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Electronic structure of aperiodic polymers. I. The average-matrix method and the effect of
a cluster of impurities on the band structure of a periodic system
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To treat a compositionally disordered one-dimensional polymer with not very difterent constituent units, a
method has been developed in an ab initio SCF LCAO (self-consistent-field linear-combination-of-atomic-

orbitals) framework. Using the composition and the first neighbor s frequencies of the polymers, the method

solves instead of the original problem a periodic problem with average unit cells and average interaction
matrices. This procedure is correct in the first order of the deviations of the different units and their
interactions from the average unit and the interactions between them. Further, to be able to treat a cluster of
impurities and/or defects imbedded in a one-dimensional periodic polymer, a resolvent method has been

developed in the Hartree-Fock level using an LCAO basis (ab initio SCF LCAO treatment).

I. INTRODUCTION

Polymers play a very important role as plastics;
biopolymers, like proteins and nucleic acids (DNA
and HNA}, have fundamental importance in life
processes and recently highly conducting polymers
[like the TCNQ-TTI" (7, 7, 8, 8-tetracyanoquinodi-
methane-tetrathiafulvalene system) with pseudo-
one-dimensional stacks embedded in a three-di-
mensional molecular crystal] seem to be possible
candidates for the discovery of interesting novel
physical phenomena (superconductive-type be-
havior at higher temperatures, etc. ). To under-
stand their different physical and chemical proper-
ties (which underlie in the case of biopolymers
their biological functions}, one has to obtain a fair
knowledge of their electronic structure.

If a polymer is periodic, there are well-estab-
lished methods' to calculate its band structure.
Most practically important plastics consist of
aperiodic polymers and DNA and proteins are also
aperiodic. Therefore, it seems to be very impor-
tant to work out methods to treat, at least in a
tolerable approximation, their electronic struc-
ture. In this paper, we shall restrict ourselves
only to the ease when the subunits of an aperiodic
polymer are either similar, or to the case when
the periodicity of a polymer is perturbed only at
one point by (an arbitrarily large) cluster of im-
purities and/or defects. Both problems will be
formulated in the framework of the ab initio SCF
LCAO CO (self-consistent-field linear-combina-
tion-of-atomic-orbitals crystal-orbital) method.
The treatment of the general case of aperiodic
polymers (being either structurally (geometrically)

or/and compositionally disordered) we postpone
for later publications in which methods (one-elec-
tron Green's function expanded in terms of atomic
orbitals) worked out for liquid metals will be ap-
plied. '

H. AVERAGE-MATRIX METHOD

This method was first developed for the simple
tight-binding (Ffuckel) case by Beleznay and Biczo
neglecting overlap. Here we give a generalization:
of it for the ab initio SCF LCAQ case taking into
account also the nondiagonal elements of the over-
lap matrix.

Let us assume we have a linear chain with an
aperiodic sequence of N subunits, each subunit
consisting of m orbitals and let us assume we have
r different kinds of subunits. 4 Further, let us as-
sume we know the relative probabilities p,
(s =1,2, ,t)of .t. h. e 'different kinds of subunits and
their nearest-neighbors frequencies q, , (these are
the probabilities to have after a given kind of sub-
unit another given kind of subunit). It should be
mentioned that for a polymer in which the sequence
is known (like in certain proteins), these data can
be easily obtained, but also for DNA molecules
coming from different sources, the nearest-neigh-
bors frequencies have been determined experi-
mentally. ' Finally, we have to assume that the
different kinds of subunits of the chain do not dif-
fer too much from each other.

Assuming periodic boundary conditions, we can
write down in the first-neighbor's interactions ap-
proximation the secular equation which gives the
one-electron levels of the chain as
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where the kth diagonal submatrix Fkk (k =1,2, ..., N) charge, and M, is the number of nuclei in the4II
same subunit. In the case of the diagonally placed
submatrices Fk, k we have to perform the sum-
mations over ql and q2 from k —1 to k+1. Finally,
the generalized charge-bond order matrix elements
p(q1, qk)„„(bond order between orbital u in subunit

q, and ortibal 1) in subunit qk) are defined in the
usual wa
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is the Fock ma:rix of the 0th subunit and

(2 2)

p(q„q, ) =2+cP„cP„, (2.5}
j-I

where n* is the number of filled molecular orbitals
(MOs) in the dimer formed from the subunits q,
and q, (that is, n* =n* + n* } and c~kk„ is the coef-
ficient of the AO g'„I in the jth MO of the dimer.

Generalizing the derivation of Beleznay and

Biczo, ' let us define the average matrices

is the interaction submatrix between the neighbor-
ing kth and (0+1)th subunits. The submatrices
S, , and S„„+,are the corresponding overlap ma-
trices (also of dimension mxm) and « is the en-
ergy eigenvalue. The elements of the Fock ma-
trices F„,k and F, k+, are defined in the ab initio
case in the usual way as'
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where in the summations over ql and q„we have
taken into account again only first-neighbors in-
teractions (in the strict sense, I.E., all four-center
integrals have been neglected which contain any

pair of orbitals centered on second neighbors [for
instance, if the orbital X',"occurs in the integrals
of expression (2.4), q, and qk cannot be I) —I]. In

(2.4} XI stands for the fth atomic orbtial (AO) in

the kth subunit, r'I is the position vector of the
eth nucleus in the q, th subunit, Z" is its nuclear
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(2.13}

where F, ,(0) and S, ,(0)are the Fock and overlap
matrices, respectively, belonging to the sth kind of
subunit, and F, , (1) and S, , (1) are the same quan-
tities between the sth kind of unit and its tth kind
first neighbor.

Further, we can write the identities
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If the r kinds of subunits have similar chemical
structures, i.e., the deviations of the correspond-
ing elements in the matrices F, „F,„S,„and
S, , are small, then also the elements of the ma-
trices nk and pk „,will be small as compared to
those of F, and F,. Taking this into account, we

can expand the determinant (2.1) [after substituting
into it the identities (2.10) and (2.11)]with respect
to the elements of the matrices zk and pk k„.
Keeping only the first-order terms, one obtains
in this way'

m m N
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and I
FI(k ~')I, re pse ticevly, are the minors belonging to the element (F~)&, —(~S)& e of the kth

submatrix in the diagonal of (2.15) and to the element (F, )&, —(8 )z, e of the kth submatrix in the first par-
allel diagonal above the main diagonal, respectively.

Since in (2.15) always the same matrices F„S„F„andS, are repeated, I
Ff(k)

I
=

I F,",) I
and IF&",,""

I

=
I
F&~' k)

I independently from the value of k. Consequently on the right-hand side of (2.14), these minors
can be factored out from the summations according to k. On the other hand, taking into account the defi-
nitions of p, and q, „aswell Eqs. (2.6)-(2.13), we can write

r
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and, similarly,
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As a consequence of the relations (2.16) and (2.17), the triple sum in (2.14) vanishes and therefore, we can
write

I F I
=

I F I+ ~ ~ ~, (2.18)

where the neglected members are at least of second order in the elements of the n and p matrices. In

other words, the one-electron energies of an aperiodic macromolecule with not-strongly differing subunits
can be approximated (in the first order) by the energies of a conveniently chosen periodic macromolecule
with average unit cells and interactions.

If we want to use the described formalism in an SCF scheme, we have to substitute into the elements of
the matrices F, , and F, , some starting matrices P(' (0) and P(' ~ ') (1). (The first matrix is formed from
the charge-bond orders of the single molecule of kind s, the second one from the bond orders between the
orbitals of the sth kind of unit and those of a neighboring tth kind of molecule. Both can be obtained from
a corresponding calculation of the separated single molecules and molecule pairs. ) With the aid of these
starting matrices P '(0) and P ")(1) we can construct the elements of the average matrices F, and F, as
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In (2.19) in the one- and two-electron parts of
the Fock operator, we have averaged again over
the different kinds of first neighbors t, and t„re-
spectively (the summations over tr or t, and ta),
to obtain the average matrix F, in a consistent
way. So we have used three indices to specify an
AO: the subscript refers to the AO of the cell
specified by the superscript q, or q, and in the
parenthesis of the superscript t, t„or t, indi-
cates that the AO belongs to that kind of unit. The
letters appearing as arguments or subscripts of
the generalized bond orders p [q,(t, }, qa(ta)]„„
have the same meaning. 0(s) denotes the sth kind
of reference cell and 1(t) the tth kind of first-
neighboring cell (counted in the positive direction,
i.e. , the first neighbor on the right-hand side of the
reference cell). The subscript below the sum

[q, =0(s)] means that if q, =0, then the summation
goes over the orbitals of the sth kind of unit only.

q, = 1(t) is defined analogously. In both expres-
sions which refer again to a linear chain, the first-
neighbors interactions approximation has been
used in the strict sense.

Having built up the matrices F, and F„ the cyclic
hypermatrix F corresponding to the determinant
(2.15) can be block diagonalized. ' Thus, finally we
obtain for the determination of the ab initio ap-
proximate band structure of an aperiodic linear
chain (consisting of still similar units) in the first-

neighbors interactions approximation the familiar
matrix equation'

F(k)'" d(k)'" =e(k)" $(k)'" d(k)'"

with

p(k)av —p + p i)ra + p tr e-iaa
2 2

2$(k)av $ + S e(aa + Srre-raa

(2.21)

(2.22)

(2.23)

The average overlap matrices S, and S, were de-
fined before [see Eqs. (2.8) and (2.9)] and the in-
dividual S, ,(0), S, , (1) matrices have the ele-
ments

[s, ,(o)], , =
& x

"'
I x,"')

[s., (I)l~„=&xg" I
x'"'}.

(2.24)

(2.25)

We can solve (2.21) in the usual way. ' Either
we can perform only one iteration to obtain the
approximate band structure of the aperiodic poly-
mer (which would correspond to a tight-binding
approximation with HQckel matrix elements built
up from the average Fock matrices of the differ-
ent subunits and interactions), or we can find an
approximate SCF solution for (2.21) in the follow-
ing way: from the vectors d(k)a' we can construct
the charge-bond order matrices P(0), P(1), and
P(-1) = P(1)" of the average chain using the equa-
tion'
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where a is the elementary translation. Then we
can redefine the elements of F1 and F2 in the nth
iteration step as
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and similarly writing down (2.20) with p(q„q, )„'"„"
instead of the matrix elements p[q, (s or t),
q, (s or t)]„„.In this way, an iterative procedure
can be performed until self-consistency is
reached.

No actual calculations have been performed yet
with the aid of the described ab initio method for
aperiodic polymers (with similar subunits), but
in the simple tight-binding version it was applied
by Beleznay and Bicz6' to DNA. Using their meth-
od they have obtained quite good agreement with
the directly computed band structure of

/AT) A T A T A T

(T A) T A T A T A

using as different units the base pairs A-T and
T-A. (In this simple case p„,=p, „=—,',

1
qA- T, A-T qT-A. T-A qA- T. T-A qT-A. A-T )
On the other hand, using as subunits A-T and
G-C, they have obtained a poor agreement with
the band structure of

t'A-T)
poly

(G-c)

because in this case the subunits are rather dif-
ferent. To treat native DNA, one had to use as
subunits the double base pairs

A-T A- T A-T G-C
RIld

G-C C-G T-A C-G

This would require the knowledge of the sequence
of larger DNA segments to obtain the necessary
P, and q, , values and a very large computer. Per-
haps such an ab initio calculation could not be per-
formed in the moment (also because the necessary

experimental data are missing), but certainly it
will be possible to execute such calculations after
a couple of years. On the other hand, the de-
scribed method could be easily applied to aperiodic
polymers containing not too large and rather simi-
lar subunits. Work along these lines is in prog-
ress.

III. TREATMENT OF A CLUSTER OF IMPURITIES
IMBEDDED IN A ONE-DIMENSIONAL

PERIODIC POLYMER

Kertdsz and Bicz6' have developed a method for
the treatment of a cluster of impurities and/or
defects imbedded in a one-dimensional periodic
system in the single tight-binding (Hiickel} approxi-
mation. Their method is the extension of the re-
solvent (Green's-function) method proposed first
by Koster and Slater' to an arbitrary number of
impurity orbitals using an AO basis. Here we give
the generalization of their derivation for the case
S+1 and show how the calculations could be per-
formed in an ab initio SCF LCAO case.

Let us assume again that we have a periodic
polymer of 2%+1 units with m orbitals in the unit
cell. Let us further assume that the p.th unit
differs from the rest of the polymer units (it can
be a different molecule or it can have a different
relative position with respect to its neighbors, as
in the rest of the polymer). If we denote the cyclic
hypermatrix which we obtain if we describe the
periodic polymer in terms of the LCAO formalism
introducing the Born-von Kkrmhn periodic bound-
ary conditions' by Ho, we can write for the Hamil-
tonian matrix of the perturbed polymer

H =Ho+H',

where the deviation matrix H', is defined as
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0 0
analogy to Eqs. (3.2) and (3.3).

Thus we can formulate our problem as

Hc = (~H+8')c= &Sc =&(S, +S'}c. (3.5)

with

0 ~F(1} 0

F, (i)" F(0) ~F(I)

0 ~F (1)" 0

, (3.2)
Performing the unitary transformation' on the
cyclic hypermatrices H0 and S0 to block diagonalize
them' and rearranging the resulting equation we
obtain

UtH UU c —~U~S UUtc = —U~H'c+~U S'c

(3.6)
or

S =S +S', (3.4)

where the hypermatrix S' is defined in a complete

F(0) = F„(0)—F(0}, (3.3a}

F, (1)=F, (1)—F(1), (3.3b)

F (1)=F (1) —F(1) . (3.3c)

Here F(0}and F(1) are the submatrices building

up the cyclic hypermatrix H, in the first-neighbors
interactions approximation, ' F„(0)is the subma-
trix corresponding to the changed p, th unit and

F, (l) and F,(1}, respectively, are the interaction
matrices between the p, th unit and the neighboring

( p, —1)th and ( p, +1)th units [in the general case
of a combined symmetry operation, like a screw
axis, or in the case of structural disorder F, (1)
g F,(1)]. For the overlap matrix of the perturbed
periodic polymer, we can write in a similar way

(H, —&S,)U c =-U (H' —%'}c,
where the matrices

0 0H =UHU, 0 0S =USU (3.7)

are block diagonal. Defining the Green's function

Z' =U(HO —&~S} 'Ut (3.8)

c =-Z'(H'- u'}c. (3.9)

Since the deviation matrices H' and S' contain
mostly zero elements [See Eq. (3.2)], this hyper-
matrix equation reduces to a set of Sm homoge-
neous linear equations, if we write down separate-
ly those equations which contain nonzero blocks
of H' and S'. In this way, we obtain after a
straightforward calculation

and multiplying Eq. (3.6) from the left-hand side by
U(H, —&S,) ', one obtains the result'

+& v+1

(c„
c„=0, (3.10}

with

n,', „=Z,',„[F,(1)—~S,(I)]", (3.11a)

P,
'

q
——Z,' q, [F,(1)—Xg(1)]+Z' q[F(0) —AS(0)]

+Z,',„„[F,(1)- AS (1)] ', (3.11b)

y,
' „=Z' &[F2(1)—AS~(l)] (q =p —1, p, , p+1}.

(3.11c)

Equation (3.10) leads to

det[A'(A)] =0 (3.12)

for A,. In Eqs. (3.11) the blocks Z,' „of the matrix
Z' can be obtained from its definition (3.8) and the
form of U given in Ref. 8 as'

~/a

Z,' „= exp[ia(q —p)k]- II/t2

&& [ho(k) —Xso(k)] 'dk.

Here

h, (k) =h(0}+h(1)e'"+h(1}"e '",
s,(k) =s(0}+s(1)e'"+s(1}"e '"'

(3.13)

(3.14a}

(3.14b}

are the matrices which determine the band struc-
ture of the periodic polymer in the first-neighbors
interactions approximation through the equation'

h, (k)3(k),. = (k),. (k) 3(k}, (3.15)

(a is the elementary translation and k is the crys-
tal momentum}.
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Instead of stopping at the block diagonalization of

~H with the aid of the unitary transformation
U~HOU, one can solve also the generalized eigen-
value equation (3.15) and in this way determine the
eigenvalues e(k), belonging to the matrix h, (k)
=so(k) ' h, (k)s, (k) applying L5wdin's symmetric
orthogonalization procedure. After this, the whole
procedure leading from (3.5) to Eqs. (3.10)-(3.12)
can be repeated (as Kertdsz and Bicz6~ already did
in the Huckel case). In this way, the same expres-
sions can be obtained as before only the definition
of Z' will become different

Z'=S '~'UB(H,"'~ A. E-) 'BtUtg '~' (3.16)

as

~D, = bq ~d(P) (P = —N, —N+ 1, . . ., 0, 1, . . ., N).

(3.19)
Here finally the mxm matrix d(p) is constructed
from the vectors 8(P)& satisfying the equivalent of
Eq. (3.15) with the discrete variable P instead of
the continuous k. We can substitute into (3.16)
forl S l/2

1/2 y s 1/2yf (3.20}

where the mxm blocks of the unitary matrix V are

V&, =bq iv(p),

where the fully diagonal matrix

If",'~=B'U'H, uB; H, =S ~'H, S ~'

and E is the unit matrix. Further

(3.17)

and the matrix v(P) is constructed from the eigen-
vectors v(p}& of the equation

s,(P)v(P), = e(p), v(p), (p = N, . -. ., N) (3.21)

g = Sl/2D
0 (3.18)

with the mxm blocks D+, of the matrix D defined"

[s, (p) is the pth block of the block-diagonal ma-
trix g defined in (3.7)], and the diagonal hyper-
matrix s, is defined as

s( N), -
s(-N),

s (-N)

so=
s(P),

(3.22)

0 e(p).

s(N),

s(N)

Further, taking into account the definition of the matrix U given in Ref. 8 and Eqs. (3.17)-(3.19), we
obtain after a somewhat lengthy but straightforward calculation for the f, gth element of the p, sth block
of Z'

m

[(Z')p, ]y~ = Q v, g(p)v,*,(p)[s(p), ] ' '~, „(p)xvfg(p)[s(p)g]
f ~ l,q, r=l

7i /a
x — e'~&~'l Qbg, (k)b, „(k)[e(k)q —A] 'dk

2F g/g j—l
(3.23)

Here v, &(p) is the fth component of the vector v(p), defined by (3.21} and the vector components b&, (k)
belong to the vectors b(k)& which are the eigenvectors of the transformed matrix

h (k)b(k)& =s,(k) '~'h, ( )ks, ( )k'~'b( ), =ke(k)~b(k)~. (3.24)

Equation (3.23), despite its more complicated nature, is much more advantageous than (3.13) because here
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we could express single elements of the matrix Z' and so we have not to perform matrix inversions as in
the case of (3.13).

It should be mentioned further that we can write down for the elements of the submafrices F„(0), F(0),
F(1), F,(1), and F2(1) occurring in Eqs. (3.3) the corresponding ab initio SCF I,CAO expressions. The
elements of the matrices F(q)(q=0, 1) belonging to the periodic problem are (again in the first-neighbors
interactions approximation in the strict sense)

[F(q)]f~ &X~IH" IX,'&+ 2' 2 p(q„ed. ..[&X~X."I (I/r, .) IX;X,"& -MX&X". I(I/'~, 2) IX'.~X'&1,
alias-1 u, pal

(3.25)

where the one-electron operator ff was defined in (2.4} and the p(q „)Ig„„matrix elements in (2.26),
we substitute in it instead of the d(k)~"„components of the average vectors satisfying Eq. (2.21) the com-
ponents of the vectors d(k)„„defined through Eq. (3.15). We can write in a similar way for the elements
of the matrix F„(0}

z
[ p(o)]~~=(xgl--'&-Q -, -rpi- Q 2 lr "r il lx~)

(a 1&p)

/+1

g P" )e „s )...i(xl'x". I ()/~J I x!x'.*& —Rxgx!' )i)/~, *) I x."x))I,
a l,a &~-1 u, v= 1

(3.26)

where the elements of the matrices p" (q„q,) are depending instead of the vectors B(k)& on the vectors
cf p 1 q cf ~ y and cf

P (7 /702))) v jc.ay s ca&v2)(q &&92 =9—1, p, ,, u + 1)
=1

(3.27)

and it* =an~(qg +s~(g,)] to allow different numbers of filled MOs in the pth unit and in its neighbors. "
Further, we can write for the interaction matrices between the p unit and its (g —1)th and (p, +1)th

neighbors, respectively,

Z
)F ))))M &xI I

—la —f i-„
tu

+ g p P"(q„q3„,.[&x)lx."1(I/'~») lx."'x".&
—Hx&x."I(I/'&, 2}lx". x" '&],

a,a =p-1 u, v=11

(3.28)

N )If

) F.)))li, =(xI I
- l & -

i-, -,,
)
-g

i
-, ~ ~

)

I))""&

)I+1 m

+ g g p" && q.&.,4&xIx."III/'~») Ix"" x', 2& -&lxpx."l(II~») lx."x""'&].
u v=1

(3.29)

It should be emphasized again that these matrices
depend through the quantities p" (q „q~)„„[see
(3.27)] again on the vectors c~, (q, = p —1, p, p+I)
and noi on the vectors d(k)& of the periodic problem.

Thus, the solution of the problem of a cluster of
impurities and/or defects imbedded into a periodic
polymer consists of the following steps: (i) the
solution of the periodic problem; (ii) solving Eq.
(3.12) [preferably using the expression (3.23) of
the fully diagonalized case for the elements of Z']
for different A. 's using starting charge-bond order
matrices in F„(0), F,(1), and F,(1}, respectively;

3Nl+1

Z I ya —&ya& I' (3.30)

could be used. Here for 4 =1, . . ., 3m, y~ =0, if we
have the correct solution for the components of
the vectors c& „c&, and c]1„, respectively, in
(3.10) and &y„) are the corresponding quantities

(iii) the solution of the system of linear homoge-
neous equations (3.10) for which, for instance, the
method worked out by Marquardt" using a very
well converging iterative procedure to minimalize
the least squares
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calculated with starting guess vectors c„'„etc.
Finally, if k=3m+1, we have the normalization
condition

cq,
y, „=(c~t,c~tc~t„) c„=et~=i. (3.31)*

(iv) From the vectors c„„c„,and c&„ the forma-
tion of new charge-bond order matrices and the
repetition of the procedure until self consistency
is reached.

In the most difficult step of the outlined proce-
dure, in step (ii), one can write instead of
A' (&)v =0 [see Eq. (3.10)]A"(A)~ =0, where A"(a)
=(H' —XSI)A'(X). It is easy to show that A" (A) is
then a Hermitian matrix. To find the A. 's satisfying
the equation det[A"(A. )] =0, one can use probably
the method due to van der Avoird et al."'"which
determines the roots A. s by finding the zero eigen-
values [E&(A) =0] of the equation

A" (X)o,, (Z) =E, (X)n, (X). (3.32)

The outlined method may seem a somewhat too
complicated (especially in its ab initio form), but
its application could contribute to the solution of
important biological problems. " Further, it
contains as special case the open-ended linear
chain with surface states corresponding to the
chain ends. ' For that case in the simple tight-
binding approximation (Hiickel) Kertesz and Biczo
have already obtained solutions for different linear
chains treating in this way only the m electrons. '
One hopes that in a few years also this more ac-
curate and complicated version of the method can
be coded and tried out.
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