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Alloy scattering in ternary HI-V compounds
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The mean time between scattering due to a random alloy potential is considered. The development makes use

of the Warren-Cowley order parameters and uses a pseudobinary alloy model for describing the arrangement

of alloy concentrations on the allowed lattice sites. The resulting mean time between scattering is found to
depend inversely on the square root of temperature and energy.

I. INTRODUCTION

Alloy scattering refers to the scattering present
in alloys due to the random distribution of com-
ponent atoms among the available lattice sites.
This scattering is in addition to the normal scat-
tering mechanisms present in nonalloy materials.
There are basically two problems in setting up a
model for alloy scattering. First, one must have
a model for the amount of order or disorder pres-
ent in the alloy. This is done in the present work
by the use of the Warren-Cowley order param-
eters, ' which allows one to describe any degree
of order ranging from a completely random alloy
to a highly ordered alloy structure. The second
problem is that of selecting an interaction or scat-
tering potential due to the lattice disorder. Sev-
eral potential models have been considered, but
the one which appears most appropriate to alloy
scattering is the inner-potential model of Mott. '

II. PSEUDOBINARY ALLOY MODEL

The model to be developed for alloy scattering
is restricted to the case of ternary III-V com-
pounds where one of the elements, denoted by C,
is common to both of the constituent compounds.
For example, indium in InAs-InP or arsenic in
GaAs-InAs. In the cases of the alloys InSb-GaSb,
InAs-GaAs, and InSb-InAs, the lattice parameter
varies with composition, in mole percent, in an
almost linear manner. "The crystal structure of
the pure compounds is the tetrahedral zinc-blende
structure and the alloys also exhibit the tetrahe-
dral zinc-blende structure, as discussed by
Goryunova et al. '

The zinc-blende lattice can be subdivided onto
two interpenetrating face-centered-cubic (fcc)
lattices. The side length of the cubes is the lattice
parameter a and nearest-neighbor distance is
~ u 3a. In this arrangement each atom in the lat-
tice, except at the crystal surfaces, has four near-
est neighbors with the angle between bonds at about

107.50'.
The model that will be used is of two interpene-

trating fcc lattices. Denoting the general lattice
vector by v, one fcc lattice consists of the set of
lattice points (r= yj, and the other fcc lattice
consists of the lattice points (r = g). Suppose that
all of the points of the y lattice are occupied by
atoms of type C, but that the points of the & lat-
tice are shared between atoms of type A and type

If the total number of lattice points on f is
Nz, and N&, N~ denote, respectively, the number
of A atoms and the number of & atoms, then

N~+N~ =N~

x=N„/N~ = C„,
l —x=Ns/Nr =Cs .

In this arrangement a type-C atom may have all
type-A. nearest neighbors, or all type-& nearest
neighbors, or a mixture of type-A and type-&
nearest neighbors. The type-A or type-B atoms,
however, will always have all type-C neighbors.

In effect the model is a fcc structure, lattice,
of A-C and B-C molecules, with intermolecular
bonding as well as intramolecular bonding. The
structure described above constitutes what is re-
ferred to in this work as a "pseudobinary alloy, "
with the properties determined by the relative
concentrations of A and B.

Nordheim' was the first to consider the problem
of calculating the resistivity of alloys using quan-
tum mechanical concepts. Nordheim dealt with the
perfectly random crystal by introducing the con-
cept of the virtual crystal. The actual crystal was
considered to be divided into a perfectly periodic
array of potentials, the virtual crystal, composed
of the composition weighted potentials due to the
different kinds of atoms making up the crystal,
and a random part due to the difference between
the actual crystal potential and the virtual crystal
potential at a given lattice point. This random
part was used as a perturbation potential, leading
to a matrix element for transition between elec-
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tron states.
Hall' reformulated Nordheim's approach to cal-

culating residual resistivity for a binary alloy and
used the Warren-Cowley order parameters. The
one-electron Schrodinger wave function for an
electron in a binary alloy was written with the po-
tential U(r) divided into a virtual crystal part

U, (r) = g [C„U&(r —r) +Cs Ue(r —r)], (4)

and a random potential part

U, (r) = d U(r —r)
= g C; [Uz(r —7') —Us(r —r)],

Q Cr Cr, r =NCAA(l —Cg) ar,

where a,- is the Warren-Cowley order parameter.
The approach of Hall was further developed by

Asch and Hall. ' This development included the
change in lattice parameter with alloying and the
change in effective number of conduction electrons
per atom with composition. Asch and Hall have
shown that the square of the transition matrix be-
tween initial and final states is given by

where

Cr +r
NC~ C~ (10)

J(K, K', r) =NC„Cs

2

X g, AU(r —r) Prdr& -..l me

(11)
and EU(r —r) is the random potential due to the

where C; is a random function which is defined
only at lattice sites v. The function has the value
at these points

(1 —C„) for an A atom at r,
C-=

T

—C& for a & atom at v,
where, as usual, C& is the concentration of A
atoms. This function was introduced by Flinn' in
a discussion of an electronic theory of local order-
ing in binary alloys. It was shown by Flinn to have
the following properties:

Q C;=0,

alloying effect. In terms of the Bloch functions the
integral expression of Eq. (11}becomes

Z(K, K', r) = NC„Cs exp[i(K -K') ~ ]

x ((//vQ} f ', U( —r(
~ volume

2

x exp[i(K —K'} r]dr

(12)

III. SCATTERING-POTENTIAL MODEL

Applying the virtual crystal concept of Nordheim,
and treating the deviations from the perfect peri-
odicity of the virtual crystal model as a perturb-
ing potential, the matrix elements for a transition
from state K to K' can be worked out. The matrix
element squared is presented in Eq. (9) for all de-
grees of order which can be specified by the
Warren-Cowley order-parameter set [a,-). In
the completely random alloy, the expression re-
duces to

2

jM(K, K )] = g*, gU(P) P dr
~ volume

In the case where the substituted atoms, say of
type 4, have an effective ionic charge which dif-
fers by an amount ~e from that of type B, a
screened potential of the form Q(r) = (i((Ze/4wer)
xexp(- r/r, ) can be taken for EU(r)/e. This leads
to a relaxation time that has the same form as the
Brooks-Herring type formula, except the factor
s, is replaced by C„(1—C„)/Q. This type of scat-
tering would give a mobility component which in-
creased with temperature as T' '. This type of
potential does not seem likely to occur for the
isovalent substitutions in the III-V compound
alloys. Thus a more plausible potential must be
considered.

Long ago Mott considered the effects of substi-
tution in dilute alloys. ' He considered a solvent
lattice in which the electron wave functions,
g(r =ur(r) exp(iK r) are solutions to the Schro-
dinger equation, and conduction-band electrons
have energies given by

E(K) =E'K'/2m+E, ,

where E, is the energy of the band edge. When an
atom of a different potential is substituted for a
"native" atom, the wave function in the Wigner-
Seitz cell about the substitute will become g~
=u(r (r) exp(iK' r) and have an energy

E(K') =O'K"/2m +E,',
corresponding to the altered wavelength, hence
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K', in the altered potential region. An electron
traveling from a "normal" region into the altered
region will experience a change in potential. As
pointed out by Mott, the problem is the same as
the scattering of a beam of electrons by a poten-
tial, which he termed the "inner potential",

Eo —Eo, r t'0,

(16)

0,

where r, is the radius of the Wigner-Seitz cell
(assumed spherical). This "square well" potential
is used in the Appendix to derive, by means of the
first Born approximation, an expression for the
relaxation time due to scattering in a random
alloy v'&~ defined by

8N~h e '~

3 ~2 sg (1 (, ) (~)&yJze& &2 (kT)& ~» (

where e=E/kT. The choice of the extent of the po-
tential b U is somewhat arbitrary and has been tak-
en in the derivation as equal to the nearest-neigh-
bor separation, or —,

'
v 3a.

IV. APPLICATION TO SELECTED III-V COMPOUNDS

A decision must be made on the value of ~ to be
used in Eq. (17) in order to obtain numerical re-
sults. The energy difference could be taken as
the difference in energy band gaps for the two
components of the alloy. A more reasonable ap-
proach however would be to take the vacuum level
as the energy reference level. If this is done E,
and E,' are the energy separations of the conduc-
tion band edges with respect to the vacuum level,
i.e., the electron affinities of the two materials.
Table I gives electron affinity values, in eV, of
several III-V compound materials, taken from
Neuberger. ' If ~ is adequately represented by
4f, the electron affinity difference, the data of
Table I suggest little or no alloy scattering for
GaAs, Sb, „, a relatively large alloying effect for
Ga, In, „As, moderate effects for InP, As, „,
InAs, Sb, „and a somewhat smaller effect for
InP, Sb, „. Before making too many predictions,
however, it should be remembered that the alloy-
ing relaxation times are combined with other re-
laxation time for other mechanisms and it is the
relative sizes of these relaxation times for a given
alloy system that must be considered.

Both conventional and Monte Carlo calculations
of mobility have been made for selected III-V
alloys using the model discussed in this paper for
alloy scattering. These calculations have con-
sidered polar optical-phonon scattering, piezo-
electric scattering, ionized impurity scattering,

TABLE I. Electron affinity values (in eV) for some
III-V compound materials. e

Mater ial GaAs GaSb InP InAs InSb

electron
affinity

(eV)

4.07 4.06 4.40 4.90 4.59

and intervalley scattering as well as alloy scat-
tering. The percentages of total scattering events
attributable to alloy scattering has ranged from
a few percent to as much as 25/p depending on the
ternary material and the composition. Monte
Carlo transport calculations in such materials as
InAs, „P„have shown that alloy scattering is more
important at high electric fields than for the low-
field mobility. Details of this work are being pub-
lished elsewhere. ' ' "

The presence or importance of alloy scattering
is difficult to experimentally verify by the pre-
dicted WT dependence of Eq. (17). This is due to
several factors. First, even when alloy scatter-
ing is important it does not appear to be the dom-
inant scattering mechanism to the point where
other scattering processes can be neglected. Sec-
ond, at low temperatures, scattering is usually
dominated by ionized impurity scattering which
has a T' ' temperature dependence and decreases
more rapidly at low temperatures than does the
alloy scattering. Finally at high temperatures,
scattering is dominated by phonon scattering with
a T ' ' dependence. Thus the temperature range
over which alloy scattering is important does not
usually appear to be wide enough to uniquely iden-
tify the u T temperature dependence. The most
convincing evidence for the importance of alloy
scattering has been the need for an additional
scattering process to explain the experimentally
observed mobility values for semiconductor
alloys. "'"
APPENDIX: CALCULATION OF RELAXATION TIME FOR

INNER POTENTIAL SCATTERING

and

4K =(K —K'),
d r = r 'A' sing d g dP .

(A1)

Due to azimuthal symmetry, integration on Q

Using the Born approximation to calculate the
matrix element for a transition due to a "square
well" potential of strength ~ and extent r ~r„

m(z, x') f"""~=red
~ volume
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»nx=x-x'/3! +x'/5! —e/V! ".,

x cosx = x- x'/2! + x'/4! —x'/6! +

Subtraction term by term yields

sinx- x cosx = 2x'/3! —4x'/5l +

Substitution of Eq. (A3) into Eq. (A2) gives

(A3)

m(K, K') =4v(AE) r', (—', —~M ~'r20+ . ) . (A4)

The square of the matrix element is

~m(K K') ~' =16s'(AE)'r'(~-~AK'r'+. )

(A5)

gives a factor 2m. Taking 6) as the angle between
bK and K',

(K, K'). =4 f s' (alar)rdr,
0

m(K, K') =4s[AE/(~']
x(sinAKr, —AKr, cosAKr, ) .

For ~r, real the series expansions of sins and
cosx yield

The neglect of higher-order terms can be justified
on the basis that r, —2.5 ~10 "meters and ~max
~(3kTx2m*/il')'~'. Therefore, (AKr, ) ~8.5
x10 ' and to a good approximation

(m(K, K ) (
= ~ v'(AE)'r' (A6)

The choice of the value for x, is somewhat arbi-
trary. Substitution of a "foreign" atom of the same
valence as a "native" atom in the center of a tet-
rahedral unit would be expected to change the en-
ergy levels at least out to the nearest neighbors,
or r, =-, v 3a. Using this value,

)m(K, K')
(

= —, s 0 (AE) (A7)

Assuming the random case gives

(M(K, K') (2 =3@ C~(1 —Cg)(AE) /16N. (A8)

Evaluating the collision integral term for the
Boltzmann transport equation gives the relaxation
time expression

8N A4& '/'
~A

3V 2 s C (1 C ) (AE)2m' & I& (kT')& ~2

(A9)
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