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Vacancy states in rock-salt ionic compounds
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A cluster-Bethe-lattice calculation of the electronic density of states of a vacancy in the rock-salt structure is
presented. A simple one-orbital Hamiltonian is used. Occurrence and symmetry of localized states are
discussed and compared with simple cluster calculations.

I. INTRODUCTION

The study of crystal imperfections is a problem
which has challenged solid state experimentalists
and theorists for the last couple of decades. "
The atomic vacancy is probably the simplest type
of imperfection, and it gives rise to interesting
physical effects, such as color centers in ionic
crystals, ' and the strong dependence of the elec-
tric conductivity of VO on vanadium and oxygen
vacancy concentrations. "

A standard theoretical treatment of the vacancy
problem is the molecular approach, "in which
the vacancy is considered as a large molecule
formed by the missing atom and its nearest neigh-
bors, and the vacancy states are assumed to be
linear combinations of the atomic orbitals in the
molecule. The molecular approach is capable of
providing information about excitation energies of
F centers, 4 but it is obviously not adequate to re-
late vacancy states to extended band states in the
crystal.

A more rigorous approach to the vacancy prob-
lem consists of dividing the crystal into two parts:
The (spherical} region around the vacancy is con-
sidered to be a vacuum, and the remainder of the
solid is considered as a perfect crystal, with cor-
rections in the potential due to the vacancy. The
solution is obtained by solving two types of Schro-
dinger equations, one inside and another outside
the vacancy region, and by matching the solutions
at the boundary. ' This leads to lengthy and com-
plex calculations; the results for F-center exci-
tation energies are in reasonable agreement with
experiment. '

More recently, vacancy states in Si were in-
vestigated by Louie et al. , using a self-consistent
pseudopotential method. ' This was the first real-
istic calculation on semiconductor vacancies; the
density-of-states diagram includes extended as
well as vacancy levels, and the charge density
around the vacant site is plotted. The method is,
however, numerically involved, and requires the
use of powerful computers.

In this paper we present a calculation for vac-

ancies in rock-salt compounds, using the recently
developed cluster-Bethe-lattice method. " ~ This
type of method has the limitations of the so-called
LCAO (linear combination of atomic orbitals}. It
is, on the other hand, very well suited to this kind
of problem because it treats part of the system
(the vicinity of the vacancy) exactly, and in this
respect, it is similar to the molecular approach;
the effects of the rest of the crystal are simulated
by attaching a Bethe lattice to each surface atom
of the cluster, so that the connectivity and coor-
dination number of the system are preserved
throughout. In this way, vacancy and bulk states
are treated simultaneously in a very simple math-
ematical way.

In Sec. II, we present a simple calculation for an
isolated cluster of six atoms, with complete and
general intraatomic and interatomic interactions.
The eigenfunctions and eigenvalues of the system
are easily obtained by group theory. The results
of this section are useful in the interpretation of
other results later in the paper. Since this cal-
culation is not directly related to the rest of the
calculation, we have explicitly labeled the param-
eters in a completely different way to avoid con-
fusion.

In Sec. III, we get the local density of states at
several atomic sites for a heteropolar fcc Bethe
lattice with a vacancy, i.e. , one atom with fewer
than normal nearest neighbors. Finally, in Sec.
IV, we present the cluster-Bethe-lattice calcu-
lation for an eighteen-atom cluster, surrounding
a vacant site. In Secs. III and IV, we use a simple
one orbital per site Hamiltonian":

H= U;i i +V i i'
i„i'

nearest
neighbors

where (i) is an s-like orbital on site i, V is the
hopping integral between nearest neighbors, and
only nearest-neighbor interactions are taken into
account. The origin of energies is taken in such
a way that for the perfect crystal U; =+ U on posi-
tive-ion sites and U; = —U on negative-ion sites.
The effect of a vacancy on its nearest neighbors
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—U„' = —(ne'/ea), (2)

is to lower by one its coordination number, and
also to change the local value of U; there. The
main contribution for this change is the Coulomb
correction due to a charged-particle vacancy; in
the case of a negative vacancy (which simulates
a positive impurity}, this correction is negative
(attractive) and equals

It should be noted that a is the equivalent of U

in (1), while P and y are interaction parameters
similar to V in (1}but corresponding to second-
and fourth-nearest neighbors. For P = y =0, the
six functions are degenerate, but when intersite
potentials are nonzero, they split into three levels:
a singlet (I",), a triplet (I;), and a doublet (I;).
The normalized wave functions for these states
are

where n is the number of extra charges in each
ion, ~ is the applicable dielectric constant, and
a is the nearest-neighbor distance. There is a
second contribution U„' which is due to the self-
consistent change in the charge density at the site
in question; this effect is of the opposite sign of
U„' and tends to cancel it partially. It can in prin-
ciple be incorporated by using in (2) a self-con-
sistent dielectric function c. With the effect taken
into account, for a positive ion nearest to a nega-
tive vacancy, U~ =U- U„; and similarly, for a
negative ion nearest to a positive vacancy,
U& = —(U- U„). No corrections are made for the
other U s in our nearest-neighbor approximation.

(1/W2) (1 -1 0 0 0 0),
I'4 (I/v 2) (0 0 1 -1 0 0),

(I/W2) (0 0 0 0 1 -1),

where the notation is

4=(a, a, a, a, a, a, ) = ga, (i)

(5)

II. ISOLATED OCTAHEDRAL CLUSTER

In this section we get the eigenfunctions and
eigenvalues for the six-atom cluster in Fig. 1; the
atoms are the nearest neighbors of a vacant site
at the center. The Hamiltonian h of this problem
is defined by its matrix elements between the
basis functions )f): the six atomiclike s orbitals
at the atomic sites. With orbitals numbered as in
Fig. 1, the matrix elements are

&11-&22-'' -&ee-&
y

and the index & is as in Fig. 1.
The eigenvalues are easily obtained from (3)-(6):

E(I',) =a+4P+y, E(1;)=a-y,
E(1;)=a —2P+y .

Since usually y«P, the ground state of the sys-
tem is j. , or l", according to whether P is negative
or positive, respectively.

The two-electrons problem may also be solved
exactly for this cluster, "but this is beyond our
scope here.

13 14 45 P y (3)
III. ROCK-SALT BETHE LATTICE

FIG. 1. Octahedral cluster with a central vacancy.

A Bethe lattice (or Cayley tree) is a topological
construction consisting of an infinitely connected
system of atoms of coordination m, such that every
atom is equivalent and there are no rings of bonds
in the system. Such a lattice is usually employed
to replace a given infinite crystal structure. The
coordination m is given by the local properties of
the crystal, and for the rock-salt structure, m =6.
The heteropolar Bethe-lattice problem. is dis-
cussed extensively by Yndurain and Joannopoulos. "
The solution for the density of states is obtained
in the Qreen's-function formalism, taking the
matrix elements of Dyson's equation between the
basis set ( ~

i)j. An infinite set of linear equations
results, which can be solved exactly by the trans-
fer function technique. '

The local density of states at a reference site
0 is obtained from the diagonal matrix element of
the Green's function, (0 ( G (0); there are two types
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of contributions to it. Continuous states are given
by

n, (E) =- (I/s) Im(0~ G)0), (9)

and sharp or &-function states are given by the
poles of (0)G[0).

The diagonal matrix element of the Green's func-
tion for the rock-salt Bethe lattice is"

&QIG'lo) =[E—U,' —zP'(E)]

(Q~G ]0)=[E—U, -zg {E)] ',
(10)

where the + (-) sign indicates a positive (negative)
reference ion, U, is the diagonal matrix element
of the Hamiltonian (1) at the reference site 0, and
z is the number of nearest neighbors to the re-
ference ion.

The field operators Q'and Q simulate math-
ematically the effect of a heteropolar Bethe lat-
tice, acting along one bond on a positive or nega-
tive ion, respectively, for the calculation of the
Green's-function matrix elements. They are
equivalent to the corresponding transfer func-
tions" multiplied by the parameter V, and depend
only on the properties of the Bethe lattice. In the
case of the rock-salt structure, they are"

p' (E) = ,0 E2 + [E,E2—(E,E2 —20 V )]
' /10E, ,

(12)

P (E) =~E,+[E,E (E,E —20V )]' /10E

(13)

[E,E,(20V' —E,E,)] 'i'
36V2 —E,E2

[E, E(20' —E,E,)]' '
367' -E,E2

(18)

1 [E,E,(20 V2 —E, E,)] ' ~'

s l 2E,(E2 Uo +
U v ) + 10E2 V'

]
' (19)

and consists of two bands in the same regions de-
scribed above. If U„ is nonzero, the Green's-func-
tion element (0 ~

G ]0) is not analytic; it has one or
two poles depending on the value of U„.
Let

where E, and E, are given in (14), and n' (n ) is
the local density of states at a positive (negative)
ion site, normalized to 1. The curves for n'(E)
and n (E) are plotted in Ref. 11, and consist of
two bands with a gap between E = + U and outer
edges at E=+(U'+20V2)' '. From {Il) and (18),
n'(E) and n (E}have square-root singularities
at E=+U and E=- U, and these represent puye
cation and Pure anion states, respectively. "

In order to investigate the vacancy states, we
calculate the local density of states at a reference
atom with five instead of six attached Bethe lat-
tices, i.e., z =5 in (10) or (11). As discussed at
the end of Sec. I, a Coulomb correction (+ U„) must
be added to the potential at the ions nearest to a
vacancy. Considering a negative ion vacancy, and
consequently a positive reference ion, "U,' = U- U„,
and from (9) and (10), the continuum local density
of states is

where

E, =E+U and E, =E- U. (14)

P, , =-(U'+5V') ~[(U'„+5V')'

—4U„U(U2 —UU„—5 V') ]
' ~'/2U„,

Iim (4'(E)) (15)

must be bounded, and

(16)

where m is the coordination number. In the gap
region, condition (15) is satisfied by the plus sign,
and in the two regions outside the bands, the sign
determined from (16) is negative.

In the perfect rock-salt Bethe lattice, z = 6 and
U'=+U in (10) and (11), and the local density of
states given by (9} is

The sign of the square root in the field operators
(12) and (13}must be determined unambiguously
for all energy values. It is easily shown that
P'(E} and P (E) must have the same sign; in the
regions in which the density of states is a con-
tinuum, the sign to be chosen is the one that gives
a positive density of states. In the other regions,
the following conditions" determine the correct
sign:

U„'"'=-,'[U+(U'+20V')' '] . (21)

For U„&UP, only P, is a pole of (0]G]0), and
there is a & function in the density of states at
E=P, . In the limit U„=O, this state merges into
the band, and the singularity at E=U, discussed
previously, appears. There is no singularity at
E=U for U„&0.

If U„=U'"' then P, = 0 and P, = —(U +20V')' i2

i.e., P, is exactly at the lower edge of the bands.
For U„& Up', both P, and P, are poles of (19),

and there are two &-function states due to the
vacancy. In the limit U, -~, P,-- U, i.e., P,
tends to merge into the lower band, and P, --~.

This result is depicted in Fig-; 2 for U=2 and
V=1, so that from (21) U„'"' =—3.45. In Fig. 2(a),
U„=O, and no localized vacancy state appears. In
Figs. 2(b) and 2(c), U„& U, ', and a vacancy state

(20)

where P, has a positive and P, a negative sign be-
fore the radical, and
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neighbors around the vacancy for U„=0.5), and
oscillates as it decays into the bulk so that its
contribution from positive ion states (first, third,
. . . , neighbors) is bigger than from the negative
ones. For U„around U„'"', the state in the gap,
P„becomes much more localized (96% within the
first four layers for U„=3.5), and decays mono-
tonically into the bulk, most of its weight being at
site 0. The state outside the gap P, is very ex-
tended for U„just above UP (12% within the first
four layers for U„=3.5), and oscillates as it decays
in such a way that the contribution from the nega-
tive ion states (second, fourth, sixth, . . . , neigh-
bors) is bigger than that from the positive ones.
For big U„, the state outside the gap tends to be-
come completely localized at the first neighbor to
the vacancy; the state in the gap tends to be loc-
alized at the second neighbor, and also becomes
oscillatory as it approaches the inner band edge
and in the limit merges into the continuum.

(

! I

I I

I I I
IV. CLUSTER-BETHE-LATTICE VACANCY CALCULATION

(d) Uv =4

0I I I I

—4 —2 0 2 4
ENERGY

FIG. 2. Local density of states at the nearest neigh-
bor to a negative vacancy in a rock-salt Bethe lattice
for U =2 and V =1 as a function of U„. The vertical lines
represent &-function states, and the height is propor-
tional to its weight.

W; (P) = res &i I G I t& (22)

Expression (22) is normalized so that the inte-
grated density of states at each site is 1. The
weights at the first four neighbors to a vacancy for
U=2, V=1, and for several values of U„are given
in Table I. There, the weight at each point is
multiplied by the number of sites equivalent to it
with respect to the vacancy in the rock-salt Bethe
lattice. It is interesting to observe the change in
the nature of the vacancy states as U„varies. For
small U„, the state at P, is relatively extended
(only 'I3% contained within the first faur layers of

splits off the bottom of the upper band. In Fig. 2(d),
U„& U™~,and an extra vacancy state splits off the
lower band.

In order to understand the nature of these &-

function states, we calculate their weight in the
local density of states at the first four neighbors
to the negative vacancy.

The weight of a pole at E = P, at any particular
ionic site i, is easily obtained in the Green's-func-
tion formalism:

(E —U+ U.) &o I Glo& =1+4v(1 I GI o&+4'&0I G I 0&,

(E + U) (1 I G I o& = v &o I G I o& + v&2 I G I o&

+4y-&1(G(o&,

(E- U+U. ) &2l Glo& = V&II Glo&+2V&8I Glo)

+ v&4)G)0&+y"&2IG)0&, (28)

(E+U) &8IGlo& =2V&2IGlo&+4y &8IGIO&,

(E+U) &4)G)0& = v&2IGlo&+ v(5lGlo&

+4/ (4(G(0),

(E- U+U) &5IGlo& =4v&4I Glo&+y'&5(Gio&,

where P' and P are given in (10) and (11).
The solution of (23) for the diagonal element of

the reference atom is

where

5 —(E' E"—5)'
V (E,E„2)(E,E„4)(E,E„8)

(24)

E' = {1/V){P'—E+ U —U„),
E"=(1/V)(4$ —E- U) .

(25)

The imaginary part of (24) is nonzero in the two
regions (-(U'+20V')' ', —U) and (U, (U'

We present in this section the results obtained
in the cluster-Bethe-lattice approximation for the
18-atom cluster with a central vacancy shown in
Fig. 3. The matrix elements of the Green's func-
tion relative to the reference atom 0 satisfy the
following set of linear equations":
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TABLE I. Position and weight of the poles P& and P2
at the first four neighbors to a negative vacancy in the
rock-salt Bethe lattice.

4 l0»
4 l

5 (
-0-

0I+
U„

(+) (—)

25+', 125&,

0.5
1.0
3.0
3.5
4

10

1.86
l.58
0.27

-0.03
-0.30
-1.70

P2

0.47
0.62
0.62
0.57
0.52
0.07

0.012 0.24
0.004 0.21
0.20 0.11
0.25 0.10
0.30 0.09
0.54 0.03

0.006
0.014
0.04
0.04
0.05
0.21

3 I

I-0=——

2

-0-
I

i/3—-0-
a /'0-

3 I0-
/I

3.5 -4.899 0.026 0.04
4.0 -4 ~ 95 0.17 0.29

10 -8.8 0.88 0.11

0.016 0.037
0.09 0.16
0.006 0

Q I

I

l 0-
/I

+20'")'~') so that there are bands of extendsded
states in these regions, similar to what was ob-
tained for the Bethe lattice alone. The new and
interesting information we get from considering
a cluster around the vacancy is the &-function
states arising from the poles of (0 ( G

~ 0), x.e., the
roots of

E'E"=2, E'E"=4, E'E"=8 .
To each of the three equations in (26), a discus-

sion similar to the one in Sec. III applies. For
small values of U„, one 6-function state splits off

creases, this state gets lower in energy, but re-
mains always inside the gap. For U„greater than
a critical value (which is not the same for the
three equations), a second 6-function state splits
off the bottom of the lower band, and it gets lower
in energy as U„ increases. The complete picture
for the density of states consists of two bands,
three 5-function states in the gap, and zero, one,
two or three 5-function states below the bands,
depending on the value of U„. The position of the
poles for U =2 and 7=1 is given for five arbitrary
values of U„ in Table II.

The appearance of three types of poles is expect-
ed from the symmetry arguments presented in
S II where we get six states in an octahedralec.
cluster grouped into three levels: a single
a triplet (I",), and a doublet (I',). The present
situation has the same cubic symmetry, and it is
possible to identify each of the wave functions cor-
responding to the poles of (25) as a I"„aI"„or a
I', . This can be easily done using the nondiagonal
matrix elements of the Green's function, which
give the wave-function amplitude ratios at differ-
ent sites. " From the wave functions «-, „ th
identification of the poles given by (26) is trivial:

0
/l

FIG 3. Cluster of atoms in the rock-salt structure,~ ~

with a central vacancy. The reference atom is labeled
All

' lent atoms are labeled with the same num-
ber. A Bethe lattice is connected to each dangling n
of the atoms.

Symmetry

0.5

3.5

4.0

10

F3
F4
F,

F3
r4
F,

F,
F4
r,
F$

F3
F,
Fi
I4
F,

F3
F4
F,
F3
F4
F)

1.986
1.994
1.998

1.787
1.882
1.956

-0.375
0.032
0.608

-5.234

-0.663
-0.239

0.365
—4.902
-5.406

-1.841
-1.658
—1 ~ 276
-8 ~ 496
-8.785
—9.302

0.086
0.054
0.006

0.21
0.21
0.03

0.20
0.28
0.08
0.05

0.18
0.26
0.08
0.033
0.063

0.031
0.037
0.021
0.31
0 44
0.14

0.78 x10 4

0.42 x10 4

0.03 x10

0.21 x10 '-

0.26 x10
0.03 x10 2

0.030
0.055
0.018
0.035

0.038
0.066
0.022
0.021
0.035

0.06
0.12
0.05
0.008
0.027
0.012

TABLE II. Position and weight of poles (P) at the first
two neighbors to a negative vacancy in the cluster-Bethe
approximation.
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p, ff = V /(2U —U„). (28)

For small values of U„, P,ff is positive; accord-

E, 'E" =2- r„F.'Z" =4- r„s'E"=8- r, .
(27)

The local density of states for the second neigh-
bor to a vacancy is obtained solving a system
similar to (28). The position and weights of the
poles at the first and second neighbor to a nega-
tive vacancy" for U=2 and V=l are given in
Table II for five different values of U„. The follow-
ing observations are worth making:

(i} For a fixed value of U„, the relative weight
of the poles is given by the degeneracy of the
states, and also by how localized or extended
they are. So for U„=0.1, the triplet I'4 has a low-
er weight than the doublet I, because it is very
near the bottom of the band, and is consequently
more extended, as discussed in Sec. III.

(ii) The existence of three critical values of U„
may be confirmed. For small values of U„ there
are no 5-function states out of the gap. For U„
=3.5, the state I'3 is below the midpoint in the
gap and a I', state splits off the lower band. Fi-
nally, for U„=10, the three states in the gap are
at E& 0, and there are three states below the low-
er band.

(iii} The average of the position of the three
poles, weighted according to the degeneracy of the
corresponding state, gives within reasonable ac-
curacy the position of the single pole for the Bethe
lattice for the same values of the parameter
(Table I).

(iv) Among the states in the gap, the lowest-
energy one is of I; symmetry, and among those
below the bands, the ground state is I',. %'e may
try to understand that qualitatively based on the
simple cluster calculation of Sec. II, in which the
results for the energy eigenvalues are given by
(8). As we point out there, the ground state is
ry or I"3 depending on the sign of P—the Hamilton-
ian matrix element between orbitals 1 and 3 in
Fig. 1. For the cluster problem we are consider-
ing here, this matrix element between second
neighbors is zero in first order, but we may take
the second-order matrix element of the Hamilton-
ian sites 0 and 2 in Fig. 3, which interact via site
1 with hopping constant V, and call this an "effec-
tive P":

ing to (8) the states in order of increasing energy
are I'„ I'4, and I „and this is the case in Table
III for the states in the gap. For big values of U„,
P ff is negative, and the order of the state gets in-
verted, the ground state is then I',. Prom Table
II, we observe that for large values of U„ the
three states below the bands are in the expected
energy order. The states in the gap however keep
their relative position for all values of U„, which
is not in contradiction with the discussion above,
since they tend to become localized at the 12
second-neighbor sites as U„ increases (see Table
II, U„= 10), so that the arguments based on the
simple cluster in Fig. 1 do not apply. The analogy
holds only when the vacancy state is mainly local-
ized at the six nearest neighbors to the vacancy,
and in that case we may assume the only relevant
parameter for the problem is p.

V. CONCLUSIONS

The results of our calculations show the viability
of the cluster-Bethe-lattice method in studying
the electronic structure of a vacancy. The calcula-
tions show sensible physical results and demon-
strate the behavior of localized states, their sym-
metry and their dependence on the details of the
potential in the vicinity of the vacancy.

The method has the following appealing features:
(a) It is not restricted to a finite cluster and there-
fore is able to produce both localized and con-
tinuum states; (b)it can be improved by enlarging
the cluster and/or including more atomic states
in the Hamiltonian; (c) it is numerically simple
and the calculation can be carried to a large ex-
tent analytically; (d) it permits easy symmetry
identification of the bound states as well as com-
plete analysis of the dependence of those states
on the parameters of the potential.

In our actual results of Sec. IV, the states in the
gap are physically significant. States splitting off
the lower band at the low-energy end of the spec-
trum correspond to excessively large potentials
U„, completely outside the range of physical inter-
est for the vacancy problem.
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