which the elements
H„6(0 —n) [Eq. (3)] are computed from finite
clusters (Fig. 5). We employ both the SIEXH and
the CNDO approximations to the matrix elements
to facilitate comparison with previous cluster cal-
culations based on these approximations. 3'"

To verify the adequacy of finite molecular clusters
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TABLE II. Net atomic charge of the central nitrogen atom in each of the clusters (Fig. 5)
as computed from Mulliken population analysis of CNDO wave functions.

Cluster
1

Cluster
2

Cluster
3

Cluster Cluster Cluster
5 6

Cluster
7

Nitrogen
atomic

charge (e)

—0. 1620 —0.1839 —0. 1995 —0.2539 —0.2964 —0. 3065 —0. 3080

to the calculation of matrix elements to be used as
input to the band-structure calculation of the
infinite solid, we first examine the convergence
of atomic charges and electrostatic potentials at
the center of the cluster as a function of the
cluster's size. Table II shows the net atomic
charge Q„on the central nitrogen atom as com-
puted from the Mulliken population analysis~~ of
the CNDO wave function of clusters 1-7 (Fig. 5).
It is seen that for clusters as big as cluster 5 or
6 the charge of the central atom is stabilized, in-
dicating that for these clusters the perturbations
associated with the dangling bonds at the surface,
have little effect on the center. A similar be-
havior is manifested by the electrostatic Poisson
potentials of the finite clusters. Table III shows
the total electrostatic potential calculated at
selected points (Fig. 5) along the central B-N
bond of clusters of increasing size. The potentials
near the nuclei (points 2 and 3) converge rapidly
as a function of cluster size due to the "hard
core" behavior in this region. At the center of the
B-N bond (point 1) as well as in the extra-bond
region (points 4 and 5) the convergence is slower.
A cluster at least as large as cluster 4 should be
employed for reliable calculation. The relatively
satisfactory convergence of the electrostatic po-
tentials in clusters of typical size denoted in Fig.
5, makes it feasible to obtain the convergence-
limit values using a moderate computing time.

It has been previously suggested3 that small
clusters as BSN and NSB could be used to approxi-
mate the self-consistent matrix elements needed
in the band-structure calculations of the infinite
solid. %'e have computed the Poisson electro-

static potential across these clusters, using the
corresponding charge densities [Eq. (14)j and

compared them with the potential along the B-N
bond of the largest cluster considered in the pres-
ent work (cluster 7, Fig. 5}. The results (Fig. 8)
indicate that both the BSN and the N~B clusters
reveal a drastically distorted potential, relative
to our convergence limit results, suggesting that
the incomplete charge redistribution in small
clusters with many dangling bonds renders them
as inadequate for approximating the potential of
the bulk of the solid. The unrealistic atomic
charges at the center of these clusters (positive
net atomic charge on the nitrogen in B,N) also sup-
ports this conclusion. Only sufficiently close to
the nuclei (ft (0.3 a. u. ) these potentials repro-
duce the convergence-limit results due to the in-
creasing contributions of the nuclear potential.

The satisfactory convergence of both the atomic
charges and the electrostatic potentials at the cen-
ter of the clusters employed in the present study,
indicates that these clusters might be used to ap-
proximate the matrix elements necessary for band-
structure calculation. It is indeed found that the
largest difference between any given matrix ele-
ment [H„'„(0—n}] for n (2 as calculated from
clusters 6 and 7 did not exceed 0.2% using the
CNDO approximation, or 0.4% using the SIEDGi
calculation, while the largest difference between
the results of clusters 5 and 6 were 0.4% and 0.5%
for CNDO and SIEXH calculations, respectively.
Table 1V compares the SIEXH results obtained by
using a direct Brillouin-zone integration [Eq. (4)]
with those obtained by the cluster band-structure
method in which the matrix elements needed in Eq.

TABLE III. Calculated electrostatic potentials (in kcal/mole) at selected points (see
Fig. 5) along the central B-N bond in clusters of increasing size. For the numbering of
the clusters also see Fig. 5.

Point
Cluster

1

—6.4367 x10
—5.4704 x10
—8. 9978 x10
—3.6804 x10
—3.0383 x10

Cluster
2

—5. 8261 x10
5.4690 x10

—9.0074 x10
—1.5936 x10
—2. 2S01 x10

Cluster
3

—5.8170x10
5.46S3 x10

—9.0076 x10
—1, 6397 x10
—2. 6604 x 104

Cluster
4

—5. 6865 x10
5.4683 x10

—9.0076 x10
—1.8908 x10~
—2. 6616 x 10

Cluster
5

—5.6861 x10
5.4683 x10

—9.0076 x10
—1.8909 x10
-2.6616 x102
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FIG. 8. Electrostatic potentials computed from CNDO charge density for small clusters, along the central B-N bond
(Fig. 5). The B-N distance was taken as 1.446 A.. Distance denoted in atomic units. Dashed line, BSN; solid line,
N3B, dash-dot line, Cluster 7 (Fig. 5).

(3) are computed from the finite clusters. A
similar comparison for the CNDO calculations is
shown in Table 7' where the CNDO band structure
calculated by Kapsomenos' and confirmed by our
independent calculation is compared with the CNDO
cluster band structure. It is seen that although the
CNDO and SIEXH results differ markedly, the re-
sults of the cluster band-structure approximate
very well those of the direct self-consistent method,
in both cases. It thus appears, that it is possible
to obtain good approximations to the self-consistent
band structure by replacing the "free-atom" po-

tentials used in noniterative tight-binding methods,
with the matrix elements obtained from self-con-
sistent-field (SCF) calculations on finite clusters.
CNDO band-structure calculations were previously
shown to yield very poor results (overestimation of
the band widths by a factor of 5-10 and overestima-
tion of the lowest interband transitions by a factor
of -3) both in graphite56 ~8, and in boron nitride, ss'ss

mainly due to the neglect of overlap. In these
covalent systems, characterized by short bonds,
the overlap integrals play an essential role in de-
termining the crystal eigenvalue spectrum. '
Thus in further discussions, only the SIEXH and

Property

Band gap
~ bandwidth
Total valence width

Q, -Q,
(m —7f $
2Q band minimum

SIEXH
Crystal band

structure

3.7
1.4

18.6
6. 0

18.8+ Ey

SIEXH
Cluster band

structure

3.7
1.3

18, 5
6. 0

18.6+Ep.

SIEXH
Truncated

crystal

2. 95
3.31

17.53
5. 96

18.8+ Eg

TABLE IV. Comparison of the results of crystal band
structure, cluster band structure, and truncated crystal
calculations within the SIEXH approximation. All results
given in eV.

Property

Band gap
7r bandwidth
Total bandwidth

Q2 -Q2
(~ -~*)
2Q band minimum

CNDO
Crystal band
structure5~

13.3
21.3
47. 8

17.5

51.2

CNDO
Cluster band

structure

12.8
20. 9
46. 9

17.3

50. 8

TABLE V. Comparison of the results of crystal. band
structure and the cluster band structure as calculated
from the CNDO approximation. All results given in eV.
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the MIEXH methods will be considered.
In Table IV we have also compared the results

of the periodic band-structure calculation with
those obtained by the truncated-crystal method.
The latter method, used previously in many cal-
culations both with the Xa-scattered-wave tech-
nique ' and with LCAO methods, ~'~" ~ approxi-
mates the crystalline band structure by the elec-
tronic eigenvalue spectrum of finite clusters of
atoms arranged according to the known crystal
structure. It has been previously indicated' that
various features of the energy spectrum (band-
widths, band gaps, interband transition energies,
etc. ) of finite clusters with no periodic boundary
conditions, reveal a nonmonotonic behavior as a
function of cfuster size, unless special sym-
metries are considered. Thus, besides the un-
physical charge inhomogeneity associated with
the dangling bonds on the clusters surface,
symmetry considerations might already exclude
some significant one-electron energy levels (e. g. ,
those determining the band edges or band gap)
from the eigenvalue spectrum of improperly chosen
small clusters. It has been shown for instance,
that in two-dimensional hexagonal structures, finite
clusters having m full hexagons in the x direction
and n full hexagons in the y direction, will always
exhibit some one-electron levels that will trans-
form according to the representations of the Q
point in the infinite crystal, while levels trans-
forming like the P-point representations do not
occur in finite clusters. Thus, while the inter-
band transitions at the Q point are reasonably
approximated by truncated clusters such as cluster
5 (Table IV), the band gap is underestimated by
such a cluster. Bandwidths involving differences
between one-electron levels where at least one of
them is a P-type level, (e. g. , the v bandwidth

W, = S~-, —hr-) or the total valence width (W„,
= h j —Sr-) are similarly underestimated by
truncated cluster models and many more atoms
should be included to obtain reliable estimates.
A similar behavior of the truncated crystal results
relative to periodic band-structure results, have
been obtained by Messmer and Watkins for
diamond. It thus seems that unless very large
truncated clusters are to be employed the elec-
tronic properties of the regular lattice are better
obtained by using the latter approach to extract the
self-consistent matrix elements to be used in
periodic band-structure calculations.

We now turn to examine the effect of the self-
consistency requirement on the crystal potential.
We have computed the LCAO wave functions of the
largest cluster employed (cluster I in Fig. 5) under
various energy convergence criteria aE (denoting
the largest allowed difference in the total elec-
tronic energy in the last two successive iterations).

The absorption spectrum of the hexagonal boron
nitride sample (Fig. 1) exhibits its main peak at
6.2 eV and shows a sharp drop at 5.8 eV. The
peak is assigned to the lowest Q-saddle point
transition Q~- Q~ between the n bands while the
onset of the transition at 5.8 eV is assigned to
the direct n- n gap at P, -P2. The reflectivity
spectrum (Fig. 3) also indicates that E,) 5 eV. It
seems therefore that the low values for the gap
reported in earlier publications (see Introduction)
do not correspond to the gap. These low values for
E, were obtained from comparatively thick films
which limited the spectral range of the absorption
measurements to below about 5.0-5.5 eV. Under
these conditions only the shoulder in the range was
observed. The optical data obtained in the present
study agree favorably with the calculated results

TABLE VI. Effect of self-consistency on the electro-
static potential along the path denoted in Fig. 1 (see also
for numbering of points). The calculations are performed
on the largest cluster used (Cluster 7, Fig. 1). ~ de-
notes the energy convergence criterion imposed on each
SCF calculation

Point

V
(kcal/mole)

bE —10 ~ a. u.

—5. 942 x10
—5.474 x10
—9. 007 x10'
—2. 676 x10
—2. 0].3 x 102

V
(kcal/mole)~ ~ 10 2 a. u.

—5. 711x10
—5.470 x10
—9.006 x10
—2. 588 x10
—1.912 x10

V

(kcal/mole)~—10 5 a. u.

—5. 686 x102
—5.469 x10
—9.005 x10
—2. 565 x10
—1.891 x10

The resulting wave functions of the occupied levels
were used to compute the electronic density and
the electrostatic potential was then calculated
according to Eqs. (13)-(15). It is seen from
Table VI that as the degree of self-consistency
increases (nE decreases), the potential at the
center of the B-N bond (denoted in Fig. 5 as point
1) and close to the center of the neighboring hexa-
gons (points 4, 5) undergo substantial changes,
while close to the nuclei (points 2, 3) the effect
is smaller due to the high contributions from the
constant nuclear potential. This tendency is also
reflected in the computed values of the n bond or-
ders of the B-N bond; this value decreases from
0.4S11 at ~E-10 ' a. u. to 0.4882 at4E-10 ' a. u.
The accompanying changes in the band structure
are very pronounced (e. g. the band gap changes
from 3.7 eV in the iterated calculation to 5. 8 eV
in the uniterated calculation) being of the same
order of magnitude obtained previously in self-
consistent versus non-self-consistent OPW cal-
culations on II-VI crystals. "

V. CONCLUSIONS
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using the modified iterative extended Hifckel
(MIEXH) method. It should also be noted that re-
flection measurements indicated9 that E & 5. 5 eV
and showed'0 a prominant peak at 6.2 eV which fits
well the results of the present work. In addition,
photoconductivity measurement in the present
work (Fig. 4) as well as glow-curve measure-
ments also indicate E &4. 5 eV. Vfe conclude
therefore that the "knee" in the absorption spec-
trum near 4 eV does not correspond to the gap of
the pure crystal.

The experimental temperature dependence of the
band gap fitted to the expression E,(T) = E~(0) —PT
reveals a very low-temperature coefficient (P&4
&&10 ' eV/'K). This value is lower by at least an
order of magnitude compared to shifts in cubic
III-V compounds. This abnormally low value is
explained theoretically by the absence of the two-
center boron-nitrogen terms in the expression for
the gap due to the special symmetry of the P-point
in the hexagonal Brillouin zone.

The main conclusions to be made from the the-
oretical study in this work can be summarized as
follows:

(i) Owing to the substantial electronegativity dif-
ference characterizing the atoms constituting the
unit cell of the III-V compounds, significant charge
redistribution occurs in the solid, resulting in a
modification in the electrostatic potential, bond

orders, etc. A charge self-consistent calculation
is thus essential for a proper description of the
electronic properties. Simple noniterative schemes
(e.g. , extended HGckei, conventional tight bind-

ing) based on neutral atom potentials, grossly
overestimate the ionicity of the structure and the
polarity of the charge distribution.

(ii) Iterative schemes using only one-center
terms linear in the net charges (e. g. , simple
iterative extended Haeckel) tend to overestimate
the charge neutrality of the system and the charge
dependence of the interaction matrix elements due
to the absence of binding effects to oppose the
homogenization process. This results in low gaps
and relatively narrow bands. Introduction of
Madelung-type two-center terms (e. g. , in modified
iterative extended Huckel scheme) reduces the
charge dependence of the various matrix elements
through near cancellation with the one-center
terms. The modified elements resemble somewhat
those of the non-self-consistent approach in their
low-charge dependence, however, it is this residual
dependence that accounts for the proper charge re-

distribution in the system.
(iii) In a highly covalent system like boron nitride

it is possible to obtain the self-consistent matrix
elements needed in the band-structure calculation,
from the SCF-LCAO solutions of finite clusters
of atoms. The convergence of the matrix elements
relating atoms that are at the center of the cluster
is examined as a function of the cluster's size.
The electrostatic Poisson potential across the
cluster, computed from the LCAO charge density,
is used as a monitor to the degree of perturbation
exerted by the dangling bonds on the center of the
cluster. Since the covalent bonding in such systems
is determined mainly by the electronic charge dis-
tribution at the vicinity of the bond, such a proce-
dure converges rather rapidly and medium-size
clusters surrounding a given B-N bond already
yield satisfactory values for the matrix elements
associated with that bond.

(iv) Simple truncated crystal models approximating
the band structure of the infinite solid by the en-
ergy eigenvalue spectrum of finite clusters should
be carefully selected due to the nonmonotonic
behavior of various electronic properties as a
function of the cluster's size. Only clusters with
specially chosen symmetries could be used to
obtain some of the one-electron energy levels
that correspond to high-symmetry points in the
crystal (e. g. , those determining band gape and
bandwidths).

(v) Though the semiempirical LCAO methods
that have been previously used for studying
molecular properties, constitute only approxima-
tion to the exact Hartree-Fock scheme, they pro-
vide a simple and practical means for obtaining a
rather physical description of electronic properties
of solids. The basic solid-state features concern-
ing charge redistribution, ionicity, band structure
and density of states are amenable to a relatively
simple treatment by these methods. It should
however be stressed that extreme caution should
be experienced in examining the adequacy of the
various quantum-chemical approximations to solids,
regarding the effects introduced by the neglect of
overlap interaction and self-consistency.
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