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Flicker (1/f) noise: Equilibrium temperature and resistance fluctuations*
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We have measured the 1/f voltage noise in continuous metal films. At room temperature, samples of pure
metals and bismuth (with a carrier density smaller by 10') of similar volume had comparable noise. The power
spectrum Sv(f) was proportional to V'/0 f~, where V is the mean voltage across the sample, 0 is the sample
volume, and 1.0 & y & 1.4. SI,(f)/ V' was reduced as the temperature was lowered. Manganin, with a
temperature coefficient of resistance (P) close to zero, had no discernible noise. These results suggest that the
noise arises from equilibrium temperature fluctuations modulating the resistance to give Sv(f) ~ V'p'k~ T'/CI„
where CV is the total heat capacity of the sample. The noise was spatially correlated over a length

X(f) —(D/f)'", where D is the thermal diffusivity, implying that the fluctuations obey a diffusion equation.
The usual theoretical treatment of spatially uncorrelated temperature fluctuations gives a spectrum that
flattens at low frequencies in contradiction to the obser red spectrum. However, the empirical inclusion of an

explicit 1/f region and appropriate normalization lead to Sv(f)/ V' ~ P k~ T'/ C&[3 + 21n(l/w)]f, where l is

the length and w is the width of the film, in excellent agreement with the measured noise. If the fluctuations
are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region in the power
spectrum. We show that the temperature response of a sample to 5- and step-function power inputs has the
same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations,

respectively. The spectrum obtained from the cosine transform of the measured step-function response is in

excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium
temperature fluctuations are not the dominant source of 1 jf noise in semiconductors and discontinuous metal
films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square
Johnson-noise voltage and the resistance fluctuation spectrum measured in the presence of a current
demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations.

I. INTRODUCTION

Hooge and Hoppenbrouwers' have measured the
1/f noise voltage generated in continuous gold films
(with physical properties close to bulk values) in
the presence of a steady current. They found that
the noise power spectrum Sr(f) for samples at
room temperature could be expressed by the em-
pirical formula

SY(f)/V =2x10 /N, j.
In Eq. (1.1), N is the number of charge carriers
in the sample, f is the frequency, and V is the
average voltage across the sample. This depen-
dence on V is universally found in resistive sys-
tems. The 1/f noise is, consequently, often con-
sidered as arising from resistance fluctuations
that generate a fluctuating voltage in the presence
of a constant current. Hooge and Hoppenbrouwers
pointed out that the inverse volume dependence for
samples of the sa.me material implied by Eq. (1.1)
was strong evidence for believing that the 1/f noise
is a bulk effect rather than a surface effect in
metal films. They found that the noise was still
present when the samples were immersed directly
in liquid nitrogen or liquid helium, and concluded
that S„(f) had a temperature dependence no stron-
ger than T'~ .

Williams and co-workers' studied very-thin

metal films which no longer have bulk properties,
and in which electrical conduction is probably par-
tially via a hopping process. Such films exhibit
much more noise than is predicted by Eq. (1.1).

Hooge~ has examined measurements of 1/f noise
in semiconductors, and has found that, with a few
notable exceptions, Sv(f) was again quite well ex-
pressed by Eq. (1.1). Agreement with this for-
mula was also found in single-crystal III-V com-
pounds by Vandamme. Both results imply that
1/f noise in semiconductors is a bulk effect.
Hooge, who studied noise in ionic cells, and

Kleinpenning, who studied noise in the thermo-
electric emf of intrinsic and extrinsic semicon-
ductors, both concluded that the noise arises from
fluctuations in carrier mobility. However, the
view that 1/f noise in semiconductors is a bulk ef-
fect arising from mobility fluctuations is not uni-
versally held. McWhorter 's theory suggests that
1/f noise arises from surface traps with an appro-
priate distribution of trapping times that generate
noise by inducing fluctuations in the number of
carriers. This theory has considerable experi-
mental support. ' However, it is possible that,
in general, the 1/f noise in semiconductors arises
from both bulk and surface effects.

In this paper we report results of our work on

1/f noise primarily in continuous metal films.
Initial results were reported earlier. " The paper
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follows the chronological progression of the work,
and oscillates between experiment and theory. In
Sec. II, we report measurements on 1/f noise in
thin films made of a variety of materials. We
found general agreement with Eq. (1.1), with two
important exceptions. First, Bi, a semimetal
with a carrier density about 10' smaller than gold,
exhibited about the same 1/f noise for similar
sized samples. Second, manganin, an alloy with
a temperature coefficient of resistance close to
zero, showed no observable 1/f noise. The ab-
sence of 1/f noise in ma, nganin indicated that the
1/f noise in metal films could be caused by tem-
perature fluctuations that modulate the sample
resistance R and generate voltage fluctuations in
the presence of a steady current I. Thus, we ex-
pect

where

1 dR
P=——Rdr'

and ((AT) ) is the mean-square temperature fluc-
tuation. The similarity of the 1/f noise in Bi and
other metals suggests that S»(f)/V'(x: fl ' (where
II is the sample volume), not N, '; and, conse-
quently, that the temperature fluctuations may be
those of an equilibrium system. In thermal equi-
librium, ((hT)') =ksT /C», where C» is the heat
capacity of the sample. At room temperature,
C~=3Nk~, where N is the number of ntoms in the
sample, a.nd S»(f)(&(: V2p T /3N.

Energy fluctuations (AE= C»n. T) are expected to
obey a diffusion equation, and in Sec. III we de-
scribe the spectrum of such fluctuations in a small
subvolume of a uniform medium, assuming the
fluctuations to be uncorrelated in space. This
system has been extensively studied in the past. '
The diffusion model was rejected as an explanation
for 1/f noise because, in this system, it fails to
predict a 1/f power spectrum over many decades
of frequency, " and because it seriously underes-
timates the noise in semiconductors. However,
the experimental configuration involving a metal
film on a glass substrate is a poor approximation
of the uniform medium for which the spectra are
calculated. If an explicit 1/f region is empirically
included in the spectrum, and the spectrum nor-
malized by setting

((AT) ) =ksT /C»: Sr(f)df)

the calculated noise is in excellent agreement with
the data.

The diffusion theory introduces a frequency-de-
pendent correlation length X(f)= (D/f)'~~, where

D is the thermal diffusivity. &(f) is roughly the
length over which a, fluctuation at frequency f is
correlated. Frequency-dependent correlation is
thus an identifying characteristic of fluctuations in
a diffusive medium. In Sec. IV, we describe an
experiment on Bi samples in which the noise
across two sections becomes more correlated in
the predicted manner as the frequency is lowered.

The absence of 1/f noise in manganin, the de-
pendence of S»(f) on V P /N, and the observation
of frequency-dependent spatial correlation for the
1/f noise provide overwhelming experimental evi-
dence that equilibrium temperature fluctuations
are the physical origin of 1/f noise in metal films.
Moreover, the introduction of an explicit 1/f re-
gion in the spectrum enables us to make quanti-
tative predictions of the 1/f noise in excellent
agreement with experiment. The manner in which
the temperature fluctuations produce the 1/f spec-
trum is, however, an open question. One possi-
bility is that the nonuniform nature of the experi-
mental system modifies the simple diffusion theory
to produce a 1/f spectrum. Indeed, experiments'
on the 1/f noise in Sn films at the superconducting
transition have shown that a change in the thermal
coupling between the film and the substrate can
dramatically affect the spectrum. Another pos-
sibility is that the temperature fluctuations have
some spatial correlation. In Sec. V, we show that
spatial correlation of the temperature fluctuations
can produce a spectrum with an extended 1/f re-
gion.

Fluctuation spectra are calculated on the as-
sumption that the fluctuations are on the average
governed by the sa.me decay laws (in this case, the
diffusion equation) as macroscopic perturbations. "
In Sec. VI, we show that the temperature response
of a subvolume of a diffusive system to a 5-func-
tion power input uniform over the subvolume has
the same shape as the autocorrelation function for
uncorrelated temperature fluctuations. On the
other hand, the response to a step function in pow-
er corresponds to the autocorrelation function for
correlated temperature fluctuations. We then de-
scribe an experiment in which we measure the
temperature response of a small Au film to ~-
function and step-function power inputs. The
cosine transforms of the responses yield power
spectra that are compared with the measured noise
power spectrum. The spectrum obtained from the
~ function is similar to that calculated for uncor-
related fluctuations, flattening at low frequencies,
and is unlike the measured noise spectrum. The
spectrum obtained from the step function, how-
ever, is not only 1/f over many decades, but,
when appropriately normalized, has a magnitude
and shape in excellent agreement with the mea-
sured noise power spectrum.
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In Sec. VII, we briefly summarize measure-
ments on superconducting films at the transition'
and Josephson junctions'8 that strongly suggest that
the 1/f noise in these systems is also due to equi-
librium temperature fluctuations. However, al-
though equilibrium temperature fluctuations should
generate noise in all systems (except those for
which P= 0), they may not be the dominant noise
source. For example, the 1/f noise in semicon-
ductors and discontinuous metal films is too large
to be explained by temperature fluctuations, and
lacks the spatial correlation characteristic of a
diffusive process. However, we show in Sec. VIII
that the 1/f noise in these systems is due to equi
librium resistance fluctuations. The measured
low-frequency spectrum (appropriately normalized)
of fluctuations in the mean-square Johnson noise
voltage across these samples is 1/f, and is in ex-
cellent agreement with the resistance fluctuation
spectrum obtained in the presence of a current.
Section IX contains our concluding discussion.

II. MEASUREMENTS OF 1/f NOISE IN METAL FILMS

%e have measured the spectrum of current-in-
duced 1/f voltage noise in small samples of evap-
orated or sputtered metal films on glass sub-
strates. Our films were 250 to 2000 A thick, and
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FIG. 2. (a) Sample configuration. for Au noise mea-
surement. (b) Measured spectrum, V=0. 81V (); back-
ground spectrum V=O. OV (&); and S~(f) corrected for
amplifier and capacitor frequency response.
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FIG. l. (a) Sample configuration for Bi film noise

measurement. (b) Measured spectrum, V=O. 9V {);
background spectrum, V=O. OV (0); and Sz(f), noise
background (solid line).

had resistivities close to bulk values. Each film
mas cut with a diamond knife in a micromanipu-
lator t;o produce a small bridge or necked down
region of typical dimensions 10x150 p, m mith large
areas of metal at either end suitable for contacts.
Two variations of the sample geometry are shown
in Figs. 1(a) and 2(a). Four pressed indium con-
tacts mere placed on each sample and the contacts
mere checked for excessive resistance. A cur-
rent source, consisting of a bank of batteries and
a, large wire-wound resistor (which exhibited no
1/f noise) of resistance R, »R (R is the sample
resistance), was connected to two of the contacts.
The other two contacts mere used as voltage leads.
The average voltage across the sample V ranged
from 0.2 to 2 V. The high-resistance current
source and the four-terminal configuration were
necessary to eliminate contact 1/f noise at the
current carrying contacts. The current and volt-
age leads were often reversed to further assure
the absence of contact noise. Moreover, the sam-
ple was replaced by a wire-wound resistor of the
same resistance to insure that no significant noise
arose from the current source.

The sample, current supply, and battery-oper-
ated preamplifier were placed in an electrically
screened room to reduce pickup of external noise-
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In some cases, the samples were also placed in a
vacuum with no change of the measured noise,
spectrum. For the high-resistance Bi samples
(If- ikA), the voltage leads were ac coupled di-
rectly to a Princeton Applied Research 113 pre-
amplifier. To improve the sample-noise-to-pre-
amplifier-noise ratio for the low-resistance sam-
ples (R 5 100 0) it was necessary to provide a bet-
ter impedance match. These samples were either
transformer coupled to the PAR113 or ac coupled
through a large capacitor to a Keithley 824 pre-
amplifier. Correction to the spectrum was made
for the transformer response or the low-frequency
amplifier roll off. In some cases, the sample mas
used as one arm of a Wheatstone bridge to allow
dc coupling to the preamplifier. Although such
arrangement is a three-terminal measurement
and more susceptible to contact noise, by cutting
two symmetric arms from the same continuous
film, the bridge arrangement could be made in-
sensitive to contact noise.

The voltage noise spectrum was measured by an
interfaced PDP-11 computer. The preamplifier
output mas filtered to eliminate unwanted high
frequencies and was fed to a 1-MHz voltage-to-
frequency converter. The converter, in turn,
drove an internal countex in the computer. An
external osci11ator of frequency fo generated an in-
terrupt in the computer every 7O =1/f, . On the
first interrupt, the counter mas cleared and
started. On successive interrupts, the counter
mas read, cleared, and restarted. This arrange-
ment px'ovlded R highly RccurRte Rna}og-to-digital
converter (up to 24 bits) with automatic averaging
over ~o. Successive counts stored in the computer
thus provided a digital record of the noise. Once
1024 points had been accumulated, a fast Fourier
transform was used to calculate the 512 sine and
512 cosine transforms of the data. These values
were squared and added to an accumulating array
of 512 frequency points. The entire process was
repeated at least 40 times to provide an average
measure of the noise spectrum in the frequency
range gpg4 f, to —,fo. By changing f„ the spectrum
could be measured over any desired range, al-
though the digitizing electronics and interrupt de-
lays gave an upper frequency limit of about 10
kHz.

The spectrum S(f) was measured with an aver-
age voltage V acxoss the sample. The background
spectrum So(f) was then measured with zero aver-
age voltage across the sample and included con-
txibutions from both external pickup and amplifier
noise. The difference S~(f) between S(f) and
So(f) was thus the current-induced voltage noise
in the sample. These measured spectra for a
typical Bi ss.mple (R-400 0) coupled directly to a
PAR113 preamplifier are shown in Fig, 1. The

increasing steepness of the spectrum below 1 Hz
mas found in most samples and mas probably due
to R gradual deterioration of the sample caused
by the high current densities (-106 A cm ~). With
the FFT method of measuring the spectrum a slom
monotonic drift generates a 1/f' spectrum. This
effect can be eliminated if the cosine transforms
alone are used.

Figure 2 shows the measured spectra for a Au
sample coupled through a large capacitor to a
Keithley 824 preamplifier. In this case, it mas
necessary to correct for the low-frequency roll
off of the amplifier and capacitor as mell as to
subtract out the background to obtain S~(f). In

Figs. 1 and 2, the corrected spectra show a be-
havior close to 1/f.

Similar measurements mere made on a wide
variety of samples of different materials. We
found S~(f)~ V /f", where 1.0&y&1.4. By vary-
ing sample size, it was possible to show that Sr(f)
mas roughly proportional to 0, the sample volume.
Otherwise identical samples often showed noise
spectra whose magnitude differed by up to a factor
of 3. This irreproducibility between different
samples and oux inability to change 0 over a wide
range while still observing the 1/f noise made a
more accurate determination of the 0 dependence
impossible. A summary of the measured noise
spectra for various samples (typically, 10x 120
pm x 1000 A) of different materials, including
metals and a, semimetal (Bi), is shown in Table I.
The measured temperature coefficient of resis-
tivity P is also shown for each of the metal films.

Hooge and Hoppenbroumers' reported no consis-
tent variation of the 1/f noise in their Au films
when immersed directly in liquid N2 or liquid He.
These measurements, however, may not be in-
dicative of the temperature dependence of S~(f)/
V . We found that placing the samples directly in
the liquids caused the spectrum to become steeper
than 1/f and to be dominated by bubbling in the
liquid. Moreover, at all temperatures, the high
current densities (up to 10 A cm ~) and high levels
of power dissipation (up to 1 kWcm ) necessary
to observe the 1/f noise caused the film to operate
much above ambient temperatuxe. In the case of
some "room-temperature" metal films, the de-
parture of the I-V characteristics from linearity
together mith the known value of p showed that the
sample was as much as 40 C above room tem-
perature. The nonlinearity of the I-V character-
istic at high currents due to heating is shown in
Fig. 3 for the Au film whose noise spectrum is
shown in Fig. 2. The heating causes an increase
in resistance at high currents. The somewhat

amorphous nature of our Bi films caused a nega-
tive temperature coefficient of resistivity. The
Bi films, consequently, exhibited I-V character-
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which a resistance fluctuation changes the power
dissipated in its neighborhood thereby raising or
lowering the local temperature, do not play a role.
The observation that Bi, with a carrier density 10'
smaller than metals, has roughly the same rela-
tive noise spectrum suggests that the size effect is
not N, ', as suggested by Hooge and Hoppenbrou-
wers. ' However, both our measurements and
those of Hooge and Hoppenbrouwers' on Au are
consistent with S»(f )/V ~ II '. In thermal equi-
librium a body of total heat capacity C~=c~Q has
a, mean-square temperature fluctuation ((AT) )
=ksT'/C». Thus, the absence of the 1/f noise in
manganin, the scaling of S»(f)/V as I/II, and the
fact that S»(f)/V decreases with decreasing tem-
perature are all consistent with the idea that the
1/f noise voltage in continuous metal films supplied
with a steady current is due to equilibrium tem-
perature fluctuations modulating the resistance.

III. FLUCTUATION SPECTRA FOR DIFFUSIVE SYSTEMS

CURRENT

FIG. 3. Nonlinearity of I-V characteristic caused by
heating of Au sample of Fig. 2.

istics which curved toward lower resistance at
high currents.

In order to get some indication of the tempera-
ture dependence of S»(f)/V it was necessary to
place the samples in a vacuum can and to isolate
them from temperature fluctuations in the liquid
bath by a long thermal time constant. We found
that S»(f)/V for both Au and Bi samples de-
creased by about an order of magnitude in going
from room temperature to a liquid-N~ bath, but
that S»(f)/V did not change further in going to a
liquid-He bath. In all cases, however, the pres-
ence of heating nonlinearities indicated that the
samples were much above the bath temperature.
In liquid-N2 and liquid-He baths, we were unable
to make an accurate measurement of P and deter-
mine the actual temperature of the samples. Al-
though we can say that with careful measurement
S»(f)/V is found to decrease as the temperature
is lowered, we can make no quantitative statement
about the temperature dependence.

The dependence of S„(f)on Va suggests that the
1/f noise may be caused by resistance fluctuations.
The measurements summarized in Table I provide
important clues as to the nature of 1/f noise in
continuous metal films. The absence of detectable
1/f noise in ma. nganin with P= 0 indicates that tem-
perature fluctuations generate the 1/f noise. The
similarity of the spectra from Bi (P(0) and the
metals (P )0) indicates that thermal feedback, in

A temperature fluctuation AT in a resistor of
resistance R and temperature coefficient of resis-
tivity p= (1/R) SR/8T will be observed as a voltage
fluctuation 6 V = IR p 6T in the pre sence of a con-
stant current I. The voltage-fluctuation spectrum
S»(f ) is then related to the temperature-fluctuation
spectrum Sr(f) by

S„(f)= V'p'S, (f), (3. 1)

TABLE I. The meas ured tempe rature coefficient of
resistance for several materials and the measured and
calculated noise power at 10 Hz (measured S~(f)/ V
differs by 2/7( from previous table in Ref. 13 because
of recalibration).

Material

CU

Ag
Au
Sn
Bi

Manganin

Measured P
(K )

0. 0038
0. 0035
0. 0012
0. 0036

—0. 0029
lP l

(10-4

S,)f)/ V'
measured
at 10 Hz

6. 4
6. 4
0. 6
7. 7

13
(7x10 3

S,(f)/ V'
cale ulated
at 10 Hz
(10-"Hz-')

16
2

0. 76
7. 7
9.3

(3.5 x10 3

where V=IR is the average voltage across the re-
sistor. If the temperature fluctuations are due to
equilibrium exchange of energy between the resis-
tor and its environment, Sr(f)~ksT /C», where
C~ is the total heat capacity of the resistor. In
this case S»(f) ~ V P kaT /C», which predicts the
observed behavior of the 1/f noise in metal films.
It is necessary, however, to determine whether or
not the idea of equilibrium temperature fluctuation.
can account for both the observed magnitude of the
1/f noise and the 1/f spectrum. In this section,
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we shall use a Langevin-type approach to calcu-
late Sr(f ) for a system characterized by a single
correlation time, and for uniform diffusive sys-
tems. Although many of the results have been
previously derived, ' "" neither the general-
ized three-dimensional spectra nor the frequency-
dependent spatial correlation length A(( ) ~ (D/&u)'

have been emphasized. Our simple physical de-
rivation, which stresses the importance of X(u))

in determining the shape of the spectra, not only
provides the basis for our later experiments, but
also introduces methods that can easily be ex-
tended to the case of correlated fluctuations dis-
cussed in Sec. V.

We begin by considering the system shown in
Fig. 4(a). A mass of total heat capacity C is
coupled via a thermal conductance G to a heat
reservior at temperature To. Macroscopic devia-
tions in T vrill obey the decay equation

C —=- G(T- T ).dt o ~ (3. 2)

dT —(T- T()) F(t)
dt v'o

(3.3)

where ro = C/G is the time consta. nt for decay of a
given fluctuation. If we assume that T(t) and F(t)
fluctuate only for ) I, ) ~ 8, the frequency spectrum
is defined '

by Sr(u)) = lim~. „(lT(&) I )/26, where

In the Langevin approach ~ equilibrium fluctuations
are also assumed to obey Eq. (3.2). The stochastic
nature of the fluctuations is introduced by adding
a "random driving term" F(t) to the right-hand
side of Eq. (3.2). F(t) is assumed to have zero
average and to be uncorrelated in time [(E(t)
xE(t+ r)) = F20')(r)] for the time scales in which we
are interested. Physically, E(t) represents the
random exchange of energy between the mass and
the reservior through the thermal conductance.
The equilibrium temperature fluctuations thus
obey the equation

T(u)) = (27/) '/' (T(t) —T,)e'"'dt.

From Eq. (3.3), T((o) =F((u)/C[ro'+t(o] and
Sr(ar) =Sz(&u)/C [ro + u) ]. The Wiener-Khintchine
relations

c,(r) =(x(t)x(t+ r)) = S,(u)) cosy)rd~ (3.4a)

1
S„((d) = c„(T) eos(()rdr2' (3.4b)

that connect the autocorrelation function c,(r) of a
fluctuating quantity x with its spectrum S„(f) may
be used to calculate S~(&u) from (F(t)E(t+ r))
= Fat)(r). Since E(t) is uncorrelated in time, Sr(~)
=Eo/2w is "white" (independent of frequency).
Thus, Sr(~) = Fo/27(C (ro + w ). Fo may be de-
termined from the normalization condition [Eq.
(3.4a)] that

We find that Fo=2k~T G and

Sr(~) =ksT'/))G(1+ u)'r(')). (3. 5)

Sr(~) is the usual Lorentzian spectrum character-
istic of processes with a single correlation time
70. This spectrum is obviously not 1/f. In fact,
the 1/f spectrum can only arise from physical pro-
cesses characterized by the appropriate distribu-
tion of correlation times. ~6 One process with a
distribution of correlation times is diffusion,
which„moreover, represents a better approxi-
mation to the heat flow in the metal samples.

With a simple extension of this single correla-
tion time system, one may approach a one-dimen-
sional diffusion system. Figure 4(b) shows a
string of equal masses of heat capacity C connect-
ed by thermal conductances G. The temperature
of the nth mass obeys the Langevin equation

C 3-~~ To

CdT„
G(Tn+1+ Tn-1 2T)))+ E))~1/'2 En-1 /2

G 6 6, 6

FIG„4. (a) Simple system of heat capacity C coupled
to reservoir at temperature 7.'o by thermal conductance
G. (b) String of these simple systems which approximate
a one-dimensional diffusive system.

Each of the random driving terms F„„&2is inde-
pendent of the others. If we assume that each of
the masses is separated by a distance lo, we may
define c = C/lo as the heat capacity per unit length
and g = Glo as the thermal conductivity. In the
limit lo-0, T becomes a continuous function of
position and time, T = T(x, t), and obeys the dif-
fusion equation

BT 8 T j 8F—=D, +c-' —,
eg ex' ex

where D= g/c is the thermal diffusivity and E(x, t)
obeys the relation



(F(x, t)F(x+ s, t+ r) ) = 22F', e(s)a(r).

The quantity of interest is now the spatial average
of the temperature T(t) over the length 2l from
x=-l tox=l:

1
T(t) =— T(x, t) dx.

T(x, t) may be defined in terms of its space and
time Fourier transform:

T(x, t) =— dk d(u e'" e '"'T(k, (u). (3.9)2'
From Eq. (3. '7) we find

cr(s, (d) =(T(x+ s, (d)T*{x,(d)&/28. For the one-di-
mensional case, we obtain from Eq. (3.10)

( )
ksT cos(am+ Is I/X) (, ()2 (3 IS)~r ~y~ — - -yja gja2 7TCD

where &(0))= (2D/(d)'t' is the (0-dependent correla-
tion length and is a measuxe of the average spatial
extent of a fluctuation at frequency (d. A low-~
fluctuation effectively samples F(x, t) over a large
coherent volume giving a large amplitude.

When (0 «(00, X(0))»2l and the fluctuations be-
come correlated across the entire length. In this
case Sr(0)) can also be expressed

T(k, (d) = ikF{k, &u)/C[Dk —i(d]. (3. 10)
dxg dx2

Sr((d) = Cr(XS XS) (d). (3.16)

Since from Eq. (3.3),

1
T((d ) =— T(x, (d )dx,

2l

using Eq. (3.9) we have

T( ) (2w)'"f =" ' )'())a. , (s. li)

The frequency spectrum is defined by
Sr((d) =lims „(IT((d)IS&/28. The uncorrelated nature
of E in space and time implies that it has a white
spectrum in v space and 0 space. %e thus set

(F(k, ~)F*(k', ~)&/28 = F02t}(k k')/2v—,

Since cr(s, (d) is indeyendent of s as 10-0, Sr((d)
-cr(0, (d) as (0-0, leading to the same low-(d
limit as that obtained from Eq. (3. 13).

In the high-(d region ((0»(00) ~((d) «2l. Although
2l may be divided into many correlated regions
each of length X only the two end regions can fluc-
tuate independently of the others. Energy ex-
change between any of the internal lengths cannot
change T{t). The behavior is then best understood
in terms of one-dimensional energy flow across
the boundaries. The energy flow j(x, t) obeys the
equation

so that Sr(0)) reduces to

F', "sin'kl k'dk
(2w) c „k l IPk +uP (3.12)

From Eq. (3. 10),

j(k, (d) = i 0)F(k, (d)/[Dk2- i(d]

Once again I z may be determined from the nor-
malization condition

If E{t) represents the total energy on one side of
the boundary at x = l and we consider only flow
across this single boundary, then

We find E0 = 2ksTSg. Sr((d) may now be explicitly
integrated to give and

dE(t) .
( )dt

Sr{(d) = ~2 s&z [1- e (sin8+cos8) ],

where 8=- ((0/(00)', and 0)0 =D/2l is the natural
frequency defined by the problemS„((d)- , ksT /
2 22D'~ (d c for (L)«(00 and Sr(&0)-ksT D' /
4&2vi2c&s/2 for K» K 20'21

As a check on the formalism one may obtain
from Eq. (3. 10) the space-time correlation func-
tion, (sc, rr) = (aT(x+ s, t+ r)t), T(-x, t) &,

cr(s, r) = [ksT2/c(4vDr)'t 2] exp(- s2/4Dr),
(3.14)

which is the familiar result for one-dimensional
diffusion processes. " The physical insight into
the connection between diffusion and the I/f-like
spectrum, however, comes from a calculation of
the frequency-dependent correlation function,

F02 dk ksT g
(27()2 D'k'+ (d2 2" D"S2"20)s

(3. IV)

for energy fluctuations due to flow across a single
boundary. For ~ »(do the flows across the two
ends are independent; and, since AT = t2E/2lc,

Sr((d) = 2Sz((d)/4Pc =ksT /4v2vl cuPt

as before.
This formalism may readily be extended to more

than one dimension. T(x, t) obeys the Langevin
diff usion equation
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(3.18)

&(&T )'& = S,(~)~~

gives Eo =2A~T g. Although we have been Unable

to determine a general analytic expression for
Sr(~), we can determine its limiting forms from
the behavior of the appropriate (d-dependent cor-
relation function, which retains its dependence on

exp(- Is(/X) in all dimensions. Thus, in two di-
mensions

(F(x+ s, f+ r) ~ F(x, f)) = (2v)
Emory(s)6(7).

If T(f) is the spatially averaged temperature of a
box of volume A=2 /, ... E in m-dimensions, then

F 2 d~kp' sin'jp E""=(2.)-" nu, &~ I;I"
The requirement that

Sr(~) ~ (const). The behavior of Sr(&u) for the
four regions of the spectrum of a regular three-
dimensional volume are shown in Fig. 5(a). The

behavior at high ~ for all dimensionalities is
characteristic of diffusive flow across a sharp
boundary. ' When X is «any length 2l, only the
outer shell of an arbitrary volume 0 can fluctuate
independently of the remainder and then only by
local one-dimensional flow across the boundary.
A generalization of Eg. (3. 17) gives

Sr(~) - ksT'A/2'~'vA'cru'~' as ~ —~, (3.23)

where A is the total surface area of 0, If, on the
other hand, the boundary is not sharp but has a
finite width se, Sr(ru) varies as v for m» D/te .

In(l/f }

c,(s, ~) = (I,T'/2vDc)I e~(Vg s I/X), (3.20)

"(s ~)-(~.T'/2&'Dc»n(~»/IsI) «r IsI «~

In three dimensions,
2c(s(d)p

I I

cos(I s I/~)e "" (3.21)

For a regular three-dimensional volume of
lengths 1, » 12» Es, the three natural frequencies,
~, =D/2I'„separate the spectrum into four re-
gions. In the frequency region rd» co2 the
lengths I, and lz may be considered infinite and the
spectrum becomes one-dimensional with tempera-
ture fluctuations only due to energy flow in the x~
direction. Thus as calculated above Sr(~)~ ~~~
for (u» (u, and Sr((u) ~ (u-'~' for (u3 «&u «(u3. If
(d»~„ the spectrum looks two-dimensional with
temperature fluctuations only due to energy flow
in the x2 and x, directions. The low-frequency
limit of the two-dimensional spectrum may be cal-
culated from Eq. (3. 20) and the observation that

2'
B2[

f2
Iog f

Sr(cu) = fl ~ dx dx cr(x x', &u). -
n A

From the limiting form of Eq. (3.20) as u-0 it
can be seen that '

MODEL SPECTRUM
l

f)

log f

(b)

Sr(~)~[const+ In(1/~)] for ~, « ~ « ~~.

For &u« ~„Sr(r ') is determined from the low-
freguency limit of the three-dimensional cr(s, &o)

[Eq. (3.21)j and Etl. (3.22). Thus, for ~«~&, '

FIG. 5. (a) Sz (f) for spatially uncorrelated tempera-
ture fluctuations of a box 2l~ & 2l& &2l3. f; = f~;/27I =D/
47il~f. (4) Model Sz(f) for a metal film on glass sub-
strate: f~=D/~l~, ~here l is the length of the film, and

f~=D/xm, where w is the width of the film.
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Only very recently have these calculated spectra
for diffusive systems been verified experimentally
by a direct measurement of the spectra. Light
scattered from independent pa.rticles undergoing
Brownian motion was used to measure the number
fluctuation spectrum for a small volume. Both the
predicted low-frequency roll off and the high-fre-
quency f ' behavior of the correct magnitude
were observed.

Unlike the measured S„(f) for metal films shown
in Figs. 1 and 2, Fig. 5(a) does not show an ex-
tended region of 1/f behavior. Figure 5(a), how-

ever, was calculated for temperature fluctuations
in a regular subvolume of a uniform medium. On

the other hand, the experimental system of metal
film on glass substrate does not present a uniform
medium for heat conduction. We expe ct dif fusive
flow along the film to dominate the heat conduction
creating prima. rily a two-dimensional system; but
with some effects due to coupling to the substrate.
The importance of coupling to the substrate on the
spectrum has, in fact, been demonstrated for
superconducting films at T,. It is also possible
that path switching effects, in which a temperature
configuration that does not change T(t) does change
R, (AVE VPhT) may play a, role. However, at the
frequenc ies measured, X is lar ge enough that tem-
perature fluctuations are expected to be correlated
across the cross section of the strip, hence AV
= VP~T.

If we assume that the temperature fluctuations
in the metal films obey a diffusion equation, but
that the complex nature of the system introduces
an explicit 1/f region into the spectrum at inter-
mediate frequencies, we may form a model spec-
trum that will allow quantitative comparison of
the measured noise with that predicted from tem-
perature fluctuations. Since the thermal conduc-
tivity of the film is so much higher than the sub-
strate, we expect the high-frequency behavior to
be two-dimensiona. l while at low enough frequencies
the spectrum must become three-dimensional and
independent of frequency. This simple model
spectrum is illustrated in Fig. 5(b). The limits of
the I/f region are defined by the natural frequen-
cies of the film, D/vl and D/ zov, where I and w

are the length and width of the film. The high- and
low-frequency limits are taken to be diffusionlike:
Sr(f ) ~f for f&D/vw and Sr(f ) ~ const for
f&D/vl .

The normalization condition

independent of D. The term In(l/~) makes Eq.
(3. 24) extremely insensitive to changes in the
limits of the 1/f region. For metals at room tem-
perature C~=3Nk~, where N is the total number of
atoms in the sample, and

Sr (f ) = V P T /3N[3 + 2 ln(l/m) ]f. (3.25)

For the samples of Hooge and Hoppenbrouwers, '
Eq. (3.25) predicts Sv(f )/ V = 3.6 x10 '/Nf, which
is within a factor of two of their experimenta, l re-
sults [Eq. (1.1)] if we replace N, by N T.he last
column of Table I shows the calculated values of
Sr(f) from Eq. (3.25) for our samples. The
agreement is excellent.

Although the calculated Sr(~) for simple uniform
diffusive media do not have an explicit 1/f region,
the assumption of such a 1/f region in Sr(f) for
the complex experimental systems allows a quan-
titave prediction of the 1/f noise in excellent agree-
ment with experiment.

IV. MEASUREMENT OF SPATIAL CORRELATION OF I/
NOISE

The usual diffusion theory does not provide an
explanation for the 1/f spectrum. It does, how-
ever, suggest an important experimental test of
the correctness of a diffusion mechanism. Fluc-
tuations in a diffusive medium are characterized
by the frequency-dependent correlation length,
X(f) = (D/vf)'~ . Thus, the temperature fluctua-
tions of two regions separated by a length l should
be independent if I» X(f), and correlated if I

«A(f). The extent of the correlation depends on
the dimensionality of the diffusion process and the
exact geometry of the two regions.

Figure 6(a) shows the experimental configuration
for an experiment designed to measure the fre-
quency dependence of the correlation of the 1/f
noise from two regions of a single Bi film. A Bi
film of thickness 1000 A was cut to form two
strips each of length l and width 12 p. m. Separate
batteries and large resistances Ro were used to
supply a constant current to each strip and pre-
vent any correlation via a common power supply.
The two noise voltages V, (t) and Vz(t) were sep-
arately amplified with PAH113 prea, mplifiers and
the spectrum of their sum or difference measured
with the PDP-11 a.s described in Sec. II. If S.(f)
is the spectrum of [V,(t)+ V2(t)] and S (f ) is the
spectrum of [V,(t) —Vz(t)], the fractional correla. —

tion between the strips C(f) is given by

c(f) =[s,(f)- s (f)]/[s, (f)+s (f)]. (4. 1)

then determines the magnitude of the spectrum,
In the 1/f region

Sv(f)/V = P~ksT /C~[3+2 ln(l/w)]f, (3.24)

When V, (t) and V2(t) are independent, S,(f) = S (f)
and C(f) =0. When the two strips a, re completely
correlated, V, (t)= Vz(t), S (f)=0, and C(f)=1.
For temperature fluctuations at high f, X(f) « I
and C(f)-0, while at low f, X(f)»l and C(f)
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FIG. 6. (a) Experimental configuration for correla-
tion measurement. (b) Fractional correlation for two
samples.

V. SPATIALLY CORRELATED FLUCTUATIONS

- const. The change from correlated to uncorre-
lated behavior occurs when X(f)-l. Experimental
results for two different values of l are shown in
Fig. 6(b). The condition X(f ) = I corresponds to
f=0. 13 Hz for l=7. 5 mm, and f= l. 2 Hz for
l = 2. 5 mm (with D =0. 2 cm sec '}, in good agree-
ment with the frequencies at which C(f) changes
rapidly. As l is increased, the low-frequency
limit of C(f) decreases because a fluctuation in
one strip has an increasing probability of decaying
without influencing the other strip. For l much
greater than 7. 5 mm, it became increasingly dif-
ficult to observe any correlation. Since we could
not measure S,(f ) and S (f ) simultaneously, we
often observed errors due to slow changes with
time of S(f). Depending upon whether we mea-
sured S,(f) or S ( f) first, a slow change would ap-
pear either as a positive or negative offset to C(f),
as in the l = 2. 5-mm case in Fig. 6(b).

These measurements of the frequency-dependent
spatial correlation of the 1/f noise in metal films
and the observation that the change from uncorre-
lated to correlated behavior occurs at a frequency
predicted by the thermal diffusivity provide strong
experimental evidence that the 1/f noise a.rises
from a thermal diffusion mechanism.

dependent spatial correlation, and the ability of
temperature fluctuations to correctly predict the
absolute magnitude of Sv(f) [with an assumed 1/f
spectrum for Sr(f)] provide overwhelming evidence
that the 1/f noise in metal films is due to equi-
librium temperature fluctuations modulating the
film resistance. Yet, the inability of the usual
diffusion theory as outlined above to yield a 1/f
spectrum suggests a reexamination of the theory.

In Sec. III we presented a physically simple de-
rivation of the spectrum of temperature fluctuations
in infinite, uniform, diffusive media. The results
have been verified experimentally for independent
particles undergoing Brownian motion. As men-
tioned in Sec. III, it is possible that the nonuniform
nature of a metal film on a glass substrate is re-
sponsible for the 1/f spectrum. However, more
sophisticated models of the experimental configura-
tion (for example, a diffusive medium coupled to a
constant-temperature substrate, or two coupled
diffusive media) were unsuccessful in generating a
1/f spectrum. In most cases the increasing com-
plexity of the models only brought in more low-
frequency flattening. The measured spectra cor-
respond to the frequency range f &f3 in Fig. 5(a)
and, consequently, would be expected to vary as
&f ' '. Any coupling to a substrate could only be
expected to cause a temperature fluctuation to de-
cay more rapidly and further flatten the spectrum.
The measured spectra, on the other hand, have a
1/f behavior down to frequencies as low as, o'oo f, .

The calculated diffusion spectra of Sec. III as-
sume that the fluctuations are spatially uncorre-
lated:

(AT(x+ s, t)AT(x, t)) =-co(s) ~ 6(s).

A spatial correlation of the temperature fluctua-
tions, co(s) c 6(s), could drastically alter the shape
of Sr( f }; and, as suggested by Lundstrom,
McQueen, and Klason, ' in certain cases could
give an explicit 1/f region. Such spatial correla-
tion would occur if the free energy of a given tem-
perature configuration is nonlocal and contains
higher-order terms such as (vtT) . A familiar ex-
ample of this effect is the large correlation length
of density fluctuations at a critical point. The
presence of a term such as (vtT) implies that con-
figurations with slow spatial variations require a
smaller free energy and, consequently, have a
greater probability of occurring than configura-
tions with rapid spatial variations. "

More explicitly, if T(t) is the spatially averaged
temperature over some arbitrary volume 0, then

The absence of 1/f noise in manganin, the scal-
ing of S~(f)/V as I/fl, the general decrease of

S~(f) with temperature, the observed frequency-

T(t) =f T(x, t) d x =fB*(k)T(k,t) d k,

where

(5. 1)



B( ) (2v) 1/2 f e-i5 x de (5. 2)
(2m) 'c' D'k'+ era ++ O'Ia

Thus, the autocorrelation function cr(r) = (T(t}
x T(t+ 7)) has the form

cr(r)= ~B(k)~ (T(k, t) T'(k, t+r})d'k. (5. 3)

Because the temperature fluctuations obey a dif-
fusion equation,

(T(k, t) T*(k,t+r)) =() T(k) J') e-" ',
where (I T(k) I') is the mean-square amplitude of
temperature fluctuations of wave vector k. By Eq.
(3.4b) the spectrum then has the form

I B(k) I
'Dk'(

I T(k) I ') d'k
S ((u cc

DBy4 ~R ~

(I T(k) I ~) is related to co(s) by the spatial Wiener-
Khintchine relation

(i T(k)
i ) = Qo(2a) co(s) e' ' d's,

where Qo is the total volume over which 7 fluctuates.

For uncorrelated temperature fluctuations, co(s)
~ 5(s) and (I T(k) I ) = (const). Moreover, for a
regular volume of sides 2l, ,

II sin(kl, )

and Eq. (5.4) reproduces Eq. (3. 19) for Sr(~).
If, however, the (~T) term dominates the free

energy we find (I T(k) I ) ~1/k', c,(s)O=1/I si, and

I B(k) (~d'k
Sr(~) ~

Dak4 2Dk +& (5. 5)

aT, P(x, t)
Bt

(5. 8)

P(x, t) is assumed to be uncorrelated in space and
time,

(P(x+ s, t+ r)P{x,t)) = (2a) P,'5(s)6(r).

P(x, t) is a random source which adds or subtracts
energy from the diffusive system. The 9 ~ F term
[Eq. (3. 18)], on the other hand, represents a ran-
dorm flow of energy within the diffusive system.

As with Eq, (3.18) we may determine the spec-
trum of the spatially averaged temperature of a
box of volume 0 = 2 1, . . . l in w dimensions.
Thus,

T(k, ~) = P{k,~)/c[Dk' —ice] (5. 7)

%e now shoe& that it is possible to treat these
spatially correlated fluctuations in the Langevin
formaUsm by replacing the v. F term in Eq. (3. 18)
by a random source P(x, t) to give

A comparison of Eqs. (5.4) and (5. 8) shows that
the introduction of P(x, t) is equivalent to (I T(k) I )

The normalization condition

((aT)'}= Sr(~) d~

cannot be applied unless m ~ 3, since for one and
two dimensions f Sr(&u)d~ diverges.

The general behavior of the spectrum can be de-
termined fr om the three-dimensional f requency-
dependent corr elation function

sin(i s I /y)
8v 2v'D'~'~'~'

I s I /X
(5.9)

where, as before, X(~}= (2D/&u)' '. In the limit
~-0, (X(ur)» Isi), cr(s, ~)~|d '~'. Because
P(x, t) is an external source, each correlated
region may be considered as fluctuating indepen-
dently of the other correlated volumes with a spec-
trum S,(~) ~~ 't' from Eq. (5.9).

If 0, the volume of interest, consists of N inde-
pendent correlated volumes, Sr(&u) ~ S,(&u)/¹
Thus, when ~»&us, X{u)«l„and 0 is composed
of N = 0/X'(u&) independent volumes,

Sr(~) ~ S,(~)X'(u&)/ft ~ u-2 (a» u~). (5. 10a)

Sr((u) ~ S,((u)X(~)/l, ~ (u ' ((u, (( (u (( (ua).

(5. 10c)
And, for v «~„all of 0 is correlated:

Sr(~)"S,(~)"~ "' (~«~i). (5. IOd)

The shape of Sr(f ) for this type of spatially cor-
related temperature fluctuation is shorn in Fig.
V. Not only does Sr(f) contain an explicit 1/f re-
gion, but this region corresponds to the low-fre-
quency limit of a two-dimensional system and
matches the frequency range over &which the metal
films are observed to have the 1/f spectrum. In
fact, if we assume that ((AT) ) = T /3N, we find

Sy(f) P T
V' 3Ã[4-d/u+2ln(l/re)]f ' (5. 11)

&&here d is the film thickness. This result differs
from our earlier model spectrum [Eq. (3.25)] only
by a factor close to unity.

Although the introduction of spatially correlated
fluctuations provides a means of achieving the 1/f
spectrum for simple diffusive systems, the theo-

When ~2«u«u~, Ia»X(cu)» l~, and 0 is com-
posed of N= I,I2/X independent volumes,

Sr(~) cc S,(u&)X2{&u)/I, l2~ ru
~~2 (uz «u& «us).

(5. IOl )
When &o, «~ «~„ l, » X(~)»l„and 0 is composed
of N= l, /X(ur} independent volumes,
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retical justification of the spatial correlation in the
ease of equilibrium temperature fluctuations poses
new problems: notably, the physical origin of the
correlations, and the proper normalization of the
spectrum. Moreover, our calculation has been
for a homogeneous medium. A metal film on a
glass substrate is thermally inhomogeneous and
different boundary conditions should be applicable.
It is difficult to estimate a priori the extent to
which these new boundary conditions will change
the spectrum. In Sec. VI we demonstrate experi-
mentaHy that the correlated temperatuxe fluctua-
tions do in fact produce a I/f spectrum for the
thermally inhomogeneous experimental systems.

It is interesting to note that, when treated by the
Iangevin method [the association of an uncorrelat-
ed random source F(t) with each thermal conduc-
tance], a diffusive system coupled to a substrate
at constant temperature 7o via a thermal conduc-
tance G contains an F,(x, t) term representing ex-
change of energy with the substrate. In this case,

dt
=gV'T+ V. F - G(7'- T,)+ F,(x, t). (5. I2)

It can be shown, however, that the frequency re-
gion in which E,(x, t) dominates V ~ F corresponds
to the region in which the —G T decay term dom-
inates gV'T and the spectrum never achieves a 1/f
behavior.

VI. AUTOCORRELATION FUNCTIONS PROM DECAY
MEASUREMENTS

The theoretical calculations of Sec. III and V, as
all such theoretical calculations, are based on the

assumption that the spontaneously occurring fluc-
tuations in equilibrium on the average obey the
same decay law as small nonequilibrium macro-
scopic perturbations of the system. ' The auto-
correlation function for temperature fluctuations
cr(r) thus reflects the average manner in which a
temperature fluctuation decays in time. By per-
turbing the temperature of the experimental sys-
tem and measuring its response, we are able to
measure cr(~). The cosine transform [Eq. (3.4b)]
of cr(r) gives Sr((u).

This procedure will be illustrated for the simple
system shown in Fig. 4(a), and described by Eq.
(3.2). If the temperature at t =0 is raised nT
above To the decay for t &0 will proceed according
to

Thus, cr(r) ~ e t'o for r &0. Since cr(r) is sym-
metric about v =0, the normalization condition
cr(0) =((aT) ) =keT /C implies

cgr) =(t~s T'/C) exp(- 17'1/r, ),
which gives the same Sr(&u) as Eq. (3.5). Thus,
the response of the system to a temperature per-
turbation determines the shape of the spectrum
while the normalization condition cr(0) =((nT)')
determines the magnitude.

This procedure is not so straightforward for
extended media described by a diffusion equation.
In this case, we are interested in the spatially
averaged temperature of some volume A,

T(t) =- — T(x, t) d x.0

It; is obvious that a given perturbation b, T in T(t)
could occur for an infinite variety of perturbation
distributions n T(x, t), each of which might have a
different decay in time. We must determine which
perturbation distribution corresponds to the de-
sired spectrum. In the simplest distribution, the
temperature of 0 ls uniformly raised R height ~T
above the surroundings at t =0. This is accom-
plished by dissipating the power P(t) = chT5(t) uni-
formly throughout O. The decay equation then be-
comes

—= Dvt'T+ tI, TD(t)a(x),

where 8(x) = 1 if x is in 0 and B(x)=0 otherwise,
Introducing

T(k, t)=—(2v) "'fT(x, t) e '"'"d'x,

we find

T(k, t) =SATB(k) e n4 ' (t &0),



B(k)=(2 ) '"J B(x) "'d'*.

Now, since

T(f) =fB(x)T(x, f) d'x = B*(k)T(k, f)d')t, (6. 6)

we find from Eq. (6. 5) that

(6. 7)

The cosine transform of Eq. (6.7) determines the
shape of the spectrum:

Sr(&u) ~ T(f) cosvtdf ~ AT
Dk IB(k)I d k

0 ~F4 ~2

(6. 8)
Fox' a x'egulax" 0 of sides 2/i~ 2E2~

i (k, f, )

and we see that Eq. (6. 8) predicts the same shape
for the spectrum as Eq, (3.19) for uncorrelated
fluctuations. This is not surprising. For uncor-
related fluctuations the average manner in which a
fluctuation a T ln T(f) occurs ls by a uniform dis-
tribution of temperature over O. The i.mportance
of this result, however, is that it gives an experi-
mental method of determining the shape of Sr(&u)
fox" uncorrelated temperature fluctuations in an
arbitrary volume with arbitrary coupling.

Another important result comes from a con-
sideration of the temperature response of 0 to a
step-function input of dissipated power, P(f)
=p08(t)B(x), where 9(f) = 0 for f & 0 and 8(f) = 1 for
t &0. In this case

—=DV~T+p08(t)ST, B(x)
85

arm of a%heatstone bridge. The other three
arms consisted of wire-wound resistors with a
zero temperature coefficient of resistivity. At
t =0, a 1-kHz ac current was applied to the bridge.
As the Au film became hot, the bridge became un-
balanced. The PDP-11 was used as a digital lock-
in detector to measure the voltage response of the
bridge as a function of time. In this way, the de-
cay of the sample temperature was determined.
Each decay was averaged over many repetitions.
The ac cu.rrent pxovided the heating as well as
the bias for measuring the temperature response,
Thi. s method had the advantage that the necked-
down areas of the film, which contributed the most
noise, also were weighted the most heavily in the
temperature response. The 5-function response
was determined from the derivative of the step-
function response. Direct 5-function (very narrow
pulse) response measurements gave similar re-
sults.

Figure 8 shows the temperature response T(f)
to a 6-function power input on three different time
scales. The decay is essentially complete by a
few hundredths of a second. Figure 9, on the

j l l

0.02 0.04
t (sec)

T(k, f ) = (1-e '"")P,B(k)/Dk'c. - (6.1o)

Thus, we find that

(6.11)

The cosine transform of Eq. (6.11) shows that

0 2.0 4.0
t (sec)

~p I B(k) I
~d 0

~r c DRf 4 ~R (6. 12)

which has the same shape as Sr(&u) for correlated
temperature fluctuations given by Eq. (5. 5). The
response of an arbitrary volume to a step-function
input of power thus determines the shape of the
spectrum for correlated temperature fluctuations.

Figures 8 and 9 show the response of the same
Au sample used in Figs. 2 and 3 to 5-function and
step-function power inputs. The sample was one

0 200 400
t (sec)

FIG. 8. Temperature response of Au sample of Fig.
2 to ~ function of applied power.
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form of the step-function response retains its 1/f
behavior down to 10 Hz implies that even on these
long time scales the heat conduction is preferen-
tially two dimensional. Similar experimen ts on
Bi films (p&0) also show that the cosine transform
of the step-function response matches the mea-
sured noise spectrum, indicating, in addition, that
feedback effects are not important in measuring
the decay,

We have shown experimentally that correlated
temperature fluctuations in the complex experi-
mental systems of metal films on glass substrates
can, in fact, produce the measured 1/f spectrum.
Moreover, we have shown that the usual assump-
tion of uncorrelated fluctuations does not produce
the measured 1/f spectrum for these samples.
The assumption of correlated equilibrium temper-
ature fluctuations in a diffusive medium together
with the normalization ((DT)2) =ksT~/Cr are,
thus, sufficient to predict all the measured char-
acteristics of 1/f noise in continuous metal films.

VII. THERMAL FLUCTUATIONS IN OTHER SYSTEMS

I

200 400
t (sec)

FIG. 9. Temperature response of Au sample of Fig.
2 to step function of applied power.

other hand, shows T(t) for a step-function input of
power. The decay is much slower and appears to
have appreciable contributions on all time scales.
Figure 10 shows the cosine transform of these
decays over many decades of frequency. The de-
cay was assumed to give the shape of cr(7) and
was normalized to T(0) =((&T) ) = P'T'/3N to al-
low comparison with S(f) =Sv(f)/V'. The dotted
line shows the expected S(f) for uncorrelated tem-
perature fluctuations. As predicted theoretically,
S(f) is 1/f-like for higher frequencies, but flattens
rapidly for low frequencies. In this case, the low-
frequency cutoff, f, =D/vl =80 Hz, also corre-
sponds to the measured change in behavior. The
solid line, however, shows the expected S(f) for
correlated fluctuations. This spectrum shows the
1/f behavior down to the lowest frequencies mea-
sured. The squares in Fig. 10 show the measured
relative noise spectrum for the same sample. The
normalized cosine transform of the measured step-
function response, which contains no fitted pa-
rameters, provides an excellent reproduction of
the measured noise spectrum both in shape and
magnitude. The observation that the cosine trans-

It was not possible to test in detail the depen-
dence of Sr/V [Eq. (3.34)] on 0, P, and T using
the metal films. However, Clarke and Hsiang'6
measured the 1/f noise in Sn films at the super-
conducting transition, where P is larger than at
room temperature by a factor of about 10 . In the
first series of experiments, the Sn was evaporated
directly onto a glass substrate. The main con-
clusions were: (i) Sr/V'~ I/O (for a factor of 30
variation in 0); (ii) Sv ~ P (for a factor of 30 var-
iation in P ); (iii) Sv ~ V (for a factor of 500 var-

0
-IB

step respons~
FLjActioA I"espons~-

loc), (F )

FIG. 10. S(f) from cosine transform of temperature
response to & function (dotted line) and step function
(solid line) of applied power from Figs. 7 and 8 nor-
malized to T () =P2T /3K; andrneasured noise spectrum
s(f) =s,(f)l v' (o).
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S„(f't=( ) ( ) k T'/3C„f. (7 1)

C~ is the heat capacity of a volume given by the
product of the junction area and a superconducting
coherence length. The dependence of S~(f) on
(BV/BI, )z and (9I,/8T) was experimentally verified.
Moreover, the magnitude of the noise was accu-
rately predicted by Eq. (7. 1).

Weissman and Feher have studied the low-fre-
quency noise in electrolytes in the presence of a
current. Their system consisted of a capillary
tube connecting two large reservoirs. Sv/V was
proportional to P and was quantitatively predicted
by the three-dimensional diffusion model [Eq.
(3. 19)]. Presumably the thermal conductivities of
the solution and the glass capillary were com-
parable and the boundary resistance between them
not too large, so that the system was reasonably
thermally homogeneous.

Thus, there are several different systems for
which strong evidence exists for a, thermal diffus-
sion model of 1/f noise. However, in a series of
experiments on semiconductors, we found no evi-
dence for this model. In evaporated films of InSb
we found that the noise was typically three orders
of magnitude larger than that predicted by Eq.
(3.25), and that there was no spatial correlation of
the noise on a scale of a few mn at frequencies

iation in V ); (iv) the noise showed the expected
spatial correlation; (v) the magnitude of the noise
was well represented by Eq. (3.24), thus verifying
the dependence of S» on T. Equation (3.24) thus
correctly predicts the measured 1/f noise in Sn
both at 4 and 300 K. In the subsequent experi-
ments the Sn evaporation was preceded by a thin
underlay of Al, that greatly enhanced the thermal
coupling of the film to the substrate. Not only did
the observed spectrum flatten at low frequencies
to become white, but the degree of spatial correla-
tion of the 1/f noise was appreciably reduced. As
the coupling to the substrate increased a given
temperature fluctuation in one section of the film
could delay more rapidly by heat flow into the sub-
strate and, consequently, was less likely to influ-
ence the neighboring sections. These results add
strong support to the diffusion theory.

Clarke and Hawkins" measured the 1/f noise in
Josephson tunnel junctions that were resistively
shunted to eliminate hysteresis in the current-
voltage characteristic. The noise was measured
by passing a constant current I greater than the
critical current I„ through the junction and mea. -
suring the voltage fluctuations with a superconduct-
ing voltmeter. If the noise is assumed to be due
to equilibrium temperature fluctuations modulating
I„asuitable modification of Eq. (3.24) leads to
the following result for the noise power spectrum:

down to 10 Hz. We also found that the 1/f noise
in very-thin (-100 A) discontinuous metal films'
was much larger than predicted by Eq. (3.25). In
these systems, the noise due to thermal diffusion
presumably exists, but is completely dominated by
another mechanism. The lack of spatial correla-
tion indicates that, if diffusive in nature, this ad-
ditional mechanism must be characterized by
D&10 cm sec '. However, we were able to show
that the 1/f noise in semiconductors and very thin
metal films is also an equilibrium process.

VIII. THERMAL EQUILIBRIUM MEASUREMENT OF 1 jf
NOISE

We have observed a 1/f-like power spectrum for
low-frequency fluctuations of the mean-square
Johnson noise voltage across a very-small sample
of semiconductor or discontinuous metal film in
thermal equilibrium. The 1/f spectrum is shown
to be due to resistance fluctuations in the sample,
and closely matches the resistance fluctuation
spectrum obtained by passing a current through
the sample.

Consider a resistance R of total heat capacity C~
shunted by a capacitance 6 and in thermal contact
with a reservoir at temperature Tp. The voltage
across the capacitor V(t) represents a single de-
gree of freedom that can exchange energy with the
resistor via the charge carriers in the resistor.
The exchange takes place on time scales of order
T=R8. In thermal equilibrium the average energy
of the capacitor,

(E,) = p&(V ) = p ks Tp.

These voltage fluctuations (Johnson noise) are
limited to a bandwidth of 1/4r, and consequently
have a spectrum of the form

Sv(f) =4ksTpR/(I +4v f 7 ).
If the resistor is assumed to exchange energy with
the reservoir on a time scale of order 7„ that is
much greater than v, the capacitor is able to reach
equilibrium with the internal degrees of freedom
of the resistor before the internal energy of the
resistor can change. The temperature of the ca-
pacitor is then the same as the temperature of the
resistor. V (t), like V(t), is a rapidly fluctuating
quantity in time due to this exchange of energy be-
tween the resistor and capacitor. However, the
average of V (t) over a time, 8, such that r «8
«rs, (V (t))p =ksT/8 (T is now the instantaneous
temperature of the resistor), is sensitive to slow
energy or temperature fluctuations in the resistor
on time scales ~~ or longer.

Experimentally, the Johnson noise voltage V(t)
is passed through a filter with a bandpass from fp
to f„squared, and averaged over a time 0 & 1/fp
to give P(t), a slowly varying signal proportional
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S (f) 1 pT 2 Sr(f) Sso(f) ~~o

0
(8. 2)

where the plus sign corresponds to f0& f, « I/2vr,
and the minus sign corresponds to f, &fo» I/27ir.
If however, most of the noise power Bnd the knee
frequency I/2sr are included in the bandwidth (i.e.
(i.e. , fo«I/2vr«f, ), from Eq. (8. 1) we find P(t)

T/C+P (t) arid S (f)/P'=S (f)/Z'2+S /P. In

this limit, P(t) is not sensitive to resistance fluc-
tuations. Thus, with an appropriate choice of
bandwidth, the Iow-frequency spectrum of P(t) is
an equilibrium measurement of Sr(f) or Ss (f)
provided the temperature or resistance fluctua-
tions are large enough to dominste Sp .

Our initial measurements were on evaporated
InSb films with a thickness of 1000 A and a resis-
tivity of about 1 A cm, As indicated in Sec. VII,
we expected to observe only the resistance fluc-
tuations tiRo(t). In order to make the relative re-
sistance fluctuation spectrum Ss„(f)/R large
enough to dominate S~ /P, the samples were made

0
as small as possible. The resistance of a strip of
InSb was monitored while the strip was cut trans-
versely with a diamond knife until only a small
bridge containing typically about 10 atoms re-
mained. In the presence of a direct current I the
relative power spectrum of the voltage fluctuations

to the Johnson noise power in the bandwidth f, to

f,. Thus,

~1

P(t) =4ksTR df/(1+47''fir )+Po(t), (8. 1)
~0

where if 8 and Tare fixed the first term on the
right-hand side represents the average of P(t), and

P,(t) represents fluctuations in P(t) about the
average due to the rapid exchange of energy be-
tween capacitor and resistor. Because this ex-
change is so rapid, Po(t) has a spectrum S~ (f)
that is independent of f for the low frequenries in
which we are interested. S~, may be reduced by
increasing the bandwidth or by moving the band-
width to higher frequencies, but in practice Po(t)
severely limits the accuracy of measurements of
P(t).

If the bandwidth in Eq. (&. 1) is either totally
above or totally below the knee at I/2m', P(t) is
sensitive to slow resistance as well as temperature
fluctuations. These resistance fluctuations hR
may be driven by temperature fluctuations with a
spectrum Sr(f) so that tiR =R AT; or be tempera-
ture-independent fluctuations ~0 with a spectrum
SR (f) (such as number or mobility fluctuations of
the charge carriers). Thus, from Eq. (8. 1)

t P(t)/P=(1~ PT, )t T/T, + t It,/It +P,(t)/P,

and the relative power spectrum for fluctuations in

P(t) is of the form

-I
IO-

3
IO ™

S. I. SguAN ~(t1

RESl STOR
I I I

I IO~
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FIG. ll. InSb bridge: Sz( f)/ V using dc bias (solid
line), ac bias (o), pulsed current bias (~); Johnson
noise measurement, Sz(f)/P (0). Background Sp(f)/
P2 from metal film resistor (dotted line).

is S(f)=sr(f)//V =SRo(f)/It'. The solid line in
Fig. 11 shows S(f) for a 20-MQ bridge of Insb
measured with a direct current.

We also measured the 1/f noise in two other
ways. The spectrum was remeasured using an ac
technique in which a square-wave current of zero
mean value was applied to the sample, The fre-
quency was about 10' times higher than the lowest
frequency to be measured in the spectrum. The
PDP-11 was used as a digital lock-in detector to
measure the spectrum of the amplitude fluctuations
of the induced voltage. The relative spectrum is
plotted with open circles in Fig. 11. In a third
technique the current was supplied as a series of
positive-going pulses to reduce the power dissi-
pated in the sample. The pulses were typically 1
msec long with a period of 10 msec. The relative
spectrum is shown in Fig. 11 as open triangles.
All three techniques measure the same resistance
spectrum Ss (f)/It The agre.ement of the three
spectra demonstrates that neither a direct current
nor a constant dissipation of power is the cause of
the 1/f spectrum.

For the measurement of P(t), the sample was
capacitively coupled to a preamplifier to prevent
any leakage current flowing through the sample.
The input capacitance produced a knee frequency,
I/2@Re = 500 Hz, in the Johnson noise spectrum.
After amplification the noise was filtered with a
10-360-kHz bandpass filter, squared with an ana-
log multiplier, and filtered to remove frequencies
above the digitizing frequency. Since the bandpass
is above the knee frequency the calculated relative
spectrum of this signal is given by Eq. (8.2) (with
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the minus sign), while the measured relative spec-
trum is shown as the open squares in Fig. 11. The
white spectrum above 1 Hz represents Sp /P'.
The I/f spectrum below 1 Hz closely matches the
current-biased measurements. To ensure that the

I/f spectrum was generated by fluctuations in the
sample rather than by spurious effects from our
electronics, the InSb was replaced by a metal film
resistor (which did not exhibit I/f noise) of the
same resistance. This relative spectrum is shown
dotted in Fig, 11. The spectrum is white down to
the lowest frequency measured, and represents
only the term S»/P'.

It was sometimes necessary to use the digital
lock-in technique to eliminate drifts in the zero
offset of the analog multiplier. The amplifier out-
put was gated on and off to provide an analog mul-
tiplier output that consisted of equal periods of
zero offset and zero offset plus squared signal.
These periods were digitized and the offset sub-
tracted within the computer before the spectrum
mas analyzed.

We have made similar measurements on metal
films. The three current-biased techniques gave
identical relative spectra for continuous metal
films in which the resistance fluctuations are tem-
perature induced, confirming that the current
serves only as a probe of the equilibrium fluctua-
tions. However, we were unable to make these
films small enough for Ss(f)/R' to dominate Sp /
P at frequencies down to 10 Hz. We therefore
used very thin (& 100 A) films in which temperature
induced fluctuations are not dominant. In Fig. 12,
the continuous curve is the relative spectrum of a

very-thin Nb film (R =200 kA) measured with an
ac current bias. The open squares are a Johnson
noise measurement with a bandwidth of 100-200
kHz, above the knee frequency of 40 kHz. The
agreement below 10 Hz is excellent. The dotted
spectrum was obtained from the same sample us-
ing a bandwidth of 5-200 kHz, which includes the
knee frequency and most of the Johnson noise pow-
er. Although the low-frequency spectrum is sub-
stantially reduced [as expected when P(f) is no
longer sensitive to resistance fluctuations], it is
still above the background spectrum of a large
metal film resistor. This residual noise is pos-
sibly due to the temperature fluctuation term
Sr(f)/To. Indeed, the assumption of a I/f spec-
trum for Sr(f) [Fig. 5(b)] for a sample of 10' atoms
atoms yields

S,(y)/T, -3 x lo-'// Hz-',

a value that is consistent with the observed spec-
trum,

Our results strongly suggest that I/f noise in
semiconductors and discontinuous metal films
arises from equilibrium resistance fluctuations.
Current-biased measurements probe these resis-
tance fluctuations, but in no way generate them.
This idea is consistent with several current theo-
ries of I/f noise that propose various mechanisms
for the resistance fluctuations, for example, the
McWhorter theory for semiconductors, carrier
mobility fluctuations in semiconductions and ionic
solutions, '8 and the temperature fluctuation mod-
el. Our results are obviously inconsistent with
theories that involve nonequilibrium processes.
For example, turbulence theoxies, "theories that
require a long-term steady current or power, "
and theories involving thermal feedback via the
heat generated by an external current. "

-2
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FIG. 12. Nb bridge: Sz(f)/ V2 using ac bias (solid
line); S&(f)/ P (D). SJ,(f)/P including knee frequency
(dotted line).

IX. CONCLUSIONS

We have shown that I/f noise in metal and semi-
conductor films is an equilibrium process. For
continuous metal films the absence of I/f noise in
manganin; the scaling of Sr(f ) as V'/0 for differ-
ent materials; the general decrease of Sv(f)/I~'
with decreasing temperature; the observation of
frequency-dependent spatial correlation for the I/f
noise; the agreement of ac, de, and pulsed-cur-
rent resistance-fluctuation spectra; and the ability
of equilibrium temperature fluctuations to accu-
rately predict the magnitude of the I/f noise [with
an assumed I/f spectrum for Sr(f)] indicate that
equibbrium temperature fluctuations modulating
the resistance are the physical origin of the 1/f
noise. The same mechanism also accounts for
the I/f noise in metal films at the superconducting
transition and in Josephson junctions.

Although temperature fluctuations are expected
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to obey a diffusion equation, the usual calculated
spectra for uniform diffusive systems, in which
the fluctuations are spatially uncorrelated, do not
give a 1/f spectrum. Attempts at more accurate
models of the complex experimental configuration
(in which the diffusive medium is coupled to a sub-
strate) only flatten the spectrum further at low fre-
quencies. Moreover, we have demonstrated ex-
perimentally for the metal films (by a measure-
ment of the shape of the autocorrelation function
from the temperature response to a 6-function
power input) that uncorrelated temperature fluctua-
tions do not produce the 1/f spectrum.

On the other hand, we have shown both theoret-
ically and experimentally (by the temperature re-
sponse to a, step function of power) that spatially
correlated temperature fluctuations can, in fact,
account for the 1/f spectrum in the frequency
range in which it is observed. The physical origin
of the spatially correlated temperature fluctuations
remains an unsolved problem. Another possible

difficulty is the proper normalization of the spec-
trum for correlated fluctuations. However, the
use of ((AT)~)

=AN'T'/C»

to normalize the spectrum
for correlated fluctuations does lead to a result
in excellent agreement with the experimental mea-
surements.

A different physical mechanism for the 1/f
noise dominates in semiconductors and discontin-
uous metal films: the observed noise is much
larger than predicted by the theory, and is not
spatially correlated. The agreement of the low-
frequency resistance-fluctuation spectrum obtained
from Johnson noise measurements with that ob-
tained from current-biased measurements shows,
however, that even in these systems the 1/f noise
is due to e@~ilibrA~m resistance fluctuations.
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