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We have systematically studied the valley-orbit Raman spectrum of phosphorus-doped silicon for donor
concentrations on both sides of the metal-insulator transition. As the impurity concentration n„ increases, the
1s(Al) ~1s(E) valleywrbit line broadens rapidly and asymmetrically. The valleywrbit line broadens beyond
recognition before n~ reaches n„ the critical value for the metal-insulator transition. A continuum due to
intervalley fluctuations starts appearing as a background as n„approaches n, . This continuum becomes
stronger with increasing n„, and above n, it completely dominates the spectrum. We have also observed some
of the above features in antimony- and arsenic-doped silicon. To understand the broadening of the valley-orbit
line and to calculate the resulting line shape, we have applied the notion that molecular bonding alters the
valley-orbit splitting by estimating the occupancy of donor sites in a two-donor "molecule" treated in the
Heitler-London approximation. The continuum starts at zero excitation energy and may be understood as
single-particle excitations within a single, partially occupied energy band superimposed on a quasielastic
Rayleigh line. The observed temperature dependence of the continuum can be qualitatively understood in
terms of temperature-dependent occupation probabilities. For nd just below n, the remnant of the valley-orbit
line shows a temperature dependence that can be explained by thermal depopulation of the 1s(A,) ground-
state orbitals. A sum rule valid for all concentrations has been derived for an integral of the intensity. It
shows that the gross features of the spectrum are dominated by the short-range, or intervalley, part of the
donor potential. Spectra taken on silicon crystals with arsenic and antimony donors gave results similar to
those with phosphorus donors. We have also studied the Raman spectra of several p-type silicon crystals. A
low-frequency continuum was observed from boron, gallium, and aluminum impurities, but only boron
showed the sharp acceptor line of the 8 type seen previously.

I. INTRODUCTION

Raman scattering has provided a great deal of
information about electronic excitations in semi-
conductors. In this paper we apply the technique
to silicon doped with phosphorus donors. Em-
phasis is placed on the changes in the donor Ra-
man spectra as the donor concentration is varied
to produce the metal-insulator (M-I) transition.
Many of the traditional experimental methods for
studying this transition, such as transport, elec-
tron- spin-resonance, and nuclear-magnetic-re-
sonance measurements, deal with properties of
the low-lying electronic excitations near the
Fermi level. The Raman effect studies higher
excitations and the concentration dependence of
both initial and final states. The Si:P system is
a good one for Raman studies, since it has the
many-valley conduction band necessary for large
electronic Raman cross sections, since much is
already known about its M-I transition from trans-
port and other measurements, and since the
YAlG:Nd" laser is available to provide photons
having an energy just below the indirect band gap.

In the remainder of this section we shall review
experimental work on electronic Raman scattering

in semiconductors, then some general experi-
mental work on the M-I transition in semiconduc-
tors, and finally mention the previous Raman
work on this transition. Section II describes some
of the experimental techniques, and Sec. III devel-
ops the theory of electronic Raman transitions on
isolated donors in an indirect semiconductor.
Section IV presents our results in Si:P. We begin
with dependence on concentration of the Raman
spectra. For rising low concentrations one sees
the 1s(A) to 1s(E) valley-orbit line broaden and
shift asymmetrically. A model is then introduced
that reproduces some of these features qualitative-
ly. At higher concentrations where the material
is characterized by impurity-band conduction one
observes a broad Raman continuum that starts at
zero energy. Some of its features are reproduced
by a model in which electrons in a single band
make random transitions from states below the
Fermi level to states above it. Data will then be
presented on the temperature dependence of the
spectra for several concentrations. No attempt
will be made to provide a general theory of Ra-
man scattering in the heavily doped case, but
general expressions will be presented for the
cross section in terms of the spectral function
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for intervalley density fluctuations. A rather
general sum rule will then be derived valid for
all concentrations. In terms of it we shall relate
the overall strength of the scattering to the
strength of the short-range part of the donor po-
tential and to the probability of finding electrons
at the donor sites.

In Sec. V we present results on Si doped with
As and Sb donors and B, Al, and Qa acceptors.
Section VI summarizes our results.

Henry et al. reported the first observation of
the electronic Raman effect in semiconductors. '
They observed Raman transitions among acceptor
levels in zinc- and magnesium-doped gallium
phosphide. Wright and Mooradian observed Raman
scattering from phosphorus, ' arsenic, '4 and
antimony" donors in silicon. They reported for
Si:P a single valley-orbit Raman transition,
Is(A,}-Is(E), and they showed, using a three-
band model and the effective-mass approach, why
the Is(A,)- Is(T,) transition was not seen. Man-
chon and Dean observed the Is(A,)- Is(Z} valley-
orbit transition for sulphur, selenium, and tel-
lurium donors in gallium phosphide. ' By perform-
ing stress experiments they showed that the Is(Z)
state was the final state of the transition. Col-
well and Klein' observed the valley-orbit transi-
tion of nitrogen donors in the 6H polytype of sili-
con carbide. Doehler et aL observed Raman
transitions for gallium acceptors' and arsenic
donors" in germanium.

Information about the spectrum of collective
modes and single-particle excitations can also
be obtained by light-scattering techniques. Single-
particle scattering, in which charged carriers are
scattered out of the Fermi sea, is a direct mea-
sure of the velocity distribution of the carriers,
and the polarization characteristics of the Raman-
scattered light yield information on the coupling
mechanism responsible for the scattering. Moora-
dian' has observed single-particle scattering in
s-type GaAs, InP, CdTe, and AlSb. The large
cross section and the polarization selection rules
observed were explained by the spin-density fluc-
tuation mechanism proposed by Hamilton and
McWhorter. " Scattering by this mechanism was
also observed in indium- and gaQium-doped
CdS, "'"and in P-type GaAs, "and in P-type
ZnS. "

In doped semiconductors the overlap between
the wave functions of carriers on neighboring
impurity atoms increases with increasing im-
purity concentration, and the metal-insulator
transition takes place at a certain critical concen-
tration n, . This phenomenon was first observed by
Busch and Labhart, "who found that the resistivity
of silicon carbide showed a rapid drop as the

impurity concentration was increased to a
critical value. Transport measurements on
phosphorus-doped silicon, "antimony-, "'"
phosphorus-, and arsenic-doped germanium, "
nitrogen-doped silicon carbide, "indium anti-
monide, "lead sulphide, "and gallium arsenide"
showed that the M-I transition was a general
phenomenon in doped semiconductors. Measure-
ments of the Hall coefficient at low temperatures
show that the number of free carriers n in a doped
semiconductor increases sharply as the impurity
concentration approaches a critical concentration
n, ; above n, , n is equal to the impurity concen-
tration. " " The resistivity, when plotted against
the impurity concentration, shows a precipitous
drop near n, ,

" "thus supporting the Hall data.
Sundfors and Holcomb" measured the spin-

lattice relaxation rate, 1/T„ for the "Si nuclear-
spin system in Si:P. They observed that I/T,
showed a rapid decrease in the impurity concen-
tration range between 2.5x10" and 6x10" cm '.
This can be attributed to a delocalization of the
electrons in this concentration range, consistent
with the value 3x10" cm ' arrived at by transport
measurements. Further, the observation that
I/T, is proportional to the temperature for the
6x10" cm ' sample suggested nuclear relaxation
by a degenerate system of free electrons. The
recent data of Brown and Holcomb" on the "P
resonance in Si:P with impurity concentration in
the range from 7.5x10' to 8x10' cm ' also sup-
port a model in which all the donor electrons par-
ticipate in a single, interacting system. ESR
data"'" also point toward a value of n, in the
vicinity of 3x10" cm ' for Si:P. For donor con-
centrations in the range V x10"-3x10" cm ' only
a single ESR line is seen, and its width decreases
with increasing concentration. This suggests that
the donor electrons move over larger and larger
clusters of donor sites rather than each being
bound to an individual donor nucleus. The increase
in the width observed for impurity concentrations
greater than 3x 10" cm ' could presumably be
due to lifetime broadening. The Knight-shift data
suggest that the Fermi level in Si:P moves into
the conduction band as the donor concentration
increases beyond 2x10'9 cm '." Bethin et al. '
have measured the polarizabilities of Sb, P, and
As donors in Si, and find that the static dielectric
constant of the doped material diverges in the
vicinity of n, . Marko et al. '8 from their specific-
heat measurements on heavily doped Si:P find that
the system is essentially metaL&ic for impurity
concentrations greater than 5.9x10' cm 3, but
for smaller concentrations they see evidence of
partial localization of the donor electrons.

Raman studies of the metal-insulator transition
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in semiconductors have been few. Colwell and
Klein' observed a continuum extending to roughly
65 meV in heavily doped 6II SiC:N and attributed
it to overlap between broadened vaQey-orbit
levels. Recently, Doehler et al.'" have studied
the Ge:As system for a wide range of impurity
concentrations and find that the sharp valley-orbit
line seen at low concentrations changes to a
continuum resembling single-particle scattering
at high concentrations. 'They note, however, that
a substantial fraction of the donor electrons appear
to remain localized above n, . Evidence of wave-
function overlap in gallium-doped germanium has
also been reported. '

II. EXPERIMENTAL

The optical-absorption coefficient of silicon for
wavelengths near 1.064 pm, the output wavelength
of a YAIG:Nd laser, shows a minimum for both
n- and P-type silicon crystals. Absorption is
greater for shorter wavelengths due to the onset
of transitions across the indirect gap and for
longer wavelengths due to free-carrier absorption,
which increases as A,'. Even at this optimum wave-
length our more heavily doped samples gave weak
Raman signals. This necessitated the use of
counting times as long as 50 sec with output
powers of 2-6 W. Such powers resulted in con-
siderable heating of the samples, and we found
that it was difficult to cool them below 17 K in
our cryostat, a 3-liter Janis Model 8 DT equipped
with super Vari-temp for cooling with cold helium
gas.

Since the output of the YAIG:Nd laser is unpolar-
ized, a Gian-Thompson prism was employed to
select a particular linear polarization. The Baman-
scattered light was collected at 90' to the incident
direction. Light from the exit slit of the Spex

4 -m double monochromator was focused onto the
cathode of an Amperex CVP 150 photomultiplier
with S-1 response. The monochromator was
equipped with gratings ruled at 1200 lines/mm
and blazed at 1 p. m.

Samples of doped silicon crystals were obtained
from several sources. Some were purchased from
Semimetals, Inc. , Mountain View, Calif. , and
General Diodes Corp. , Framingham, Mass. , and
other obtained from Streetman, Armer, Sah, and
Handler of the University of Illinois, Urbana, Ill. ,
and Gupta of Monsanto Corp. , St. Peters, Mo.
Resistivity measurements were made at room
temperature with a four-point probe on all sam-
ples to give their impurity concentrations; mass-
spectroscopic analyses showed that the samples
had negligible compensation by group-III acceptor
impurities.
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FIG. 1. Absorption coefficient of Si:P at 300 and iv K.
The arrow denotes the wavelength of the YA16: Nd laser
line.

Optical-absorption measurements were made
on many of the samples at both room and helium
temperatures. The room-temperature data were
taken using a Gary 14 spectrophotometer and are
shown in Fig. 1(a). In Fig. 1(b) we show low tem-
perature data taken at 1V K using a Zeiss PM
@II spectrophotometer. From the latter data we
see that the measured absorption coefficients at
1.06 p.m ranged from less than 4 cm ' for the
most lightly doped samples to approximately 10
cm ' for the most heavily doped ones, indicating
that the optical penetration depth was of the order
of a millimeter.

Most samples measured 3&3@13mm'; the
longest edge was oriented along (100) and the
others along (110). Orientation was done by using
the Laue back reflection technique. AQ samples
were mechanicaQy polished to 0.05 p.m. Various
HF-HNQ, systems were tried for chemical etching
but no difference was observed between the spectra
obtained from etched and unetched samples.
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p, —e c r;, t

where
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III. THEORY OF DONOR RAMAN TRANSITIONS

In the Raman scattering process an incident
photon in a state with energy 8 ~~, polarization
direction ))s, and wave vector %s scatters to a state
(k&d„, ))„,%„) and the system goes from an initial
state of energy E, to a final state of energy E&

through the creation or destruction of an elemen-
tary excitation. Energy conservation requires

(d)o)=Ef E( =+if(().

The Hamiltonian describing the interaction of
radiation with a system of N electrons is given by

assumed to have the effective mass m* of a con-
duction-band minimum. Kohn" has shown that
for v equivalent minima the donor electron wave
function can be written

V

P„" (r) = g (&(f" (t), (r) F f" (r) .
j=1

(6)

Z oSP»»P~ Io(»P).-&I) P)(»)=o,1

Here P, (r) = u& (r) e' ' ' is the Bloch function at
the jth minimum, e&" are certain numerical co-
efficients that depend on the point-group sym-
metry of the impurity Hamiltonian, and y labels
the irreducible representation of the group we
are considering. The Ef" (r) are hydrogenic
envolope functions that are slowly varying on the
scale of a lattice constant. They obey the effective-
mass wave equation

N

e, = g [p, ~ X(r, , t)+X(r, , t) ~ p, ),

and

2

2mc

We use the effective-mass approximation to
treat the donor levels. The donor electron is

(4)

(6)

where we have neglected the spin-orbit inter-
action. U(r) = e'/e, r is the statically screened
Coulomb potential of the donor and the eigenvalue
E is the energy relative to the conduction-band
minimum. We denote p,"s as (m/m*)„s for valley
)0

To calculate the scattering cross section, ""
we use the H2 term in first order and the H, term
in second order. In dipole approximation the
Raman cross section can be written

P»(o-f)»' * ~ Io —~ & I»» pl»»& &»» I»~ olo& (il»,,~ pl»») ( Io ~ plo))„
Eo- E~- k(o~

To evaluate the sum over m in E(l. (8) we use
a simple two-band model for the semiconductor
in which the conduction band has energy E, at its
j th minimum at k, and the valence band has
energy E, at k~. The direct gap at kz is E~. In
this model three kinds of Raman transition can
take place: (i) the donor electron goes from the
1s ground state to a higher 1s level via a virtual
transition to the valence band; (ii) the electron
goes from the ground state to a higher hydro-
genic state, say, 2s, again via a virtual transition
to the valence band; and (iii) the electron goes
from the ground state to an excited ls state (or

some other evenparity state) via a virtual transi-
tion to an odd-parity hydrogenic state, e.g. , a
2((& state. It can be shown that processes (ii) and
(iii) are relatively uni)nportant in comparison to
process (i).'" Putting E =E„and approximating
E, by E, , we reduce the sum over m in E(l. (8)
to

„» (f1 p p, lo& .&f Ip.p, io.
&)

(8)

Using the form (6) for the initial and final donor
electron wave functions, (t(o

) (r) and P( ) (r), respec-
tively, we write E(l. (9) as

s ~ (f)* (o) &up l(p+tf%f) (p+)fop)slu, & &u, lp+a%, )s(p+at(, ) lu, )
Ec S(oa
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where o&' and e&~ are the Kohn-Luttinger co-
efficients that appear in the effective-mass wave
functions of the initial and final states. Since the
envelope functions F) (r) are slowly varying, we
have assumed that the momentum operator p

does not act on them. The presence of the overlap
integral (E) I E,'& in Eq. (10) shows that the Raman
transitions must be within the j.s manifold only.

Now we use the definition of the effective-mass
tensor

(~) l(p+ff&, ) Iu)& &u,
' I(p+II&)))) Iu)&

and the approximation )f(v~ —&u„}«Eo to write, at T=O, the cross section in Eq. (8}as

n )) (f )+ (o) & (f ) (0)
2 0)

yg 0 tL ~R +j +5 +@2 gg y2 j +j ~ a 8 (12)

where r, = e'/mc' is the classical radius of the
electron.

Equation (12) can be simplified further by using
the following form for the effective-mass tensor
for the case of axial symmetry:

(m/)n*)"') =)), =)), I+()) ll)), )n; )), (»)
Here q~ is a unit vector along the axis of the j th
valley. With the use of Eq. (13), Eq. (12) can be
written

=r' —a )I ~ [I+(),—I)ft„]Q o.)0')" a',."I
R L

+ ft»(P ll

xQ ax" txt"jj j) ~ q
J

(14)
where R»=E~/[E2~ —(tf&a~)'] is the resonance en-
hancement factor. For Raman scattering (f &0)
the first term in the large parentheses in Eq. (14)
vanishes and we obtain

do(0 f}'-
(PI] —P

R

in the effective-mass approximation, but, when
corrections are taken into account, part of this
sixfold degeneracy is lifted. The remaining de-
generacy can be obtained solely from the sym-
metry of the donor electron Hamiltonian. For
substitutional donors the impurity Hamiltonian is
invariant under the tetrahedral group T~ and the
donor ground state splits into a nondegenerate,
fully symmetric ls(A, ) level, a doubly degenerate
ls(E) level and a triply degenerate Is(T,) level.
The coefficients e~" that appear in the wave func-
tions (Eq. (6)) of the states in the ls manifold are
given by Kohn" as

n~"') =(I/v"6)(1, 1, 1, 1, 1, 1),

oP ')=-'(1, 1, -1, -1, 0, 0),

aP ') = (I/2/3)(1, 1, 1, 1, -2. -2),
o.~~

' "=(I/M2)(1, -1, 0, 0, 0, 0),
n~ ' ')=(1/M2)(0, 0, 1, -1, 0, 0),
n~)

' ' ——(I/v 2 )(0, 0, 0, 0, 1, -1).

(i7}

The Raman cross section for a transition from
the ls(A, ) ground state to an excited state can now
be readily calculated by use of Eqs. (15) and (17).
We find that the tensors

x g a'/)* nP~(r), q, )(q„)),. ) . (i6)

In addition there will be Rayleigh scattering (f= 0)
with cross section

(n, ))s}' I(1-ft»)+ft») ~ I', (16}
CKr

T = ~~ot~'* n'" n nf —~
for transitions to ls(E —1) and ls(E —2) are

—,'M3a 0 0

T~ ~ 0 2 M3a 0

(18)

where p, = p p, II+ g p, ~.1 2

We calculate the Raman cross section for shallow
donors in silicon. In silicon there are six equiva-
lent conduction-band minima located along the
( 100) directions at about 82% of the distance to
the Brillouin zone boundary. " The ground state
of the donor electron will be sixfold degenerate

and

0 0

2a 0 0

T, ,= 0 ~a 0

0 0 -a
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where

u=yv 2 (20)

ln the standard 8-polarization geometry-ri~ 11[110]
and r[s II [110]-the Raman cross section is

2 Z
([i& —P ) ~

COL (21)

The cross section for transitions to the ls(T, )
states is zero. Thus, in the effective-mass ap-
proximation, only one valley-orbit Raman transi-
tion —ls(A, ) —1s(E)—is observable.
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FIG. 2. Stokes Raman spectra of Si:P for various do-
nor concentrations. Actual temperatures were estimated
by a thermocouple and by ratios of Stokes to anti-Stokes
Raman spectra and were about 21 K for part (a), 30 K
for parts (b), (c), (h), (i), (j), 40Kfor part(d), 45 Kforpart
(e), and 50 K for parts (f) and (g). The small peak at
84 cm ~ in @') and (h) is a fluorescence line from the
YAlG: Nd laser. The scattering geometry was z(all, , all)y,
with x I I [100), y I I [011), and E 11 [011l .

IV. RESULTS AND DISCUSSION: Si:P SAMPLES

A. Dependence upon concentration

ln Figs. 2 (a)-(j) we show the Raman spectra of
Si:P crystals in the 0-200-cm ' region as a func-
tion of impurity concentration. About 5.5 W of
laser power were used for samples in Figs. 2
(a)-(g), but only 2.4 W for those in Figs. 2 (h)-(j).
The spectrum in Fig. 2(a) for n„= V X 10" cm '

shows a single sharp line at 105 cm ' caused by
the 1s(A,)-ls(E) valley-orbit transition of the
donor electron. Figures 2 (b)-(f) show that this
line broadens rapidly and asymmetrically with
increasing donor concentration. Simultaneously
a new continuous spectrum appears as a back-
ground [Figs. 2 (e)-(j)] that grows stronger and
eventually dominates the spectrum. %e observe
that the valley-orbit peak shifts towards lower
energies as the donor concentration increases.
From 105 cm ' at n„= V x 10" cm ', it moves to
85 cm ' at n~ =2.3x10" cm '. At n~ =2.4x10"
cm ' the valley-orbit line is ill defined and for
n„= 3.2x10" cm ' it shows up only as a knee at
85 cm '. For n~ = 5x10" cm ' the knee has
moved to 55 cm '. Spectra taken with polarized
incident light and analyzed scattered light show
that the continuum has the same symmetry E as
the sharp valley-orbit line. It is interesting to
compare our results with similar Raman data
taken on arsenic-doped germanium. ' In the latter
case, the valley-orbit line broadens less rapidly,
it persists more deeply into the metallic regime,
and it shifts more slowly towards lower energies
with increasing impurity concentration.

A detailed understanding of the change in the
shape of the valley-orbit Raman line with increas-
ing concentration requires detailed information
about overlap between the wave functions of elec-
trons on neighboring donors. As this overlap in-
creases with increasing impurity concentration,
the orbit of an electron spans more and more
donor atoms. %e expect that its amplitude for
being in a central cell will decrease and result
in a decrease in the valley-orbit splitting. In the
next few paragraphs we briefly sketch a theory
based on this concept for calculating the Raman
line shape. In Fig. 3 we compare the dependence
of the width of the valley-orbit Raman line on n~

with that of log,~ and logypf2 where p is the re-
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FIG. 3. Width of the valley-orbit Raman line as a func-
tion of donor concentration. The values of p and e2 are
those of Ref. 16.
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sistivity" and the activation energy e, is often
known as the Hubbard gap. "'" We note that the
Raman line broadens beyond recognition before
the resistivity takes on metallic values or before
e, vanishes. This observation should again be
compared with the results for Ge:As, ' where the
vaQey-orbit line continues to have a measurable
width in the metallic p regime.

B. Line shape in insulating regime

s=&y„(r)Iy, (r)& . (23)

We are interested in evaluating the expectation
value of the operator for the electron densi'y at
the two nuclei:

p(R„,Rs) = 5(r,—R~)+ 5(r,-Rs)

+ 5(r, -R„)+5(r,-Rs! . (24)

Using Eq. (22) we get

From Eqs. (6) and (1V) it is seen that only in
the fully-symmetric ls(A, }state is the wave-
function nonzero at the donor site (r = 0}. Thus
only in this state does the electron experience
the departure of the true donor potential from the
screened Coulomb potential used in the effective-
mass theory [Eq. ( I)]. The valley-orbit splitting
Evo is a consequence of the fact that the ls(A, )
state is pulled down from the other 1s states be-
cause it has a finite amplitude at the d,onor nuc-
leus. 'The others do not, and their energy is
quite close to that given by the effective-mass
approximation. Thus, to calculate the line shape
of the valley-orbit Raman transition in the insul-
ating regime, we use the notion that the ls(A, )-
ls(E) splitting is directly proportional to I P(0) I'.
To relate this dependence to donor concentration,
we visualize the aggregate of donor atoms as a
collection of pairs, consisting of a given atom and
its nearest neighbor. We treat each pair as a
"hydrogen" molecule. We use the Heitler- London
method to get the amplitude for the two electrons
being at the two nuclei, and therefore obtain Ezo
as a function of the interdonor distance, R. The
line shape can then be calculated by using an ap-
propriate probability distribution for R.

The Heitler-London wave function for the singlet
state of two electrons on a pair of donor nuclei
is given by

P(r„r,) = [2(1+S')] ' ~' [P„(r,) Ps(r, ).y.(r, ) tl.(r, )l . (22)

Here P, (r, ) is the Kohn-Luttinger effective-mass
wave function for electron 1 on nucleus i and S
is the overlap integral

p(r) = Q a~ F(r) u(r) e'"' ' ' . (27)

We thus assume that the envelope function F(r)
and the periodic part of the Bloch function u(r}
do not depend on the valley index j. Then, using
the relations u(R) = u(0) and F(R) =F(0)e "~'0,
where a, is an appropriate Bohr radius, we get

B(R)= [1+G(R) + 2G(R) S(R)]/[1+ S(R) ], (28}

where
V

G(R}=—e " '0 g cos(P ~ 8)
5=j.

(29)

and

S(R) = 1+R/a, +(R'/3a', ) G(R). (30)

We have calculated the quantity B as a function
of R for three orientations of the interdonor axis,
along (ill), (110), and (100)." We have used
a, =20 A @=6, and k'=0.82(2s/a)=0. 95 A ',
a = 5.42 A being the lattice constant of silicon.
Our results are shown in Fig. 4 for the (111)
direction. We see that B(R) oscillates rapidly
due to the presence of the cosine terms in G(R)
[Eq. (29)]. In Fig. 4 we also show the nearest-
neighbor probability distribution, "P(R), for two
donor concentrations. We observe that as the
donor concentration increases, the peak of the
function P(R) overlaps more with the region where
B(R) is less than unity, and therefore, the tail on
the lower-energy side of the valley-orbit transi-
tion becomes stronger with increasing impurity
concentration. In the region where B(R)& 1, P(R)

(P(r„r,) I p(R„,Rs) Ig(r»r, ))
= [2/(I+ s')] [ I y(0) I'+

I y(R) I'

+s[e(0)4(R)'+0(0)'e(R)]} (25)

where R = IR„-Rs I. In the "atomic" case, where
the impurity atoms are isolated, the two-electron
wave function is P„(r,) Ps(r, ) and the corresponding
expectation value of the electron density operator
at the two nuclei is 2 I $(0) I'. Hence, the ratio of
the valley-orbit splitting in the molecular case
E vo(m) to that in the atomic case Evo(a) can be
written

(„) Evo(m)
E vo(a)

I P(0& I'+
I II (R) I

'+ s[y(0) Ic (R)~+ y(0)* y(R)]
(I+ s')

I I((0) I'
(26)

Now we write the effective-mass wave function
P(r) in Eq. (6) in the form
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FIG. 4. The function B(R) from Eq. (28) as a function
of interdonor distance for 5, along (111). The probabil-
ity distribution P(R) is also shown.

is very small. Thus the tail on the higher-energy
side will be very weak. To estimate the line shape
of the valley-orbit transition we proceed as follows.
From Eq. (26), we calculate Zvo(m, R) for a given
R. Then P(R) gives the intensity of the line at
that energy. 'This is repeated for an appropriate
range of R for which P(R) is significant. The
line shape is proportional to I (&u) =Q„P(R) 5(ru
—Evo(m, R)). Our results for the direction of R
along ( ill) are shown in Fig. 5. The asymmetric
broadening with rising donor concentration is

clearly seen. 'The cutoff at 92 cm ' is due to the
minimum in B(R) apparent from Fig. 4. It is an
artifact of the oversimplified nature of this cal-
culation. The calculated widths are narrower
than those experimentally observed by almost a
factor of 3, but the main features of the valley-
orbit line shape are qualitatively explained. A

more complete calculation would average over
all directions of R, but we do not believe that this
would alter the results in Fig. 5 by very much.
The next step would seem to include overlap within
clusters of three or more donor atoms.

A more correct calculation would require the
construction of a Heitler-London wave function
analogous to Eq. (22) for the excited state of the
two-donor "molecule" in which one of the atomic
orbitals is Is(A, ) and other is a mixture of ls-
(E —1) and 1s(E —2). The valley-orbit splitting
would then be the difference between the expecta-
tion value of the Hamiltonian between these two
wave functions. The start of such a calculation
has been made. "

C. Continuum

The continuum that appears at high donor con-
centrations [shown in Figs. 2 (e)-(j)] is a spectrum
of intervalley electron density fluctuations. ""
The expression for the scattering cross section
due to this mechanism will be given below. It
depends on the fact that the effective mass aniso-
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0.6—

=7.0 X IO cm &l6
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=2.5X IO cm &
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l 2X lO cm &IS
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= 2.2X IO crn-&

FIG. 5. Valley-orbit line
shape calculated for 5, along

I
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r( )= f s(z)f(E)v(z, ~)t& f(z, )] uz

(31)

Heref(E)=(e~ s~~ +1) ' is the Fermi function.
We have evaluated E|I. (31) using Ef = 0 and a
Gaussian density of states

p(E)=e 's ~ o, (32)

where u, = 82 cm '. Figure 6 shows the results
for five temperatures. The T= ~ curve is simply
the Gaussian e ~ ~ 0 . The calculated curves for
20 and 50 K should be compared with the data of
Fig. 2(j) for n, = 5x10" cm '. When one subtracts
a symmetric central peak from the experimental

tropy allows electrons in the several vaQeys to
couple in several ways to the incident and scat-
tered radiation fields. A relative density fluctua-
tion among valleys may be excited without exciting
a net density fluctuation. 'The resulting response
is not screened by the Coulomb interaction among
electrons, since in the random-phase approxi-
mation this interaction couples only to a net den-
sity fluctuation. This intervalley scattering mech-
anism produces a light-scattering spectrum of
the same symmetry E as that of the valley-orbit
Raman line. This is consistent with our experi-
mental observations and is also consistent with
the earlier results on SiC:N', and Ge:As.""

Since the continuum starts at zero excitation
energy, if single-particle excitations are respon-
sible for it, the energy bands of the initial and
final states must over1.ap. Let us imagine a single,
partially filled, band within which the continuum
transitions occur. We assume that the disorder
produced by the random distribution of donors
has negated all selection rules so that an initial
state (with energy E) has the same "random ac-
cess" to any final state (with energy E+ &o). If
p(E) is the density of states in the band, the light-
scattering intensity is then proportional to

data, there will remain a definite maximum at
about 40 cm ', and the general appearance will
be that of the 20- or 50-K calculated curves.

The shape of the curves of Fig. 6 is not an arti-
fact of the random-access, single-particle model
used to generate them. An exact theory wQ1 pro-
duce a similar result, for the following reason.
The Raman intensity l(&u) must obey the fluctuation-
dissipation theorem for Raman scattering, ""
which expresses 1(&u) in the form

I (v) = [1+n(&u)] ImR(&u), (33)

where R(to) is an appropriate response function
and where n(v) is the Planck function. One can
show that the imaginary part of R(&u) must be an
odd function of &u. At T= 0 [1+n(e)] behaves like
a unit step function at v = 0. Thus if the leading
term in a power series expansion of ImR in co is
the linear term, the Raman intensity will be pro-
portional to ~ for ~ small and positive. ImR will
eventually decrease, thus producing a maximum
in I ((u).

We believe that the observed Raman spectrum
for the Sx10" sample in Fig. 2(j), including the
knee at 55 cm ', can be understood in terms of
these general properties of a Raman continuum.
It is not necessary to assume that the knee is
caused by valley-orbit Raman transitions on iso-
lated donors that still exist in insulating regions
above the metal-insulator transition.

l.4—

1.2—

I
I

si: p

ND =5x IO cm

D. Temperature dependence

In Fig. 7 we show spectra taken on our most
heavily doped sample at true temperatures of 50 K
and higher. Each curve is arbitrarily normalized
to its value at 23 cm '. The low-energy part of
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cf

20

Q I

0 20 40 60 80 100 l20 l40
RAMAN SHIFT (cm~)

FIG. 6. Raman intensity due to single-particle excita-
tions with random access in a Gaussian band.
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FIG. 7. Temperature dependence of the Raman spectra
fore& = 5x 10 cm . The spectra were normalized at
23 cm ~ . Temperatures are those measured with a ther-
mocoupl. e; the "20 K" sample was actually at about 50 K.
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the continuum grows with increasing temperature,
and the entire curve shifts to lower energy. The
random access model of Fig. 6 mimics this be-
havior well, if one imagines that the additional
Rayleigh component grows with increasing tem-
perature. It is possible that the Rayleigh com-
ponent is at least partially inelastic. This could
be explained as follows. Suppose that there is a
remnant of isolated donor behavior to the extent
that there is a doubly degenerate ls(E) band
higher in energy than the ls(A) band. As the tem-
perature rises, the former will be thermally
populated at the expense of the latter. Transitions
of the type ls(E —1) to ls(E —2) will be quasi-
elastic and have both A, and E symmetry.

In Figs. 8 and 9 we show the Stokes and anti-
Stokes Raman spectra taken at two different tem-
peratures on the samples with n~ = 2.4 X 10' and
3.2~10" cm ', respectively. We observe that at
higher temperature, the remnant of the valley-
orbit peak for the n~ = 2.4x10"-cm ' sample is
much weaker, whereas for the n~ =3.2~10"-cm '
sample it is totally absent. This weakening of the
valley-orbit scattering with increasing temperature
can at once be interpreted as depletion of the ls(A, )
ground state. Figure 10 shows similar data on the
n„= 5 x 10"-cm ' sample at three different tem-
peratures. Here the knee at 55 cm ' seen at 30 K
vanishes at 62 K. If we assume that the spectrum
in the metallic regime (to which the sample in
Fig. 10 belongs) is due to transitions from the
filled to the unfilled part of a single band as with
the calculation of Fig. 6, we expect that the knee
in Fig. 10 should move to lower energies at higher

20QI-

160t

o~ l20}

)—80 I-

~ 40I-

Ol

~ 80~(
Cf

4Q--

~ ~

T= 50K

Q . I I
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temperatures; at 62 K we believe it is masked by
the quasielastic, Rayleigh line.

The Stokes and anti-Stokes spectra of a sample
clearly in the insulating regime are shown in Fig.
11. The growth of the anti-Stokes line with tem-
perature is as expected.
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FIG. 9. Some details of the Raman spectrum of a Si:.P
sample very close to the metal-insulating transition. The
temperatures were determined by ratios of Stokes to
anti-Stokes Raman intensities. The peaks at -107 and
-18 cm are nonlasing fluorescence lines from the
YA1G: Nd laser.
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FIG. 8. Some details of the Raman spectrum of a Si:.P
sample just below the metal-insulator transition. (a)
Stokes and anti-Stokes spectra at "T= 20 K" determined
by a thermocouple, From ratios of Stokes to anti-Stokes
intensities the true temperature is estimated to be about
36 K. The peaks at -107, -18, and + 84 cm ' are fluore-
scence lines from the YA1G: Nd laser. Q) Stokes spect-
rum at "T= 63 K" as determined by a thermocouple.
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FIG. 10. Some details of the Raman spectrum of a Si:P
sample above the metal-insulating transition. The tem-
peratures were determined by ratios of Stnkes to anti-
Stokes Raman intensities. The peaks at -107, -18, and
+ 84 cm ~ are fluorescence lines from the YA1G; Nd
laser.
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The (1(, (r) are field operators obeying the usual
anticommutation relations. p, (q) is a number den-
sity fluctuation operator for valley /. Now we
define a spectral function S(q, e):

d 0'

d+d

E. Sum rule for valley-orbit Raman intensity

We have measured the integrated Haman intensity
for all our samples by measuring the area under
the spectrum for each sample and calibrating it
with respect to the strength of the 523-cm ' zone-
center optical phonon. W'e find that this integrated
strength does not remain proportional to n„
throughout the range of concentrations studied;
it drops as n„ increases. Below we derive a sum
rule valid for aQ concentrations for an integral
over the spectrum. It shows that the gross features
of the spectrum are dominated by the intervalley
potential of the donor atoms.

For the donor concentrations used here, the
electrons are strongly influenced by the potential
from the random distribution of donors. The ex-
isting theories of light scattering by a many-com-
ponent electron plasma in a semiconductor neglect
the influence of the donors. "" Qur sum rule
includes this effect exactly. The cross section
for Raman scattering by electron density fluctua-
tions in a many-valley semiconductor can be writ-
ten"

Pr
1S'

where

&&(f Ip,
' (q) If & 6(~yi —~},

(34)

0 i
—
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FIG. 11. Stokes and anti-Stokes Raman spectra of a
lightly doped Si:P sample. (a) "T= 15 K" as determined
by thermocouple. @) "T= 62 K" as determined by ther-
mocouple. From the ratio of Stokes to anti-Stokes inten-
sities the actual temperature was estimated to be 75 K.

H = V~+ V„+T+ V (39)

V~ is the Coulomb potential due to the donor
nuclei, V„ the electron-electron Coulomb inter-
action, and T the kinetic energy. V is a short-
range potential responsible for the valley-orbit
splitting and is approximated by

V~=-Vo Q II(g, (R;R)(I(~,(R;R), (40)

where P„, is the field operator for the fully sym-
metric ls(A, ) state of a donor at R:

V

P~,(r;R)=~ Q e ' '
(f(, (r).

l=i
(41)

The double commutator in Eq. (38) can be eval-
uated directly. " Vc commutes with p, (q), as
does V„. The contributions of T and V to the
right-hand side of Eq. (38}may be computed di-
rectly. The respective contributions give two
independent terms:

J 1+n(~) ~ u 2m q'"' q

N+, (p, r
—p, , i)'VoP„.

2V g)

Here (42}

'Then by arguments similar to those of Nozieres
and Pines" extended to finite temperatures, we
find

r
"

S(q, (d)ur d(d

1+n((u)

=», Q g p, p, (IIp, (q), &],p,'(q)/&, .

(38)

Here ( )r denotes a thermal average at tempera-
ture T, and s(&u) is the Planck function. We write
the total Hamiltonian H in Eq. (38) as

and

P) =RL, ' Pg 'Qg
P„=N ' Q ( $„,(R;R )(I(„,(R; R)& r (43)
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is the average number of electrons in the central
cell of a donor. Use of Eq. (40) allows the follow-
ing rep cernla ement in the second term in Eq. (42):

(44)V, =k~ /P",, ,

where P",, is the value of P for an isolated neutral

valley-orbit splitting. Equations (42)-(44) state
the sum rule for VO Raman scattering

Equations (42) and (42) then give for E polariza-
tion geometry in silicon

N ' s(q, w)wd (g,„—v, ,}' hq'* ~ ('
)1+n((d) 6 2m P,",

(45)
The parameter q* is given by

(45)= (q '
I i

' q)

s. For thefor valleys l along ~x or +y cube axes. Fo
conditions of our experiment, we find

Ifq~'/2m =0.12 cm 1 (47)

= 105 cm ' the second, or intervalley
scattering, term in Eq. (45) will domina e e
sum- rule as ong as1 s P /P" is greater than about
10 2

We ve cW ha e computed values for the left-hand s1de
of Eq. oE (42) for our Raman data of Figs. 2 a —g,

. 2h-together w1th ith data taken on samples of F1gs.
usin thei'g 'th 5 W of unpolarized laser power usmg e

strength o ef th 523-cm ' Raman-act1ve 4=0 phon
' t mal calibration. Special care wasmode as an 1n er

multi liert taken to keep the cathode of the photom 1p 1erno en o
tube at the same temperature for all our a r
thus its relative sensitivity in the phonon and
all -orbit spectral regions was not well-control-v ey-or i

led, and the internal calibration us1ng the p o
ls 0nl approximate. The results are shown in

t the effectFig. 12. The scatter is probably due to the

mentioned ove aned ab and due to difficulties in drawing
a consistent base line. There seems to be a de-
crease of about a factor of four in the integrated
spectrum, in the sense of Eq. 45 over the con-
centration range of our measuremen ts. According
to Eq. (45) this implies that P has dropped to v
of its value for isolated donors.

There are two explanations for the decrease of
P . Laser beam heating of the samples during
th easurements for F1g. 12 cause

CC

sed the temper-
ature of the crystals to rise from about 20 oOto 50K
over the concentration range of the experiments.
Thermal activation could accoun t for a decrease
in P„since the ground-state ls(A, ) orbital is the
only one w1 ap'th a preciable amplitude at the donor
sl es. 0't For instance if one assumes t at there are
five other orbitals 80 cm ' above the ls (A,) or i-

t T = 50 K one estimates a value of P, Pc,
use ofof 0.6 from this effect. The other major cause o

the decrease in central-cell occup pation is robably
due to delocalization of the ls(A, ) orbitals as they
in erac w1
' t t ith one another at high donor concentra-
t' An explicit, very approximate, calcu a 1on
of this effect for n~ in the insulating regime
ready been discussed.

70
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S(:Sb + P ~Sb Oonor

V. OTHEREXPERIMENTS

A. n-Si samples o wid peu th impurities other than phosphorus

In addition to Si:P crystals we have aalso studied
severa an 1m1 t' ony and arsenic-doped silicon crys-

ofIn Fi . 13 we show the Raman spectrum otais. 1g.
7 X 10'a Si:Sb sample containing approximate y

antimony atoms/cm'. This spectrum was taken
with a 1.0'795- p. m- YA1O, :Nd": laser. The line at
98.2 cm ' is the valley-orbit transition due to Sb
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FIG. 12. Integral in the sum rule tEq. (42)] as a func-
tion of donor concentration.
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"T= 15 K" as measured with a ther-n„=Vx 10 cm
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FIG. 14. Raman spectrum of Si:Sb with n& =5 x10 8 cm . "T=23 K"as measured with a thermocouple, but the actual
temperature was probably about 50 K. The scattering geometry was the same as in Fig. 2.
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FIG. 15. Raman spectra of two Si&s crystals. (a)
nz =9.5x10" cm-', "T=19 K". (b)n~ =6.5xl0 ~ cm 3,
"T= 23 K". The "T"values were measured with a ther-
mocouple and are about 10 K too low. The scattering
geometry was x(au, a[tiy wtthx II [11O], y II [1TO), and
s i i [OOL) .

donors. The energy of this 1s(A,)- 1s(E) transi-
tion agrees well with its previously published val-
ues. '4 The weaker peak at 104.5 cm ' is due to
the presence of some phosphorous in the sample.
The relative strengths of the two peaks compare
well with the concentrations of the two dopants as
determined by mass- spectroscopic analysis.
Figure 14 shows the Raman spectrum of a more
heavily doped Si:Sb sample. Here the Sb concen-
tration is 5 x 10" cm '. This spectrum appears
similar to that obtained for the "metallic" Si:P
sample containing 5 x 10"cm ' impurity atoms.
This is to be expected. In fact, since the ioniza-
tion energy of Sb donors in silicon is smaller than
that of P donors, the critical concentration n, re-
quired for metallic behavior should be smaller
for Si:Sb than for Si:P."

In Figs. 15 and 16 we show the Raman spectra
of three arsenic doped silicon samples. The
ls(A, ) - 1s(E) transition is seen at 180 cm '. We
observe that the line becomes broader with in-
creasing impurity concentration. The asymmetric
nature of the broadening, as observed in Si:P sam-
ples, is also seen here, particularly in the nd
= 1.7 x 10"-cm ' sample. The line at 130 cm ' is
a mystery to us. We have not been able to at-
tribute it to any known impurity in silicon. Owing
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FIG. 16. Raman spectrum of Si:As with n& =1.7 &10 cm 3. "X=24 K"as measured with a thermocouple. The scat-
tering geometry was the same as in Fig. 15. The peak at 84 cm ~ is a laser fluorescence line.

to excessive absorption at the laser frequency,
we could not study more heavily doped Si:As sam-
ples.

No Stress Stress
A

B C D /
3/2' 8

II B(T&0)

8. p-type silicon samples

In their experiments on zinc- and magnesium-
doped gallium phosphide, Henry et al. ' reported
several Raman transitions. Some of these tran-
sitions, shown in Fig. 1V, can be understood in
terms of an effective-mass treatment of the ac-
ceptor states. The acceptor ground state is con-
structed from Bloch functions belonging to the
fourfold degenerate p, &, (l', ) valence-band maxi-
mum multiplied by appropriate envelope functions.
Transition A, which was observed extremely close
to the laser line, can be attributed to transitions

do, 2 2m (L —M)
dA(E) ' ' " )I' (48)

between the two Krmners doublets of this ground
state split by a residual stress in the sample.
From stress and temperature dependence of line
8,' it was concluded that the final state for this
transition should be I', or I', . Bands C and D can
be thought of as transitions to higher bound states
and the valence band, respectively. Wright and
Mooradian' observed a 8-type line of T, symmetry
in boron-doped silicon and found its behavior under
stress4 to be similar to that of the 8 transition in
gallium phosphide. '

Klein" has given an outline of a theory of the
Raman cross section for the A and 8 transitions
in acceptors. He finds that both the A and 8 lines
have both E and T, components. For the 8 tran-
sition, assuming it is ISP»,(I,)- ISP,&,(I';), he
finds the following values of the E and the T, com-
ponents. The coefficients are approximate, but
the ratio of the two cross sections is correct with-
in the effective-mass approximation:

1Sp,l (&)
do'

~g 2 2m' 2

dQ(T, )
' ' " ff' (48)

~~is ~e
yg Vo lence Ban

FIG. 17. Schematic representation of acceptor Raman
transitions. Adapted from Ref. 1.

Here ~, is the classical radius of the electron and
R» is the resonance enhancement factor defined
below Eq. (14). The dimensionless quantities
2m II —MI/"' and 2m INI~a' are defmed by
Dresselhaus et al.4' and equal 2.25 and 9.36, re-
spectively, for silicon. " Thus, the T, component
should be 17.3 times stronger than the E compo-
nent.

We have studied the Raman spectra of two boron-
doped silicon crystals. In Fig. 18 we show the
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FIG. 18. Raman spectrum of Si:8with n =1.3 &1D cm . "&=22 K" as measured with a thermocouple. Owing to
laser beam heating the actual sample temperature probably rose to about 35 K.

spectrum obtained with a crystal containing ap-
proximately 1.3 & 10"-cm ' boron impurities. It
was taken at a measured temperature of 22 K, but
due to laser beam heating, the actual temperature,
determined from the ratio of Stokes and anti-
Stokes spectra, was approximately 35 K. The
sharp line at 184 cm ' (22.8 meV) is the 8 transi-
tion. The continuum starting near the laser line
and extending to -85 cm ' resembles the single-
particle spectrum seen in heavily doped I-type
silicon crystals. Since acceptor states are de-
rived from near the top of the valence band which
is at k = 0, we do not think intervalley fluctuation
is responsible for this continuum. Transition A
(Fig. 17) between pairs of Kramers doublets of
the ground state split by random stresses could
be a possible explanation for this spectrum. We
have also studied a Si:8 sample with an impurity
concentration of 2.4 X 10"cm '. In this sample we
see the sharp B transition at 184 cm ', as in the
more heavily doped crystal, but the continuum is
much weaker. With this sample we also tried to
measure the relative strengths of the 8 and T,
components. The E component was so weak that
it was difficult to get a reliable value of the ratio
[der/dQ(T, )j/[da/dA(E)]. Our rough estimates in-
dicate that this value is at least 3.4, not inconsis-

tent with Klein's theory. "
We have tried unsuccessfully to find a B-type

transition in the Raman spectra of gallium- and
aluminum-doped silicon samples. In Fig. 19 we
show the Raman spectrum of a Si:Ga sample with

n, = 6.5 x 10" cm '. No sharp acceptor transition
is seen, but the continuum extends to about 30
meV. In a Si:Al sample with n, - 5 && 10" cm ', no
discrete acceptor transition was seen, and the con-
tinuum was very much weaker than that seen in the
gallium-doped crystal. We do not understand the ab-
sence of the B line in Si:Ga and Si:Al." The con-
tinuum of Fig. 19 could be attributed to transition
A, as in the case of Si:B (Fig. 18).

VI. SUMMARY

We have studied the Raman spectra of silit on
single crystals doped with phosphorus and other
n-type impurities as a function of impurity concen-
tration. The ls(A, )- 1s(E) valley-orbit line broad-
ens rapidly and asymmetrically as the impurity con-
centration n~ increases. As n~ approaches the criti-
cal value n, for the metal-insulator transition a con-
tinuum due to intervalley fluctuations starts ap-
pearing as a background. This single-particle-
type spectrum grows in strength with increasing
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FIG. 19. Raman spectrum of Si:Ga withe =6.5X10 7 cm . "T=23 K" as measured with a thermocouple.

n, and above n, it completely dominates the spec-
trum. The valley-orbit line broadens beyond rec-
ognition as the impurity concentration reaches n,
or perhaps just before.

Using the notion that molecular bonding alters
the valley-orbit splitting, we have calculated the
line shape of the 1s(A,)- 1s (E) transition in the
insulating regime. The main features of the
valley-orbit line are understood qualitatively
within the framework of this theory. For the
single-particle spectrum in the metallic regime
we have proposed a single-band random-transi-
tion model that reproduces several features of
the actual data.

A sum rule valid for all concentrations has been
derived for an integral over the spectrum. It
shows that most of the Raman strength results
from intervalley scattering processes due to the

short-range part of the donor potential.
A search has been made for acceptor transitions

in P-type silicon. %'e have observed a low-energy
continuum for boron, gallium, and aluminum im-
purities, but the sharp 8-type transition was seen
only in Si:B.
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