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The effect of removing the muffin-tin approximation in a relativistic-augmented-plane-wave calculation of the
electronic structure of Nb is described. The most significant effect found is that two experimentally observed
orbits occur in a fully non-muffin-tin relativistic calculation which are not present in the muffin-tin
calculation. The procedure for constructing the potential in the required form and the modifications to the

secular equation are explicitly described.

I. INTRODUCTION

In addition to the approximations made in reduc-
ing the many-body Hamiltonian for the electronic
states in solids to a one-electron problem there
remains the question of a self-consistent determin-
ation of the potential to be used in the single-elec-
tron-band Hamiltonian. In the most popular meth-
ods used for transition metals such as the aug-
mented-plane-wave (APW)! and Korringa- Kohn-
Rostoker (KKR)? methods, the muffin-tin (MT)
shape approximation to the potential is often used,
in which the potential is replaced by a spherically
symmetric potential inside a sphere inscribed in
the unit cell (muffin-tin sphere) and by a constant
in the interstitial region. Although this approxi-
mation to the crystal potential has given a reason-
ably accurate picture of the band structure and
Fermi surface of transition and noble metals® as
well as some compounds,? the effects of non-muf-
fin-tin terms (NMT) on the eigenvalues, wave func-
tions, and Fermi surface have not been fully in-
vestigated. The NMT terms are naturally decom-
posed into two parts®: (a) a contribution Vyg to
the inside region of touching MT spheres and (b)

a contribution Vyyr to the interstitial region. In
the past few years there have been several band-
structure results incorporating the effects of Vyyr
in the calculation® while neglecting Vys. This mod-
el is generally referred to as the warped muffin-
tin (WMT) approximation.” In the case of transi-
tion metals, where the Fermi energy lies in a
partially filled d band, the energy shifts arising
from nonspherical terms inside the MT spheres
may be quite significant.? This is primarily owing
to the fact that the d states being fairly well local-
ized (usually 80 to 90% of d charge density is inside
the MT sphere) are as much affected by the poten-
tial shifts in the inside region as the outside poten-
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tial shifts. Several calculations have been per-
formed using a general (no shape approximation)
potential form in the nonrelativistic approxima-
tion.%°-1' Of these, only Kleinman and Shurtleff
deal with a transition metal (Fe). They truncated
the expansion inside the MT spheres at L=4 and
only considered its effect up to L =2 in the basis
function so that in the nonrelativistic approxima-
tion they could include this term by merely solving
the radial equation with different potentials for the
t,, and ¢, d states. Wakoh and Yamashita'? effect-
ively did the same thing for V and Cr by shifting
the phase shifts for the two different d states. This
was necessary to get a reasonable agreement with
experiment. In their parametrization of the Mo and
W Fermi surfaces, Ketterson et al.'® also found
that it was necessary to include the nonspherical
corrections to the muffin-tin potential in order to
obtain fits which were inside the experimental
error.

Recently Painter, Faulkner, and Stocks® (here-
after referred to as PFS) have calculated and dis-
cussed the shifts in the eigenvalues which result
from NMT terms in Rb, Nb, and Pd at high-sym-
metry points and along symmetry directions using
the Korringa-Kohn-Rostoker discrete variational
method'* (KKR-DVM) in the nonrelativistic approx-
imation. Their results indicate energy shifts of
the order of 2-10 mRy, the shifts being largest
for Nb and nearly zero for Rb.

In this paper, we will describe the techniques
we have used to include NMT effects in relativis-
tic augmented-plane-wave (RAPW) calculations
and consider their effects on a simple model. Pri-
marily as an illustrative example, we present here
the results of including the NMT terms on the band
structure of Nb calculated in the overlapping
charge-density model using the Slater-exchange
approximation. This is a particularly useful ex-
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ample in that the same model-potential construc-
tion was used by Mattheiss'® to obtain the nonrela-
tivistic MT bands (which compare reasonably well
with the de Haas-van Alphen data'®) and by PFS in
their investigation of NMT effects. We find: (a)

A full treatment of this model predicts two orbits
seen experimentally but not present in the MT cal-
culations. Other orbits are also tentatively pre-
dicted which will be looked for in future experi-
ments. (b) Although in agreement with PFS on the
size of the effects of the nonspherical terms inside
the muffin-tin spheres, we find the potential cor-
rection in the interstitial region (WMT) to be lar-
ger than they do. This is discussed in terms of
the basis functions used.

As this is a test to assess the significance of
these terms and the techniques for dealing with
them before proceeding to a full self-consistent-
field (SCF) calculation, comparison to experiment
and the results of others will be brief. We here
focus on the sensitivity to the NMT terms, the
techniques used, and the convergence properties
of various expressions which must be truncated.
We will report a full comparison using the fully
SCF results when those calculations are completed.

II. METHOD

A. Construction of non-muffin-tin potential

Since the APW basis functions have a dual repre-
sentation, i.e., plane waves in the interstitial re-
gion and a spherical harmonic expansion inside the
MT spheres, it is appropriate to consider the same
dual representation for the density and potential.
Thus:

Z V(") K,(?) 7<R,
vE) =" (1)
3 V(K)e! Rwi y> R,

We will refer to this as the general potential (GP)
as it contains no shape approximations beyond the
truncation of the series. To construct the potent-
ial, the spherically symmetric atomic density of
Nb with configuration 4d*5s was superimposed to
generate an approximate crystal charge density.
The lattice constant for Nb is chosen to be 6.237 74
a.u. which is the same as the value used by Ander-
son et al.'” in their SCF calculation for Nb. The
MT sphere radius is taken to be approximately
2.64 a.u. for the nonoverlapping MT spheres. The
charge inside the MT spheres was decomposed in-
to angular momentum components, whereas the
charge in the interstitial region was Fourier ana-
lyzed. Owing to cubic symmetry only certain lin-
ear combination of spherical harmonics,'® i.e., the
well-known cubic harmonics, will survive. To

check the convergence of the two series, the charge
density from the interstitial region Fourier ex-
pansion was calculated at the MT sphere boundary
and compared to the values obtained from the cubic
harmonic expansion of the interior.

The construction of this dual representation of
the charge density for the overlapping charge-den-
sity model is straightforward.'® We thus start
with the dual representation for the charge density

Zp,(r)K, (7)) -226,(r) for r<R,
p(F)=<1 )

Z pnei E,,;
n

which is the form that would naturally be obtained
from the RAPW wave functions in an SCF calcula-
tion. Here R is the radius of an MT sphere, Z is
the atomic number, K, is a vector of reciprocal-
lattice space, and K,(#) are the cubic harmonics.
In Eq. (2) we have used atomic units and we have
multiplied the charge density by — e, the charge of
an electron.

The Coulomb potential is constructed first. In
order to avoid the complicated real space part of
the Ewald sums which arise in superimposing the
multipole potentials, we reorganize Eq. (2) such
that the potential consists of three parts arising
from: (a) a neutral spherical charge-density
“pseudoatom” within the muffin-tin spheres about
each atomic site, (b) the multipole moments with-
in the MT spheres, and (c) the background charge
extending throughout the zone. The neutral pseu-
doatom potential is easily obtained by straight-
forward integration and the background potential
by Fourier analysis. The displaced multipole po-
tentials can be expanded around the central cell
using the well-known properties of the spherical
harmonics.

To construct the potential we rewrite this repre-
sentation of p(¥) by continuing the plane-wave part
smoothly inside the MT sphere and subtracting it
out we can write

p®=( T i) K,0) = X o7 ) 5,0
1 n

for > R,

+ Y pnet T _2z5,(n), (3)
n

where 6,(7) is a step function which has the value
one inside the muffin-tin sphere and zero outside
for each cell.

To do the Ewald decomposition, we add and sub-
tract a density (¢3/7%/%)p°Qe~<*r* choosing the Ew-
ald parameter € such that the Gaussian can be ap-
proximated as entirely inside the muffin-tin
sphere. (The value 2.3 was actually used.) p° is
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the K=0 Fourier component of the charge density
and  is the volume of unit cell. Then one can
write

P(Y')=P,,(f)+p~m; (Y'), (4)

where
P4(F) =< D oM K (P) - aneik,,.?
4 n

3

+ﬂ%—2-poﬂe"2'2 - 2260(1’)> 8,(7), (5)

- 3

pNFB(-I.‘) - Z pne( Kper +p0 _ Tri?'fi poﬂe_ezrz.

n#0
As is seen from the above construction the inte-
gral of p, over the MT sphere vanishes. Expanding
the plane-wave part inside the MT spheres in cub-
ic harmonics and adding it term by term to the
sum ), p,K;, and Fourier transforming the Gaus-
sian we obtain a similar expansion'® for the “pseu-
doatom”

Pa= D By (") Ky () - 225,(7) 6)
1

which is for a neutral entity within the muffin-tin
sphere. As such the explicit statement that 7 is
less than the muffin-tin radius can be dropped.
Fourier transforming the compensating Gaussian
which must be subtracted from the plane-wave
expansion (which has been extended into the muf-
fin-tin spheres), one obtains the modified plane-
wave contribution

prrp= 2 ("= ple K/ ) T, %
n

The Coulomb potential is then readily obtained as
a combination of the standard results for the
multipole expansion and the Fourier expansion.
Within the muffin-tin spheres, the displaced
multipole (other site) potentials can be expanded
about the origin® to put the results in the form re-
quired [Eq. (1)]. This treatment of the higher
multipole moments of p, necessitates two trunca-
tions. First, one must truncate the lattice sum-
mation. Since p, has been constructed to be neu-
tral, there is no other site contribution from p,,
And the terms for p, and p, decrease as (1/7T)***
where T is a lattice vector, so the lattice sum can
be performed directly. (In practice, we included 11
near-neighbor shells in this sum.) Second, the ex-
pansion of the displaced multipoles introduces
high-order terms. However, this expansion in
even L is rapidly convergent with the expansion
parameter (7/T)®<%. The largest term omitted
is of the order of (7/7T)'® which we believe to be a
quite adequate treatment of these very small

terms.

The L> 4 multipole contributions also extend into
the interstitial region and this contribution must
be Fourier analyzed. This can be done analytical-
ly'® using the simple expedient of extending these
terms into the muffin-tin sphere region. As this
extension merely selects a unique Fourier-series
expansion (which need only converge to the multi-
pole terms in the interstitial region), we may se-
lect this extension for our convenience—in this
case, rapid convergence. The functional form
actually used was a radial function (47" + B, 7*~')
multiplying the cubic harmonic. This resultant
analytic form for the Fourier-series expansion of
these terms converges as (1/K,R)*. In these cal-
culations, we used 81 stars which is far in excess
of what was required. Thus we have constructed
the required dual representation of the Coulomb
potential.

Next we add to this the exchange contribution.
We have used here Slater’s free-electron approxi-
mation?

Ve (F) = = 6a[(3/87)p (F) ]/, (8)

where p(F) is the local density of electrons and «
is chosen to be unity. Writing

p(T) =po(7) +p 4(7) K (?)

+ps(NKs(P)++-+, <R, 9)

for the region inside the MT sphere, we note that
po is much larger than p,+p, and therefore we con-
sider a Taylor expansion of Eq. (9)

w®=-(2)"

m

x<3p(1,/3+p—g§—3K4(7')+ppﬁ-§K6(1’)+ .- > .
(10)

For the region between the MT spheres we use a
fitting technique.®” In this method one takes a
random sample of points outside the MT sphere,
finds p'/3(F) at these points, and then does a least-
square Fourier fit to these values. The procedure
gives accurate results (better then 0.01%) for a
random sample of about 200 points and 20 stars

of reciprocal-lattice vectors.

This completes the construction of the potential
in the required dual representation. However, it
is useful to adjust the zero of energy such that the
average potential in the interstitial region 7:

o 4nRS ) JAR)
V= V(K"_O)-m";, V(K,,)Tn;{_ (11)

is zero.
In Fig. 1, the radial components of the L =4 and
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FIG. 1. Nonspherical radial components of the cubic
harmonic expansion. Although these components have
the opposite sign, their effect is roughly additive as can
be seen from a plot of the cubic harmonics (Fig. 3).

L =6 terms of the crystal potential are shown for
the overlapping charge-density model of Nb. As
an aid to the reader, Fig. 2 shows the angular
variation of the cubic harmonics. These non-
spherical terms are quite negligible in the vicinity
of the nucleus where the nuclear potential and as-
sociated spherical (in this model) atomic density
dominates. However, near the MT boundary, the
nonspherical terms grow until they are the same
size as the spherical term. This is a natural con-
sequence of the fact that if the muffin-tin approxi-
mation were to be exact for this case, the spheri-
cal component would go to zero—to be continuous
with the MT “floor” which is zero by construction,
In the Nb model considered here, the MT potential
has a discontinuity of 0.13 Ry. Although the radial
parts of V, and V; have opposite signs, when mul-
tiplied by the corresponding angular functions,
their effects on the matrix elements to be dis-
cussed below are additive rather than cancelling.
(See Fig. 2.)

(oo

Ke Ka

FIG. 2. Plot of the ! =4 and ! =6 cubic harmonics in
a plane perpendicular to the [110] direction. Lobes
marked with dashes are negative. As the bcc nearest-
neighbor atom is along the [111] direction, one can see
that the V, and V terms (Fig. 2) would both add to bond-
ing of nearest neighbors.

As one has used two very different representa-
tions in the two regions inside and outside the MT
spheres, it is possible to make checks on the pre-
cision of the formulation by comparing them at the
MT sphere surface where they should yield the
same result. If one performs a cubic harmonic
decomposition of the Fourier-series expansion and
compares this to that obtained directly inside the
MT spheres, one checks the precision of the ex-
change p'/?® expansion inside the spheres and the
numerical fitting in the interstitial region. Nothing
is learned about the multipole lattice sum trunca-
tion as this was the same for both the inside and
the outside expansions. The results agreed to
within the numerical noise of the fitting (0.01%).
This is reassuring as the MT boundary is the
worst case for the linear expansion. In light of
this good agreement for the spherical harmonic
components, it is possible to get quite different
information by comparing the actual values calcu-
lated as these expansions involve very different
truncations. The Fourier-series expansion is
truncated in reciprocal-lattice space but contains
all L values. Further, from the previous test, we
can expect that its convergence is excellent. Thus,
by comparing the values of the two expansions, one
can gauge the error resulting from truncation of
the cubic harmonic expansion at L =6. One finds
that the largest error is now 0.01 Ry which can be
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immediately compared to the 0.13 Ry for the muf-
fin-tin approximation. If the nonspherical terms
result in corrections <0.007 Ry, that omitted by
the truncation must have an effect which is less
than 0.001 Ry (our goal) just from arguments
based on size alone. But further, the next L =8
term will at worst couple a d-type orbital with one
of L =6 character.

B. Matrix elements

Using the dual representation of crystal potential
obtained above, one has to solve for the eigenval-
ues and eigenfunctions of the Dirac equation for a
relativistic electron in a periodic potential®*:

(ca D+ Bmoc®+ V¥, =W, ¥oti, (12)

where ¥, 1 is a four-component function and ¢ and
B are the 4 x4 Dirac matrices.

a= 0g¢ . g= 1 0 )

oc 0 0 -1

01 0 -¢ 1 0
O, = ’ 0‘_\': y Og=

<1 0> <z' 0> <o —1>

are the Pauli spin matrices p=- %V, m, is the
rest mass of electron, W, is the relativistic en-
ergy including rest mass, V(T) is the periodic po-
tential, and » and k represent the band index and
the reduced wave vector, respectively.

In the RAPW?® method §,% is expanded in terms
of basis functions ¢2;(K;,F):

(13)

Y=Y CirK) oin(K,, T) (19)
i,s

and the CS;(K,) are determined by solving the vari-
ational secular equation.

The crystal potential is decomposed into three
different terms:

V(E) = Vyer (F) + Vygyr (F) + Vigg (). (15)

Vur is the muffin tin which consists of the first
term of the expansion for each region: the spheri-
cal term within the MT spheres and the constant
term in the interstitial region. Vyyr is the re-
maining Fourier expansion in the interstitial re-
gion and Vg is the remaining cubic harmonic ex-
pansion in the MT spheres. To include the effects
of Vyyr and Vys, we need only add the matrix ele-
ments of these terms to the matrix elements of
variational expression and solve the secular equa-
tion. This amounts to performing a variation on
the general potential with a basis set constructed
using the muffin-tin potential. Within the MT
spheres, this represents a slight restriction in the
variational freedom but as the effects of the nonspher-

ical terms are small, this should be entirely neg-
ligible. This need not be true, of course, for very
strongly deformed systems but such systems are
not our concern here. The RAPW basis functions
have the dual representation® of the form

X(s))ei-ﬁi'?, Y= R
~0

gm((”) XKM(:;’)
Z Aiu( , <R
Ki

@/ Y Xera®

X, 7)=

which dictated the representatlon used for the po-
tential. Here k k+K,, where K is a reciprocal-
lattice vector;

are the Pauli spinors; and

xe@= 3" CUzj; p=s,8)Yi=*(?)x(s)

s=+1/2

C is the Clebsch-
=1. k is any nonzero in-

are the spin angular functions.
Gordan coefficient®® for j
teger such that

k=1 forj=1-3%, —(1+1) forj=1+%.

The radial functions g, and f,, satisfy the coupled
radial differential equations for a trial energy pa-
rameter E,. (The subscript » is used to denote
this energy.) The coefficients A , are determined
such that the large components are continuous over
the boundary of the MT sphere.

The matrix elements of Vyyr are merely its Fou-
rier transform since the basis functions are plane
waves in this region. Of course, it is necessary
to actually perform the Fourier transform®7’ of the
expression of Eq. (1) since that plane-wave expan-
sion does not contain the requirement that Vy,,; be
zero within the muffin-tin spheres except by the
limitation of range. The Fourier transform need
only be multiplied by a Kroniker 6 function on the
spin index (s and s’), since the relativistic effects
in this term are negligible (order | Viyrl/mc? rela-
tive to the size of the correction). The inclusion
of Vyyr is thus quite simple and requires a negli-
gible amount of additional computational effort.

The matrix elements for Vs are rather more
complicated:

<¢3(E( 5 F)l Vxs l¢s’(ij , TP

(1=17) 'kR)](kR) ,
—(1/9) : ]1 L R ’ DSS, ’
g(:' gK’(R)gK(R) 2}\: K KA kKN

(17a)
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D =(4n)? Y Y Clk'n’s’) Clkps) Y 4(k,)
TR T
XY?“'—s,(ijx;(’u'lKXIXKu)’ (17b)
Reon= [ ar7 0 g+ W fol  (170)

As noted above, the values of  andj are given by
the single index k. Thus we have given the argu-
ments of the Clebsch-Gordan coefficients in terms
of k, u and s. In this expression, j, is a spherical
Bessel function and should not be confused with the
quantum number j. A straightforward evaluation
of this expression proves quite inefficient and ex-
pensive so some care must be used to evaluate
these matrix elements. The radial (R,,,,) and an-
gular (D$S.,) parts of these matrix elements can
each be evaluated in a much simpler fashion.

By studying the R, .., energy dependence, one
finds that it is a quite slowly varying function if
one uses-orbitals normalized within the MT
spheres. A cubic fit was found to reproduce the
results in an energy range between 0.0 and 1.2 Ry
to better than 0.01%. Thus we determine these
polynomial fits at the outset and use them for all
the hard calculations.

To evaluate the D%, , the summation on y is
performed analytically. This yields a result which
can be written

Dis::'k(ki’ kj) =<SIMK (ki)lu'x(ki ’ kj)M:'(k])ls'> )
(18a)
where

M (k)= k| +5,6- LK), (18b)

I”:)\(k",kj)= fPI(E,‘;’)K)‘PV(z”'f’)dZT, (180)

where S, is the sig& of k; P, is the Legendre poly-
nomial; and the L(k) is the angular momentum
operator for k. The result will contain a product
of Gaunt coefficients and explicit functions of the
angles of the wave vectors. Since there are only
a few Gaunt coefficients, they can be evaluated
and stored once and for all. All terms of Eq. (18)
involving a spin-orbit term have been neglected.
These remaining terms are actually zero for no
spin-orbit coupling through the cancellation of the
different j (sign of «) contributions for the same 1.
They are thus a correction of order £/W to the
already small Vys matrix element where £ is the
spin-orbit parameter and W is the bandwidth. Ac-
tual numerical tests against the results of the full
expression show that, for Nb, a maximal upper
bound in the eigenvalue error made by this omis-
sion is less that 0.0001 Ry. This is well below the
precision sought (of 0.001 Ry). The omission of

these terms greatly reduces the complexity of the
calculation and thus considerably reduces the ef-
fort (cost!).

The k summations in Eq. (17) were carried
through I(x) < 4 for good convergence of the sums.
This limit was determined by examining the con-
vergence for the case where the basis functions
were plane waves written as RAPW’s, The matrix
element calculated could then be compared with the
analytic result. Truncation beyond /=4 gave er-
rors compatible with the omission of the spin-or-
bit components of this term (0.001 Ry). Trunca-
tion at /=3 gave errors as large as 50% and at
1=2 occasionally gave results of the wrong sign.

Using the above approximations and techniques,
it was found that the calculation for eigenvalues
and eigenvectors took roughly 25% longer than for
the muffin-tin approximation alone. Almost all of
this increase was for the nonspherical terms.

III. RESULTS

We now compare three separate band calcula-
tions for this overlapping density model: (a) its
muffin-tin approximation; (b) the full general
(shape) potential, and (c) the inclusion of Vyy;
but not Vys. This intermediate calculation is in-
cluded as it has been postulated that Vyyr should
be the dominant muffin-tin correction®* and this
intermediate approximation requires much less
effort. Energies and wave functions were calcula-
ted on a regular cubic mesh of linear dimension
(m/4a)in the 4 th of the Brillouin zone. The resul-
tant energy bands for the general potential (GP)
are shown in Fig, 3. It is revealing to note that the
size of the non-muffin-tin effects are sufficiently
small that it would be difficult, if not impossible,

\
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FIG. 3. Energy bands resulting from the overlapping
charge-density model with the Slater-exchange approxi-
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TABLE 1. Energies (in mRy) found using various
shape approximations. The nonrelativistic equivalent
representations have been included for convenient com-
parison to nonrelativistic calculations.

Eqr  Ewmr Egp OEwmr OEce

Iy Lo+ 220.8 221.5 221.6 0.7 0.8
Ly Ty 6747 6669 6616 -7.8 —13.1
T+ 683.5 675.6 670.2 -7.9 -13.3

I, Ty 8582 860.7 8659 2.5 7.7
Hy Hg 3703 3749 380.0 4.6 9.7
Hyy Hg 10263 1025.1 1023.9 1.2  -2.4
Hypt 1038.9 1037.6 1036.3 -1.3 -2.6

to display the differences on a plot of this scale.
The comparisons of the three calculations will be
separated into three categories: the energies
(eigenvalues); the wave functions (eigenvectors),
and the Fermi surface. Although the Fermi sur-
face is but another aspect of the energy spectrum,
it is one that deserves special attention and ac-
cordingly has been given it.

A. Energies

The energy levels at I and H are shown in Table
I. These two points have been chosen since they
have full cubic symmetry and thus their symmetry
labels yield a maximum of information. The I';
level (s state) is hardly affected by the NMT inter-
actions as it is rather spherically symmetric. The
remaining levels in Table I are all d states and,
being more anisotropic, are more strongly affect-
ed. The t,, (xy like) levels are lowered and the ¢,
(32% — 7° like) are raised. This is the correction
used by Wakoh and Yamashita'? to adjust their KKR
band structures.

To obtain a more global view of the effects on
the band structure, we have performed a Fourier-
series fit to the RAPW data points. As the bands
have I', symmetry, the expansion coefficients of
all vectors of a star (of primitive translations in
real space) will be equal. Thus we expand in star
functions which are a symmetric combination of
all members of a star.?® For the 55 data points,
we least-squares fit 30 star functions yielding fits
with an rms error of 4-5 mRy. For the MT and
GP calculations, additional points (near the Fermi
energy) were calculated such that 53 stars were
used to fit 100 data points. This reduced the rms
error to 1.8-1.9 mRy. These Fourier-series fits
were then used to perform all further eigenspec-
trum analysis.

The average energy of the band is given by the
K=0 function (f=1). These values have been tab-
ulated in Table II for all three calculations. This
value is actually far more precise then the rms
error of the fit. (By comparing the two fits for

TABLE II. Bandwidth and center of the first six bands
for the three calculations. The bandwidth is defined as
the energy separation of the highest and lowest energy
in the band. The center is the average energy (i.e.,
first moment) of the band. Energies are in mRy.

Width Center
Band MT WMT GP MT WMT GP
1 3424 339.2 337.1 434.6 434.6 435.0
2 304.4 292.0 281.6 553.2 551.2 550.5
3 462.8 467.5 469.9 660.5 658.6 657.4
4 342.8 349.5 353.7 828.0 825.1 824.8
52 289.6 285.4 282.4 926.2 922.5 923.1
62 513.3 495.3 470.8 1006.1 992.2 1007.7

2 Calculations of center performed with reduced pre-
cision as these bands are well above the Fermi energy.

the MT and GP calculations, we would estimate
that the value is precise to 0.1 mRy). Table II also
includes the bandwidths which are obtained merely
as the energy difference between the highest and
lowest energy in the band. As can be seen, the
bandwidth is rather more sensitive to the inclusion
of non-muffin-tin terms than the band position as
noted previously.®

The inclusion of relativistic effects causes more
hybridization of bands, the s band lowering rela-
tive to d bands, the triply degenerate nonrelativis-
tic level T',,, splitting into “doubly degenerate” Ty,
and “singly degenerate” I',, with an energy sepa-
ration of about 9 mRy. (Note that we are factoring
out the spin-flip degeneracy in our discussion of
the relativistic bands.) The splitting of the doubly
degenerate A, band and the anticrossing of the G,
and G, bands near the Fermi energy, owing to
spin-orbit interaction have significant effects on
the topology of the Fermi surface. This will com-
plicate comparison with the nonrelativistic results
of PFS. Nonetheless, we have compared the shifts
owing to the nonspherical potential with those given
by PFS with good overall agreement. We especial-
ly focused on the shifts in the energy levels at
points of high symmetry and along the £ symmetry
line. We found, however, that the WMT terms had
a somewhat larger effect than the nonspherical
terms, whereas PFS found them to be roughly
equal in importance. This can perhaps be under-
stood as a limitation in the variational freedom of
the basis functions used by PFS. They used KKR
wave functions through I=4 for the interior of the
muffin-tin sphere region which were then extended
into the interstitial region using the spherical and
Neuman Bessel functions. This is a severe trun-
cation of a procedure that would be exact if carried
to infinite order. Thus their basis functions are
no longer solutions of the muffin-tin potential and
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do not have adequate flexibility to fully respond to
VWMT‘

The density of states was obtained for the MT
and GP cases using the tetrahedron decomposition
of the irreducible wedge.?® The MT calculation
yielded Ny (E ,=0.6455 Ry) = 10.5 states/Ry/spin
while the GP yielded Ngp (E,=0.6412 Ry)=11.2
states/Ry/spin. The shift in Fermi energy (4.5
mRy) is slightly larger than the shift in the center
of band 2 (2.7 mRy) and band 3 (3.1 mRy). As the
Fermi energy falls on the upper side of a peak so
the density of states is rapidly falling (dn/dE
=-350 states /Ry /Ry/spin); this increase in the den-
sity of states can be understood as an “almost
rigid” band effect.

B. Wave functions
To investigate the NMT effects on the wave func-
tions, we first consider the matrix elements of an
approximate angular momentum projection opera-
tor using the wave functions obtained for the two
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FIG. 4. Comparison of the bands found along Z with
those resulting from the muffin-tin approximation.
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FIG. 5. Angular momentum decomposition along the
line Z. For clarity, we have shown an ! decomposition
by summing the components for j=(I +3) and j=(1-3).

cases of an MT and a general potential. This very
crude index involves extending thej character to
the Wigner-Seitz radius using spherical Bessel and
Neuman functions and thus mainly reflects the
changes inside the MT spheres. By expanding the
scale, we show the non-muffin-tin energy shifts
along the T direction in Fig. 4 and the angular mo-
mentum decomposition for band 3 in Fig. 5. As
can be seen, the s character is relatively un-
changed but the NMT terms increase the p charac-
ter and decrease the f character, while the d and

g (I1=4) characters first increase and then decrease
as one crosses the zone from I"' to N. Band 2 is
essentially unchanged by the NMT terms in the ©
direction. This is not surprising as it is pure d-
like in this direction. Examining the other symme-
try directions, one finds the same trends: p char-
acter increases, f character decreases, d charac-
ter increases near the zone center and decreases
near the zone edge. s character is affected only

in the region of an anticrossing with a d band and
then is generally increased. These effects are
never greater than about 5%.

One expects to find larger effects in the inter-
stitial region away from the dominating ionic po-
tential. To examine this, we have calculated the
charge densities resulting from each of the calcu-
lations. As might be expected, the gross features
are not greatly changed. The interstitial charge
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of 1.365 electrons for the MT is reduced slightly
to 1.353 for the WMT and 1.351 for the GP calcu-
lations. Making a spherical harmonic decomposi-
tion at the MT radius, we find that the /=0 com-
ponent is increased by 2%. On the other hand, the
=4 component is more than doubled and the /=6
component more than tripled. The primary effect
is to increase the charge in the direction of the
near-neighbor atoms. At the unit-cell surface, the
charge is increased by 9% in the (111) (#x) direct-
ion and decreased by 6% in the ( 100) and ( 110)
directions.

C. Fermi surface

A model for the Fermi surface of niobium was
proposed by Mattheiss'® and generally confirmed
by experimental data'® and further theoretical cal-
culations.'” However, none of the previous calcu-
lations have taken into account the NMT and rela-
tivistic effects. The relativistic terms in the Ham-
iltonian give rise to the splitting of I' centered hole
octahedron and jungle-gym sheets of Fermi sur-
face. The NMT terms tend to increase the volume
of N-centered distorted ellipsoids and decrease
the size of the surfaces near I'.

To obtain the calculated Fermi-surface areas,
given in Table III and the cross section shown in
Fig. 6, we have used the 53 star-function Fourier
fit. The areas were calculated using an orbit trac-
ing routine which obtained the required gradients
by finite differences.
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The average percent error for the MT calculation
is 4.0% over the nine orbits for which both experi-
mental data and MT results exist. This is in good
agreement with 4.4% for Mattheiss'® indicating that
relativistic effects are small—at least for these
orbits. (We will compare these extensively to
Mattheiss with the view that this a good represen-
tation of a nonrelativistic MT calculation for the
model. We thus assume the small difference in
lattice constant used to be negligible.) For these
same nine orbits, the GP calculation yielded an
average percent error of 10.7%.

The non-muffin-tin terms are seen to have a
dramatic qualitative effect on the hole octahedron
where they produce two additional orbits (a’ and
B). They sufficiently deform the octahedron that it
begins to have features more like the jack in Mo
than an octahedron. This quite naturally resolves
the speculations’® about the origins of the o’ and
B orbits.

We have also tabulated in Table III the band
masses. As can be seen, one other effect of the
non- muffin-tin terms was to increase the masses
by roughly 9% in agreement with the increase in
density of states (7%). This was also the average
percent difference.

Finally, it is worth noting one other feature of
the Fermi surface which has little to do with the
non-muffin-tin terms (and probably not with the
relativistic effects either). In Fig. 6, one ob-
serves a protrusion in the I' — P — N plane on the

TABLE III. Fermi-surface cross sectional areas (in a.u.) and band masses (in electron

masses).
Calculated Experimental Calculated
Field areas areas masses
direction Orbit 2 b MT GP c d b MT GP
[100] OoCT(T) 0.247 0.269 0.244 soe -1,92 =193 -2.23
OCT(A)-B 0.020 0.023 ces e =043
OCT(A)—a’ oo (XX 0.023 0.035 0.035 e e =0.39
ELLO)=-v4,, 0.180 0.166 0.194 0.178 0.179 -0.97 -0.91 -1.09
ELL®N)-v3_g 0.239 0.223 0.243 0.228 0.228 -0.83 -0.88 -1.06
JG(A)-a 0.033 0.036 0.029 0.039 0.039 -0.57 -0.55 =0.46
JG(N) 0418 0.406 0.431 1.74 1.86 2.11
[111] OCT() 0.127 0.136 0.100 see . -1.54 -147 =143
ELL(N)=-V4,3,4 0.186 0.177 0.1%4 0.181 0.180 -0.73 -0.74 -0.85
ELL(N)=Vy 5.6 0.243 0.238 0.256 0.228 0.227 -1,12 -=1.09 -1.19
JG(T) 0.208 0.227 0.195 e s -2.29 -2.33 -=2.69
JG(H)-n 0.526 0.518 0.500 0.521 0.521 -1,17 -=1.04 -=1.01
[110] OCT(T) 0.189 0.204 0.172 see soe -1.66 -1.78 -~1.92
ELLN)=-vg_g 0.189 0.179 0.199 0.184 0.184 -0.79 -0.75 -=0.86
ELL©N)-v, 0.213 0.220 0.234 0.212 0.212 -0.70 -0.70 -0.74
ELL@WN)-v, 0.263 0.254 0.270 0.240 0.240 -0.98 -0.91 -0.96

2 Notation used in Refs. 15-17.

b Reference 15,
¢ Halloran et al., Ref. 16.
dScott and Springford, Ref. 16.
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FIG. 6. Fermi-surface cross sections in the symmetry
planes. Two bars shown as the “hole octahedron” are
the two newly found orbits. Arrows indicate the position
of the nearby found jungle-gym orbit.

jungle-gym arm which is, at best, only hinted at
in the results of Mattheiss!® and the reduced lat-
tice-constant results of Anderson ef al.!” This
protrusion is insufficient to produce extra orbits
in the [100] direction. However, it is adequate to
explain the anomalies in the 1 orbits seen by Hal-
loran et al.'®* We have plotted calculated orbits for
their Fig. 4 and find anomolies at the same angles
(within + 3°). We also find that there is another
similar anomoly below 30° with a jump to much
larger frequency (0.65 to 0.8 a.u.) and a dramatic
increase in mass (band mass of 3.5). These may
well prove unobservable.
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IV. CONCLUSIONS

We have presented here a detailed discussion of
a procedure for including the non-muffin-tin terms
into the RAPW method. Using the overlapping
charge-density model, we have explored the sig-
nificance of removing the muffin-tin shape approxi-
mation and found it to be quite important. The
non- muffin-tin terms result in energy shifts con-
sistent with the empirical adjustments made by
Wakoh and Yamashita.’? Most significantly, they
are found to produce two de Haas—van Alphen or-
bits which are not otherwise present in the calcu-
lation. Overall, the GP calculation yields some-
what poorer calculated cross-sectional areas
which is probably revealing deficiencies in the
overlapping charge-density model: surely it is
less likely for such a crude model to get structure
correctly than to get the average features (MT).
We find that the interstitial (WMT) correction is
the major non-muffin-tin correction in contrast to
PFS.® This we attribute to the truncation of their
basis functions at L =4 in the interstitial region.
The dominant change produced in the wave func-

tions is to direct more charge along the bonding
direction.
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