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Numerical calculations of the effect of free holes on the elastic constant C,, of Ge and Si are presented. The
energy of the three top valence bands is obtaired by diagonalizing a 6 X 6 deformation-potential Hamiltonian,
exact to second order in the components of k. The numerical calculations underline the shortcomings of
previous analytical work performed by angular averaging of the energy bands. Our calculations are extended
to obtain the effect of a large [001] stress on the hole contribution to C,, mentioned above. This effect is
anisotropic: The elastic constants C,, and C,s become inequivalent. The calculations are shown to be in good
agreement with experiment in the low-temperature, low-carrier concentration region. This limitation is a direct
consequence of having assumed a Hamiltonian quadratic in P

I. INTRODUCTION

The effect of free carriers on the elastic con-
stants of heavily doped semiconductors was first
discussed by Keyes.!'? Keyes suggestion can be
described briefly as follows. The application of a
stress to a crystal shifts and distorts the elec-
tronic energy bands. The subsequent redistribu-
tion of the electrons lowers the total free energy
of the crystal and thus lowers the elastic con-
stants. In n-type materials, the experimental re-
sults 37 can be easily interpreted because the
theoretical analysis can be carried out with a min-
imum of approximations. In contrast, the case of
p-type Si and Ge is complicated by the nature of
the valence bands of these materials.®"°® We con-
sider in this paper the change with hole concentra-
tion of the elastic constant C,, which was measured
by Fjeldly et al.’® in Si by determining the change
in the speed of propagation of the fast transverse-
acoustic phonon propagating along a [110] direc-
tion. These authors also measured the change in
the velocities of shear acoustic waves propagating
along one of the cubic directions as functions of
stresses along a second cubic direction. In this
situation the crystal symmetry is no longer cubic
and instead of the elastic constant C,, we must
consider two elastic constants, C,, appropriate
for ultrasonic polarization parallel to the stress
and Cg for polarization perpendicular to the
stress. The free-carrier contributions to these
elastic constants are obtained by calculating the
electronic contribution to the free energy of the
crystal both in the presence and absence of a uni-
form uniaxial stress. For this purpose it is nec-
essary to carry out sums over the occupied hole
states which are often approximated, as in Refs.

8 and 9, by either an angular average or a weight-
ed average of the principal directions. This can,
of course, lead to significant errors if the bands
are severely warped (e.g., for Si) and cannot be
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used for the calculation in the presence of stress.
The purpose of the present work is to overcome
this difficulty. This is done by using an effective
Hamiltonian exact to second order in the wave vec-
tor and linear in the components of the strain ten-
sor, i.e., within the framework of the deforma-
tion-potential approximation. The free-energy
changes are calculated using the uniform-mesh
method (UMM).!**!2 The nature and limitation of
the approximations of our procedure will be dis-
cussed at the appropriate places. It is sufficient
here to state that the use of the deformation-po-
tential method limits the quantitative validity of
our results to relatively low carrier concentra-
tions and temperatures. For example, for Si at

77 K this validity extends only to carrier concen-
trations below ~6 X 10'® cm™. At higher concentra-
tions we expect only qualitative agreement between
theory and experiment.

II. THEORY

Let us consider a cubic crystal subjected to a
uniaxial stress along the [001] axis and, in addi-
tion, supporting a shear acoustic wave. The con-
tribution to the elastic constants C,, and Cg4 (We
remember that in the absence of the constant
stress, C, =C,,) arising from the electrons will
be called AC,, and AC,, respectively. The change
in the electronic free energy caused by the pas-
sage of a shear acoustic wave (¢;;=0, ¢;,#0, for
i#j, where ¢;; are the components of the strain
tensor) is

OF =2AC, (€, + €,)+ 2AC,€2,. (1)

The free-energy change accurate to second order
in the ultrasonic strain is given by®

1 3
- @, 1 k (5E(L)2
6F Zk: fOEZ +5 Ek: o5 OE), @)
where 6E{!’ and 6E(’ are the changes in the ener-
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gy of an electron state of wave vector K to first
and second order in the ultrasonic strain, respec-
tively. The quantity f, is the Fermi distribution
function for the chemical potential u. E, is the
energy of the electron state. Equation (2) is also
valid if f, refers to the occupation probability of
a hole state in which E, and y are to be interpreted
as the energy and chemical potential of the holes.
To obtain 6E{!’ arnd 6E{?’ we use the deforma-
tion-potential Hamiltonian

H=AF+a )] €+ 33 (BE+be) (I} - 31°)
i i

+2VF Y (Dkjey+de {IL 1+ 5571, 3)
i<i

where I, 1,1, are the components of the angular
momentum matrices for angular momentum unity
in the x, y, z representation; G is the Pauli spin
operator; A, B, and D are the standard constants
of the valence band of diamond-structure semicon-
ductors; a, b, and d the deformation potentials of
the valence band and A the spin-orbit splitting.
The operator H is a 6 X 6 matrix obtained by form-
ing direct products of 3 X3 (I) and 2 X2 (0) ma-
trices. In those terms in which these matrices
do not explicitly appear, it is understood that the
unit 3 X3 (or 2 X 2) matrix is present. The quan-
tity {,1,} is defined as 3(I,I,+I,1,).

The eigenstates of H are, by virtue of Kramers’
theorem, at least doubly degenerate, so that Eq.
(3) has, at most, three distinct eigenvalues. To
obtain these three eigenvalues, we rewrite Eq. (3)
as

H=H,+W, 4)
where
H,=AF*+a Z € 5)
i

is the completely symmetric component and W the
traceless part of H. The eigenvalues of W are ob-
tained by solving the cubic equation

B -3 Tr(W3r -% Tr(W?3)=0, (6)

which is derived and discussed in Appendix A.
Here

Tr(W?)=£4%+ a, (7
Tr(W?)=-34°-8, (®)
where o and B are given by
a=3(a,, - @)+ (0,-a,)+ (@, -a,))
+5(af,+ o+ 0l), )

J

B=%(aL+aj,+al) -§(a,, +a,,+ L)
+(4/V3)a

2
- —[aiz(zaxx e au) + azxt(zayy =0, =y,

+ 4axxayya zz xyayzazx

+a5y(2au‘axx'aw ] (10)

a,;; and a;; are defined as a;;=3(Bk}+b¢;,), oy
=3(Dk;k;+de;;), i#j. The roots of the cubic equa-
tion (6) are given by

X, =(Trw?/3)!/2 cos(39),
X,=(TrW?/3)* /2 cos(36 +%), (11)
X, =(TrW?/3)* /2 cos (36 + 3m),

where

Trw? ) (12)

6=cos™ (\/ﬁ W

The eigenvalues of H are obtained by adding the
diagonal part H, to the eigenvalues of W.

Let us consider a uniaxial stress X along the
[001] direction. We take into account only the
traceless component of the corresponding strain
since the hydrostatic part affects only the elec-
tronic contributions to C,, and Cg by changing
the band parameters A, B, and D (these changes
are negligible unless the gap at k=0 is very
small). The relevant components of the strain
are thus €, =¢€,,= €=3(S;, - 5,,)X and €,,= -2¢.
(Here S;; are the elastic compliance coefficients.)
Only the part A¥* of H, contributes to the eigen-
values. For the three valence bands (heavy hole,
light hole, and spin-orbit split), we get, respec-
tively,

E, &) =AR+X, - A/3, (13)

E,[K)=AR+X,-A/3, (14)
and

E, (K)= AR +X, - A/3. (15)

The quantity A/3 has been subtracted to shift the
bottom of the heavy-hole band to zero. Under this
static strain ¢, the change in the energy of a hole
state with wave vector k due to ultrasonic strains
€;; is given by

6E(€, K)= E(e, €5 K) - E(¢,0,k), i#j
=6X(¢, K).

Calculation of 56X is detailed in Appendix B.

Substituting these results into Eq. (2), we obtain
expressions for the change in the hole free energy
due to the ultrasonic strains:

OF = (€,+ Ei,)z (Hy+H; + L+ L,+S,+8S,)+ eiyz (Hy+H +L,+L,+S,+8S,); (16)
& H

C
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H,, H,, H,, and H, represent contributions from the heavy-hole band:

—3f,d2[X,+ 3be+(B/2)k? - 3k3)]
(Xs ‘X1)(X1 - Xz)
18f,d*D*K2
(Xl - Xz)s(Xz = Xa)z(xs - Xl)s

H, =

+

x (M(X,M+ N) (2 + k2) — (3X,N + 4M2) {2V3 DK% - 3be(k2 + k2) + B[R (k3 + ) - BRI
+3(X,M + N) {(3DPR2I2 (12 + k2) + 2[3be — B(k* - 3k2)]%+ K2[3be - B(¥* - 3K3)]* - 23 DE2K?[6be+ B(k? - 321D,

)
i - _3f,d?[X, - 6be - B(¥* - 3k))]
z X - X)X, - X,)
+ 36f,d* Dk (M(X,M + N) - (3X,N+ 4M?)[V3 DI2 + 6be+ B(k? - 3k2)]
X, - X,V X, - X, (X, - X, ) ! ' £ ‘
+3(X, M+ N){3D°k% + [6be + B(k? — 3#2)]? + 23 Dk3[6be+ B(k* - 331D, (18)
9(8f,/9E,)d? 2
= (X(a J k)/( 1),(43){"1’ _D;’:;z (X202 + 1) + 3DPR2R2 (k2 + k%) + R2[3be€ — B(R? - 3k2)]2 + K2[3be - B(#2 - 3k2)]°
- 2V3 DE2K?[6be + B(k? - 3k2)] - 2X,[2V3 DK2KS — Bbe(k + K2)
+ BE3(k? - 3k2) + BEA(K* - 3K) I}, (19)
and
18(9f,/9E,)d > DPk2k>
H,= (Xi f: *;1)2'('}(1 ~ X:).g{xf +3DPk + [6be+ B(k? — 3k2)]2 + 2V3 DE3[6be+ B(k? - 3k2)]
- 2X,[V3 DK+ 6be+ B(k* - 3k3) T}, (20)
where
M=2%/3+0%/4 21)
and
N=2A%+1p°. (22)

In the equations above, the quantities X are the

roots of Eq. (6) in the absence of the ultrasonic
strain. Strictly speaking, following the notation
of Appendix B, they should have been denoted by
X3. To simplify the writing, the superindex has
been deleted. The quantities a® and p° are given
by Egs. (9) and (10) with the understanding that the
contributions to a,; arising from the ultrasonic
strain are set equal to zero. L, and S; (i=1, 2,
3, and 4) represent contributions from the light-
hole band and from the spin-orbit-split band, re-
spectively, and can be obtained from H, by cycli-
cally permuting X,, X,, and X, and replacing E,,
by either E,, or E_,.

The angular averages or weighted directional
averages which were employed in previous pa-
pers®*° yield significant errors in executing the
summation of Eq. (16). To overcome this diffi-
culty, we use the uniform-mesh method (UMM),""*2
which samples the value of a function with cubic

-

symmetry at a uniformly distributed set of points
in the irreducible th of the Brillouin zone (BZ).
The basic UMM integration formula for the fcc
structure is given by'?

2 -
SF=33m 2, Masc F*(Auso), (23)
¢ A,B,C
where

aamc = (I/M)(A’ B, C):
M 5c= 274, 5.C)p(A, B, C),
F* (@ =F(@2n4/a) = F(&).

For the fcc structure A, B, and C are integers of
the same parity with the restrictions

M=A=B=C=0
and
A+B+C=3M/2,
where M is the number of divisions used, Z(4,
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B, C) is the number of nonzero elements in the
set (4, B,C), and P(A, B, C) the number of distinct
permutations of the set. V, is the volume of the
primitive cell and the factor 2 takes the spin de-
generacy into account. We neglect in Eq. (23) the
surface factors,'? which arise from the fact that
at the zone-boundary sample volumes are shared
by the next BZ, since in our calculations the in-
tegration does not reach the zone edge.

With uniaxial stress in the [001] direction, the
crystal, and consequently the functions H,;, L,
and S;, have tetragonal symmetry. Equation (23)
is modified accordingly,

2

F =54 > M5 F*@anc)s (24)
¢ A,B,C
with
mAB = 22(4, B)P(A’ B)
and

M=A=B=0, M=C=0.

Except for these modifications, all other condi-
tions following Eq. (23) are retained. The expres-
sions for AC,, and AC,, obtained using Eq. (24)
are

AC“=}W4-? 3 Myp(HF+HF+ LE+ L¥+SF+SP)

A, B,C
(25)
and

ACu=gas L Muallif+ H+ L+ L3 +S5+S]),
A,B,C
(26)
where a is the lattice parameter, and HY is de-
fined as

H}Q =H, (k).

III. RESULTS
A. No stress

The various numerical constants used in this
work are listed in Table 1.3'13'7 We note that the
more recent values of Si valence-band parameters
measured by Hensel and Feher!® (HF) are sub-
stantially different from those of Dexter, Zeiger,
and Lax (DZL).!* We believe that HF’s values
represent more accurately the band shape near
the zone center since in their experiment, a large
stress was applied to remove the ambiguity arising
from the warped band shape. Nevertheless we
performed our calculations with both sets of val-
ues in order to see which set represents the ex-
perimental results better. Unfortunately, diffi-
culties arise in applying our method to the HF
parameters, because the corresponding heavy-
hole band passes through a maximum in the [110]
direction at [k|,_, ~1.15 X107 cm™, which is about
one tenth of the distance from k=0 to the zone
boundary, and then decreases monotonically, thus
causing a divergence in the summation of Eq. (16)
for a given p. It is known that the Si heavy-hole
band is extremely flat along the (110) directions
near the zone center and then increases monoton-
ically to approximately 2 eV at the zone bound-
ary.'®1® This is a limitation of the deformation-
potential theory in the form used here, in which
the Hamiltonian is defined to order k*. The va-
lidity of the analysis is, thus, limited to the re-
gion near the zone center.

To overcome the unphysical divergence obtained
with the HF parameters, we divide the BZ into
two parts: one, a sphere centered at the zone cen-
ter with radius [k|,,, =1.15X 107 cm™, the other
containing the rest of the BZ. AC,, is calculated
by assuming that in the outer region, the valence
bands have different band constants A, B, and C

TABLE I. Various numerical constants used in this paper.

A B c b d Cu Cyi— Cip
(B%/2m) (BY/2m) (W%/2m) (eV) (eV) (10'% dyn/em?)  (10'? dyn/cm?)
Si 4283 —0.752 5252 0.7951 ¢
-2.1°¢ -4.85°¢
40" -1.147" -4.1b 0.802 ¢ 1.026 ©
Ge 13.38f —848f —13.147 —22137 —4.399f 0.680 8 0.812 ¢

3Reference 13.

b Reference 14.
¢Reference 15.
dAt 300 K, Ref. 5.
€At 77 K, Ref. 5.

f Reference 16.
8At 4.2 K, Ref. 17.
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than in the inner region. We use for the outer re-
gion the values, A=4.03 (%#2/2m), B=-0.88
(7%/2m), and C=-4.52 (%2/2m), which give rea-
sonably behaving band slopes and approximately

2 eV at the zone boundary in the [110] direction.
Only the [110] direction of the heavy-hole band is
made continuous by matching the outer band to the
inner one, since the dominant contribution in the
outer region should come from the flat [110] di-
rection of the heavy-hole band. We also compared
various sets of values which gave reasonably be-
having band shapes, and in the region of interest,
all gave similar results. In Table II, our extrap-
olation scheme is compared in the absence of uni-
axial stress, €=0, with another approximation,
in which the angular average with HF’s constants
is used to calculate the contribution from the outer
region. It is obvious that the angular averaging
process underestimates the contribution from the
outer region. This is not entirely unexpected
since the angular average eliminates not only the
divergence but also the large contribution of the
heavy-hole band along the [110] direction.

DZL’s band constants do not pose such difficul-
ties and a straightforward application of Eq. (25)
can be carried out. The results are shown in Ta-
ble II. Table II also shows that at 300 K the the-
oretical calculations do not agree very well with
experiments. To estimate the validity of our ex-
trapolation scheme we define R =N“""/N'™  which
is the ratio of the number of holes in the outer re-
tion to that in the inner region. At 300 K, and car-
rier concentration p=0.22 X 10'® cm™, which is the
lowest impurity concentration measured by Fjeldly
et al.,'® R has the value of 0.96; hence our scheme

EFFECT OF FREE CARRIERS ON THE ELASTIC CONSTANTS...
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should not yield quantitatively correct results.
AC,, was also calculated at 77 K, using both the
DZL constants and our extrapolation scheme with
the HF parameters. In tables and figures, unless
specified otherwise, HF indicates that our extrap-
olation scheme with HF’s constants is used, while
DZL means that their parameters were used with-
out an extrapolation scheme. Figure 1 shows the
hole concentration vs chemical potential calculated
using UMM. Table III shows results of the calcu-
lation of AC,, at 77 K. At low impurity concentra-
tion satisfactory agreement with experiment is
achieved except at p=2.5 X 10'® cm™. We note that
for p=2.5x10'® cm™, AC,, is smaller than when
p=1.5x10" cm™. Mason and Bateman attributed
this to the fact that the sample with p=2.5 x10'®
cm™ was doped with boron while for p=1.5 x 10'®
cm™ the dopant was Ga. A difference with dopant
can arise from the different covalent radii which
place the surroundings of the impurity under ten-
sion. This effect is shown in Sec. IV to be two
orders of magnitude smaller than the electronic
effect. Obviously, in order to confirm the unex-
plained anomaly, measurements on two series of
samples, Ga and B doped, covering a wide range
of carrier concentrations are needed. At higher
impurity concentration there are no experimental
data to compare with our calculations. However,
from the calculation of the initial slope of AC,
vs X in Sec. I B, we expect satisfactory agree-
ment for impurity concentrations up to 6 X 108
cm™, At p=6x%10'® cm™ the value of R is 0.2.
The above-mentioned difficulty in integrating the
approximate energy bands does not arise for Ge,
since there is no flat energy band along (110) and

TABLE II. Relative change in the elastic constant C;, with doping for p-type Si. 7'=300 K.
HF means that Hensel and Feher’s constants (Ref. 13) were used, while the subscript DZL
corresponds to use of the constants given by Dexter et al. (Ref. 14).

Impurity concentration

(10'* cm®) 0.22 0.6 1.5 2.6 7 16
[AC1/ Cly (B)]exp ® -0.09 -0.23 -0.74 -1.22  -2.66 —4.53
[ACwu/Cls (%) 1ueP —-0.14 -0.37 -0.88 -1.42  -3.08 —-5.08
[ACy/ Cly (B)ur © -0.15 -0.39 -0.86 -1.23 —1.66
[ACy/ Cly (%)]pzL —-0.16 —-0.41 —-0.94 -1.46 -2.95 —4.54
(Chemical potential p)yp ° -73.6 —46.9 -21.3 -4.8 29.9 69.5

(meV)

(Chemical potential p)pz -55.4 -27.9 -0.9 16.9 57.4 104.9

(meV)

2Reference 10.

b Extrapolation scheme with A=4.03(%%/2m), B=—0.88(%%/2m), C=—-4.52(K%/2m) is used for

the outer region.

¢ Angular average is used for the outer region.
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—— HF's Constants
18 = ——DZLs Constants I

Carrier Concentration (10'%¢m™3)

|
-20 (o] 20 40 60 80 100 120

Chemical Potential (meV)
FIG. 1. Carrier concentration vs chemical potential
calculated for p-type Si. T =77 K.

there are no significant differences between the
earlier valence-band constants and the recent
ones.'*'® We performed calculations at 4.2 K for
Ge. Figure 2 shows the relationship between im-
purity concentration and chemical potential and
Fig. 3 shows AC,,/C}, vs chemical potential. Cj,
is the value of the elastic constant in the absence
of the uniaxial stress. In order to estimate the
validity of our results we divide the BZ into two
regions in the same way as we did for Si. R is
defined in the same way:

R EN(oul)/N(in)’
i.e., the ratio of the number of holes in the outer
region of the BZ to those in the inner region. At
1=100 meV, where the impurity concentration is
$=3.9%10' cm™, we have an R value of 0.1,
which suggests that quantitative agreement can be
expected for p at least up to 100 meV at 4.2 K.
The radius ﬁ:l of the inner region was chosen to

be 1.15x 107 em™, this choice being to some ex-
tent arbitrary.

B. Under [001] uniaxial stress

The traceless part of the strain, associated with
the uniaxial stress X along the [001] direction is

100
€=el 01 0 |, 27
00 -2
where
€ =-X/3(C,y - Cpy) (28)

has a positive value for compression since X <0,
The initial slope of AC,, vs stress X is

{[aC,,(€) - AC,(0))/X}, -

The initial slopes of AC,, and ACq can be cal-
culated by simply comparing two values of AC,,
or ACg, one at zero stress and the other at very
small stress. Calculated values of the initial
slope of AC, for Si at 77 K are given in Table IV.
Comparison with the experiment shows that the
agreement, good at low carrier concentration p,
becomes poorer at higher concentrations. Our
calculations show that the initial slope of ACy, has
a maximum around p =2 X 10'® cm™, in agreement
with experiment. This maximum was not account-
ed for by the weighted-average process.'° Even
though both the HF and DZL band constants give
poor results at higher impurity concentration, the
results obtained with HF’s constants are closer to
the experiments, thus suggesting that these latter
constants plus our extrapolation scheme give a
better representation of the flat [110] direction of
the heavy-hole band.

It has been shown that both AC,, and AC, tend to
zero in the large-stress limit.!° Our calculation
on Si with impurity concentration 6 X 10'® cm™ con-
firms this, as shown in Fig. 4 together with the
corresponding experimental results. It should be
noted that the chemical potential varies with vary-
ing stress and must be calculated separately for
each stress before calculating AC,, and ACg,. As
an example, for Ge we choose an impurity concen-
tration of 6x 10" cm™ and calculate AC,, and AC,,

TABLE III. Relative change in the elastic constant Cy with doping for p-type Si. 7=77 K.

Impurity concentration

(10? cm ) 0.05 0.15 0.25

0.6 1.5 2.6 7 16

[ACU/Cly (B)exp @ —0.41 -0.27 -0.23

[ACu/ Cls (B)Iue
[ACu/Cly (B)pzL

—-0.098 —0.281 —0.449
-0.100 -0.272 -0.422

-0.958 -1.898 -2.657 -4.251 -5.671
-0.847 -1.628 -2.274 -3.595 -4.846

2 Reference 3.
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FIG. 2. Carrier concentration vs chemical potential
calculated for p-type Ge. T =4.2 K.

under [001] stresses up to 9 kbar. The results,
shown in Fig. 5, indicate that Ge exhibits the same
trend as Si at large stresses, again confirming the
results obtained in the large-stress limit.!°

IV. CONCLUSIONS

A numerical calculation of the effect of free car-
riers on the elastic constants C, and Cq in p-Si
and p-Ge under a uniaxial stress along [001] has
been performed. We calculated the concentration
and stress dependence of AC,, and ACgq, and com-
pared them with existing experimental results.
Because of the intrinsic limitation of the deforma-
tion-potential Hamiltonian, the quantitative valid-
ity of our method is limited to relatively low tem-
peratures and impurity concentrations (at 77 K up
to p=6.0 X 10'® cm™). However, our calculations

-30 T T T T T

ACaq/ Coh(%)

1 1 | 1 1
40 80 120 160 200
Chemical Potential (meV)
FIG. 3. Electronic contribution to the elastic constant,
ACy,, for p-type Ge as a function of chemical potential.
T=4.2K.

show all the essential features observed experi-
mentally. We compared the results obtained with
two different sets of band parameters for Si,
HF’s'® and DZL’s.!* A comparison with experi-
ments at 77 K shows that the HF parameters give
results in better agreement with experiments.

We have, so far, neglected direct impurity con-
tributions to the elastic-constant change. The
simplest way in which an impurity can affect the
elastic constant is through the strain field set up
around it, because of the difference in covalent
radii. This effect can be estimated from the co-
valent radii and the Griineisen constant (~1). For
B in Si we find, taking the covalent radii propor-
tional to the lattice constants a, of C and Si, re-
spectively:

_6._0_‘11 =31]M >,
Cy a,(Si)

where 7 is the fractional impurity content. This
effect is two orders of magnitude smaller than the
pure electronic effects given in Table III.

Note added in proof: We have also used the band
parameters of Si obtained by I. Balslev and P.
Lawaetz [Phys. Lett. 19, 6 (1965)]. The results
do not differ significantly from those obtained
with the HF parameters.
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APPENDIX A: SECULAR EQUATION
We consider here the nondiagonal part of the
Hamiltonian given in Eq. (3):

W=3Y" (BE;+be, )% - $17)
i
+2V3 ) (Dkyky+ de A1, 1)+ (8/3)5 1. (A1)
i<

Since the eigenvalues of W are doubly degenerate,
the secular equation associated with (A1) is of the
form

det(W,, - 5,,))
=X = w )2 (N = w,)2 (A = w,)?
=[23 = (w, + w, + wg)A2 + (wuwg + wew, +wyw,) A
- w,w,w,]2=0. (A2)
Since TrW=0, w,+w,+w;=0. Thus
W Wy + Wyw, +w, W, =3[ (w0, + w, + w,)? - u? — w? — u?]
= —z(w}+ wj + wf) (A3)
and



5436

C. K. KIM, MANUEL CARDONA, AND SERGIO RODRIGUEZ 13

TABLE IV. Initial slope of ACg vs X for p-type Si. T =77 K.

Impurity concentration

(10" cm®) 0.6 2.6 7 16
i exp a
(féfiﬁgfﬁé> (% kbar™) 0.130 0.198 0.173 0.155
- oo
i HF
(Acgﬁ)/(cy ) (% kbar™) 0.143 0.163 0.105 0.080
- o
i \DZL
(M) (% kbar ™) 0.099 0.100 0.063 0.035
-X x=0
i \ang.av. h
(fifi%%f!{) (% kbar™) 0.103 0.067 0.051 0.040
- o0

2Reference 10.

b Angular average combined with weighted average (Ref. 10).

W, W, Wg = — 2y W, (wy +w,) = =3[ (w, + w,)° — w} — w3
= 5(u} + w} + w). (A4)
Now
TrW?=2(u? + wi+ w?) = ~4(w,w, + waw, + wyw,)  (A5)
and

Trws=2(w} +w} + w) = 6w,w,w,. (A6)
Therefore Eq. (A2) reduces to

2 - HTrW?)r -4 Trwe=0. (A7)
We define

a¢‘ = 3(Bk%+ b(i{)
and
a,;;=3(Dkk;+de;;), if i#j.

If we further define

- 2 _1lg2
P=) a,(%-3I?) (A8)
i
=05
ACq4q
g - VA :
S o = 1 ~=r9
= N 2 a 6 ]
N L~ Stress (10° dyn /cm?)
© 3~ . 18 .3
> RS p-Si(6X10 em3)
- ~
s Ac € >~ T=77 K
~
Qost ¢ >~ s
o ~_
w ~~_
S — HF's Constants ~—<
2 -=-- DZL’s Constants ° °
© Experiment
1.0

FIG. 4. Stress dependence of AC, and AC for a
[001] uniaxial stress in Si. Experimental results are
taken from Ref. 10.

and
Q= Z a; {51}, (A9)
i<j
we have
2 Ao >
W=P+ f_§Q+_§o I, (A10)
TrP?=3[(a,, - @)+ (a,, - @)%+ (@, - a,,F],
(a11)
Tr@=al,+ 02 +al, (A12)
and

Trw?= %[(ayy - Ot,,)2+(a,, - arx)2+ (a” - a”‘)z]
+3(a2,+ 02 +a2)+44%/3. (A13)

TrW? reduces to

8 A3 -
TrWe =Tr(P%)+——Tr +==Tr(c*I1)3+4 Tr(PQ?).
(P)+ = Tr(@) + g TG -1 + 4 Tr(PQ)
(A14)
-05
—~ OC,4
E
30 3 a G s
—,_,: Stress (10%dyn /cm?)
< 8 -3
%- p-Ge (6XI0 cem )
> 8Cee T=42 K
|<|o.5- 4
v
S
<
1ok |

FIG. 5. Stress dependence of AC,, and AC for a [001]
uniaxial stress in Ge.
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(Above we dropped all zero-trace terms.)

Tr(P%) = —4(ad, + ad,+ a3,)+ (2,03, + ,,0%,+ 0,05, + 0,00 + 0,00 +a,00) -3a,.0,0,, (A15)

Tr(Q) = ~3a,,0,0 ., (A16)

Tr(PQ?) =103 (2a,, - a,, - a,)+}0%Qa,, - a,, - a,)+505,Qa,, - a,, - a,), (A17)

Tr[@ - 1)*]=Tr(35 -1 -2)=-12, (A18)
and

Tr(W?)=-24° - 3(ad, +ad,+ ad)+3(a,, + ay,+a,)®

-da_a,0a,, - (N300, + 3502, -a,,-a,)+ak2a,,-a,-0a,) + a?a,,-a, - a,)

yy%ee
(A19)
We define a and B, respectively,
o= 30,y - 0P+ (@ = )+ (@ - 0, ]+ 4 (05, + el r o) + 40%/3 (20)
and
B=2(ad +ad,+ad) -E(a,+a,+a, )V rda a0, + @/ V3)a, 00,
—2[a2,Ra,, - a,, - @ )¢ 0220, -0, - a)+adQRe, - a,, - ay)]. (A21)
We have
Tr(W¥)=%a%+a (A22)
and
Tr(W?)=-44%-8. (A23)
APPENDIX B: SOLUTION OF THE SECULAR EQUATION AND APPROXIMATIONS
The roots X,, X,, X, of the cubic equation
X*+a,X+a3=0
satisfy the conditions
X, +X, +X;=0,
X X, + X, X, + X X, =a,, (B1)
and
X, X, X, = -a,.

We write X=X°+ 6X, where X° denotes a root without ultrasonic perturbation while X stands for the
change of a root caused by the ultrasonic strains. Thus, we can write

80X, +6X,+6X,=0,

X06X, +X36X, + X26X, = —ba, + (86X, 6X, + 6X,0X, + 6X;06X)), (B2)
and
60X, 0X, ©6oX
a*’(—X—fl- + Ygz + ?;3) = bag+ (X26X,0X, + X306X, 06X, + X30X,6X,),

which in turn give



and

1
8X, = W[X‘géaz - X3(8X,0X, + 6X,0X, + 6X,0X,) + day + X36X,6X, + X36X,6X, + X26X,6X,]. (B3)

The quantities a, and a, are given by Egs. (6)—(8):

a,= -3 Tr(WF) = -34% - ja, (B4)
a,= -5 Tr(W8) =%A%+1p, (B5)
ba,=—3ba, (B6)
bag =4 6B. (B7)

We write @ =a®+6a and g=g°+ 068, where a° and f° represent a and g in the absence of an ultrasonic per-
turbation.

With a uniaxial stress in the [001] direction, €, =€, =¢, €,,= -2¢, and in the absence of ultrasonic stress
a® and B° are obtained using Eqs. (A20) and (A21). We obtain

a®=108b%€ + 36Bbe(k® — 3k%) + 6B%[ (kK2 — k2) + (B2 — k2)* + (B2 - K2)2 ]+ 12DP(R2R2 + K2R3 + R23A2), (B8)
B°=—324b°€* — 162Bb*€*(k* — 3K7) + S4B be(k} + ) — 2K4+ 26247 + 2022 — 4k2R3) — 54DPb (22 + K2R — 212K2)
+18B% (kg + ky+ k3) — 6B°k°+ 108(B° + D*/V3)2k2K% + 18 BDP[k2R2(K? - 3R2) + RUZ (R — 3K2) + K2R2(R2 — 3R3)],
(B9)
da=12d*(€,+ €, + €,)
+24dD(e, o ko + €k F + € kR, (B10)
and
68 =36V3 dDk,k ke (€, 0k, + €0k, + €. k,) — 18d2 € [3be — B(F - 3k2)] - 18d2€% [3be — B(k? - 3K2)]
- 184°¢,[-6be - B(k® - 3k%)] - 36dDe, k k,[3b€ ~ B(k* - 3k2)] - 36dDe i ko [3be - B(k? — 3k2)]
- 36dDe, k. k [-6be — B(K* - 3K2)]. (B11)

Here we dropped the third-order contributions of the ultrasonic strains. Also terms like €, ¢,k %, are
neglected since they do not contribute to the final result. We write

da=6a'+8a®, (B12)
68="06p""+06p, (B13)

where the superscripts (1) and (2) indicate linear and quadratic terms in the ultrasonic strain, respective-
ly. Therefore

60'") =24dD (€, b,k + €,k ,k,), (B14)
ba®=12d%(&,+ &+ &,), (B15)
68 =36V3 dDP Rk (€, ke, + €0k, + €, k,) — 36dD{e, bk [3b€ — B(K? - 3k%) ]+ €.k 2, [3be - B(K* - 3k2)]
+ €, kR [-6be - B(¥* - 3K2)]} (B16)
and
68*) = —18d*{€,,[3be - B(#? - 3k%)]+ €,[3be - B(k? - 3k2)]+ & [-6be - B(%? - 33 ]}. (B17)

86X and 6X‘® can be obtained from the results above and are given by

W _ 1 <_E'i w _Gﬁ(”> 18
RS [ A S ®19)
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and

1 X° 58¢
ax(z)._: (__Laa(z) _XO GX(I)GX(”+5X(1)5X(1)+5X(1)5X(” +
1 (Xg _th))Z?l _Xg) 4 1( 1 2 2 3 3 1 ) 6
+ (X3 XX + X26XS6X (1) + XX V6 X ’)) . (B19)

Equation (B2) can be used to express the second and fourth terms of the right-hand side of Eq. (B19) in
terms of a and B.

6X{M6XM )+ 6X V6 X( ) + 6Xg 6 X(M

1 [ (6aM)? (ﬁf_+‘¥_°)2+%Ga(l)aﬁ(l)(iziAs'*%ﬁo) _ (68172 <9_2+a_°>] (B20)

T X - X - X0 16 \3 4 12 \3 4
and
X06X{6X ) + X90X {1 6X (1) + XJ0X {6 X
1 A2 6 (1)5 (1) Az ao 2 6 (1))2
G R R e P a4 +ho) 2 (5 ) O e
(B21)
Combining the above relations, we obtain
€2 2
(X[ = 184° D% _JA—(MZ 2 5y [x*f (k2 + K2) + 3DPR2 R2(R2 + ) + R2[3b e — B(K —3k2,)]?
+k2[3be - B(k? - 3k2)]% - 4~/§Dk§k3(3b<+-g(k2 - 3k§))
- m(ﬁ D2k — 3be(k2+k2) +%[k§(k2 - 3K2) + B2(k? - 3K2) ]ﬂ
2
+36d2D°k2R2 0 x°)€=’(”x° P {x% + 3K+ [6be+ B(k? - 3k2)]? + 2V3 DE2[6be + B(k® - 3k%)]
3T 17 42
- 2X9[6be+ B(K? - 3k%) +V3 DE3]}.
(B22)

We define M and N by

M=A%/3+a%/4 (B23)
and

N=24a%+3p° (B24)
We obtain the expression

68X = ~3d” (E,+ &)X+ 3b<+£(k2 -3k%)) + € [X? - 6be — B(k? - 3k%)]

1 '(Xg_ 1) o_ 2) 2" Syz 1 9 z eyl 1 - — e
1842 DPkY € + &)

O - XD - XX - XD
X {M(X‘I’M+ N)(#2 + k2) - (6XON + 8M7) (w/§'Dk§k§ -$be(2+ k§)+!;-[k2(k§+ k2) - ka,kf,])

+ (M +N) [9D=*k§k§<k§+ ¥2) + 312[3be - B(F* — 3k2))2 + 3k2[3be - B - 312)]2

B __ 364G,
-12V3 Dk§k§(3b<+ 5 (k% ~ 3ki)>]} TR X8 - XP (X —XOF

X (M(XM + N) — (XON +2 M?)[18be + 3B(k? - 312) + 3V3 Di2]
+ (XM + N) {9 D%k + 3[6b e+ B(¥? - 3k2)]2 + 6V3 DE2[6be+ B(k? - 3k2) ]}). (B25)
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We define H,, H,, H;, and H, by
D SOXP = (E,+ €)Y H+ €, H, (B26)
B i t
and
% Z: (s X‘“)2 =(&,+ & )ZH + exyz H,. (B27)
k
Thus
o= -3f,d?[ X2+ 3be+ (B/2)(F* - 3k2)]
1o (X3 - XD(XT - X3)
18f,d2D%k?
(X° XO)S(Xg XO)z(Xo XOp WM (XM + N) (2 + k2)
- (3XIN + 4M?) {2V3 D22 - Bbe(k2 + k2) + B[R? (k2 + k2) — 6K2K2]}
+300M + N{3D?k2k2 (k2 + K2) + k2[3be - B(K? - 3k2)]*
+ K[3be - B(k? - 3k%)]2 - 2V3 DR2k2[6be+ B(¥* - 3k3)]}), (B28)
o= -3f,d?[X? - 6be — B(K* - 3k?)]
=

(X5 - &7 - X3)

_— zs;ﬁ(fxg Z_I;g (2xg o7 (M(XOM + N) — (3X°N + 4M?)[V3 DF2 + B(K? — 3k2) + 6be]

+3(XM + N{3D?F4 + [6be+ B(K? — 3k?) ]2 + 2V3 Dk2[6be+ B(k* - 3k%)]}), (B29)

9(8f,/9E,)d>D?k>

H,= o X0 (8~ 307 {X9® (k2 + 12) + BDPR2R2 (K2 + k2) + K3[3be — B(k? — 3k2)]2 + k2[3be - B(R* - 3k%)]*
— 2V3 DE2R?[6be + B(k? - 3k2)]
- 2X%[2V3 DE2K? - 3be(k? + F2) + BE3(K? — 3k2) + BR2(R? - 3F2) ]}, (B30)
and
_18(3f,/9E,)d>DPkK? 4 272 2 2
H,= o X°)2(x° X3P {9+ 307K + [6be+ B(K? — 3k%)]%+ 2V3 Dk2[6b e+ B(¥? — 3k2)]
- 2X%[V3 DF%+ 6be + B(K* — 3F%)]}. (B31)
The contribution to the free-energy change from the heavy-hole band is given by
OF = (E,+ €) D (Hy+ H)+ €, (Hy+ H,). (B32)
H T
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