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Electron-electron scattering in the low-temperature resistivity of the noble metals*
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Recently observed behavior in the electrical resistivity of copper at temperatures below 8 K and of silver
below 5 K is interpreted as arising from electron-electron scattering. Similar behavior is predicted for gold
below about 4 K, where data are not yet available. An estimate of the electron-phonon contribution shows
that its T° asymptote is approached in the regime where electron-electron scattering is important.

I. INTRODUCTION

The electrical resistivity of transition metals
clearly exhibits the effect of electron-electron
scattering® (typically below about 20 K), although
there is no strong evidence of it in the simple
metals.? It is suggested here that the behavior re-
cently observed by Rumbo® in the resistivity of
copper below 8 K (silver below 5 K) is consistent
with electron-electron (¢ - e) scattering, and that
similar behavior would be expected in gold below
about 4 K.

The data reported by Rumbo® are plotted in Fig.
1, for comparison with the calculated e — ¢ terms
in Cu and Ag. Examples of data reported by other
workers*™® are also plotted. These are from sam-
ples covering a range of lesser purity, and gener-
ally do not extend to as low temperatures. In the

case of Authe data donotapproachthe e - e regime
closely enough to test it. In Ag the Barber-Caplin®
data extend into the ¢ - ¢ regime and seem less
suggestive than do Rumbo’s data, although there is
good agreement in the overall magnitudes of the
resistivities. Rumbo’s are the purest samples
measured; the data labeled 0, due to Barber and
Caplin, are generated by extrapolating their actual
data to p,~=0. It should perhaps be mentioned that
an earlier interpretation of Rumbo’s data in terms
of phonon drag (see second paper of Refs. 3 and 7)
has been abandoned; Sheard® has reconsidered this
mechanism and concluded on general grounds that
a previously predicted® T contribution does not
occur.

The theoretical results presented in Fig. 1 make
use of the standard trial solution of the Boltzmann
equation (i.e., relaxation-time approximation) and
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FIG. 1. Shown for each metal is the calculated electron-electron contribution p,, electron-phonon contribution p 4,
and their sum, which represents the temperature-dependent resistivity of the impure metal. Data from samples of
widely varying purity are labeled by their residual resistivities; if the e-e contribution is not very sensitive to purity,
the crossover temperatures may apparently be larger than the indicated ones by up to a factor of 2, in pure samples.
Data on Cu are from Refs. 3 and 4 (A, Rumbo; O, Schriempf; and [0, Lengeler e al.), Ag from Refs. 3 and 5 (A, Rum-
bo; O, Barber and Caplin, with 0 determined by extrapolation), and Au from Ref. 6 (O, Whall & al.; O, Damon et al.).
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therefore they apply to impure samples, where at
sufficiently low temperatures the contributions
from different mechanisms are distinct,

P=Pimp TPt Po (Pymp l2rge), (1)

and exhibit power laws p,~T? and lim,_,p,~T*®
for the e — e and e - ¢ (electron-phonon) contribu-
tions, respectively, with impurity resistivity p,,
constant. It is well known' that p, is very sensi-
tive to purity, as exhibited by the data shown.*~®
Presumably p, is relatively insensitive to purity;
if this is assumed, then the crossover tempera-
tures T, between the e — ¢ and e — e regimes are
increased with purity. In particular the T, values
for the pure metals are roughly double those indicated
by the theoretical curves (based on the extrapola-
tion of the pure Au data to lower temperatures).

It should be noted that in pure samples such as
Rumbo’s, p, and p, are not additive, and conse-
quently the resistivity is not simply the sum of
powers as in (1). Specifically, the crossover
from T2 to T°® behavior is “smoothened, ” and this
may cause the apparent exponent “m” in a fitting
formula such as

p=po+aT™+bT?, (2)

used in Ref. 3 (second paper), to appear greater
than two, near the crossover.

Another question in the general nonadditivity
problem is that of the “saturation” of p, as p,,,, is
increased, or in other words, the existence of a
“dirty limit” of p,. If relaxation-time anisotropy
is the only important source of nonadditivity, then
a dirty limit certainly exists. It is this theoretical
dirty limit which is shown in Fig. 1. It is possible
of course that some additional mechanism, not yet
understood, becomes active at large values of
Pymp» SO that p, does not saturate at the values
predicted by the present theory. To determine
whether or not such a mechanism is active, it
would be helpful to know for what values of p,
saturation should be “expected”. Only in the alkali
metals is the theory of relaxation-time anisotropy
sufficiently complete to answer this question. In
potassium at 7=3 K, for example, 90% saturation
is predicted'!’** when p,, /p,=30. (See Fig. 9 of
Ref. 12.) There is very little experimental data
in this regime, but what there is shows no evidence
of saturation, and other mechanisms of nonadditiv-
ity in the large-p,, regime have in fact been sug-
gested.'’ In copper, the regime p, . /p,~10° has
been approached without evidence of saturation.®
Although there is no theory of this effect in Cu, it
is certain that its relaxation time is much more
anisotropic than potassium’s, and plausible that
much larger values of phm,/p‘D may be required for
saturation. It is difficult to say more at this point;

the nonadditivity problem is the subject of ongoing
investigation whose results will be reported later
elsewhere.

II. CALCULATIONS

The remainder of this paper describes the cal-
culations, which utilize the 2-OPW (orthogonal-
ized-plane wave) formalism developed in Refs. 2
and 13 for the simple metals. In the noble metals
this formalism is essentially an application of
Ziman’s eight-cone model.* The 2-OPW model is
used because the 1-OPW model fails, qualitative-
ly, for both mechanisms at low temperatures. In
the case of e — e scattering, the lattice effect is
essential for nonvanishing electrical resistivity.
Two models which include it are Baber scattering'®
(a two-band model) and the 2-OPW model; the
latter seems appropriate for the single-sheeted
noble metal Fermi surfaces. Also, Ziman'* has
provided their 2-OPW parametrizations. In the
case of e - ¢ scattering, the 7'° dependence at low
T follows from the small-g linearity of the scat-
tering probability in the crystal-momentum trans-
fer ¢, and from the continuity of the velocity field
¥(k). The 2-OPW model satisfies these proper-
ties where 1-OPW fails. While the latter may pro-
vide reasonable results at higher temperatures,¢
it spuriously produces a T? dependence (provided
the Fermi surface intersects zone boundaries) at
low T, as shown in Ref. 13. Incidentally, the
small-g linearity of the scattering probability is
evident from the quasiparticle scattering rate
(e.g., in Cu), which is cubic in 7', at low T.!" The
two mechanisms are now discussed in detail.

III. ELECTRON-ELECTRON SCATTERING

The e — e contribution is calculated using the for-
malism of Ref. 2. Its starting point is to factor
p, into one term representing the essential effect
of the ionic medium (called the “fractional umklapp
scattering” A) and into other terms which may be
regarded approximately as characteristic of the
translationally invariant electron gas (with density,
Fermi energy, and wave vector related by 37%n
=kp® and 2mE =%k ;%) to give

p, = (m/ne*\[n(nkzT)?/12HE ]T}A . (3)

A is a measure of the effectiveness of scattering
events (k,,k,) - (k;,k,) in degrading the current;
A=(|\71+172—V3—74|2W><12612W>'1, (4)
where V,; is the velocity in the state Ei. The angu-
lar brackets denote the Fermi-surface integrals
over all quartets of crystal-momentum-conserving
states k,, with scattering probability W. The

i

2-OPW model is used to calculate both W and the
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V,. The rather involved method of estimating A
from these integrals is described in Ref. 2. (Secs.
III, IV, and Appendix B). Typical values estimated
there for the simple metals range from about  to
2. I estimate conservatively that A~ 2 for all the
noble metals (Cu slightly greater, Ag slightly
less); the main point is that A is about the same
for all of them, and of order unity.

The quantity in curly brackets in (3) is a basic
electron-electron scattering rate; I' is a dimen-
sionless number which represents the Fermi-sur-
face average of the scattering probability. If, as
in Ref. 2, W is calculated in the Born approxima-
tion from the Thomas-Fermi screened Coulomb
interaction, then

wy _ tan'1x+ 1
(W(0)) x x2+1°

tanlx(2 +x 2)t/2
x(z +x2)1 /2 ’
(5a)

T(x)=

where
x=2kp/k=(31%agn)*’/® (5b)

exhibits the weak dependence of I' on density ».
(kéT is the Thomas-Fermi screening wave vector.)
The third term in (5a) is the effect of exchange.
The numerical values from (5a) are I'=0.57 for
Cu, and 0.55 for Au and Ag. The sameness of I
for the different noble metals is independent of the
scattering model chosen (for any reasonable
choice) even though the actual values of I" are not.
The principal density dependence in p, has been
factored out of I" and appears in (3) explicitly p,
~nE ' ~n™/3, which accounts for the difference
between Cu and the others listed in Table I.

Improvements to the scattering model, which
have been considered in the context of thermal re-
sistivity calculations,'® do not improve the overall
agreement with measured values in the noble met-
als, which is within about a factor of two. Inci-
dentally, lattice effects are ignored in the thermal
resistivity calculations since they are not essen-
tial there; it seems justified to ignore them here
as well, except of course in A.

IV. ELECTRON-PHONON SCATTERING

For the e - ¢ contribution p,, I quote the general
result for the low-temperature limit, which is de-

rived in Ref. 13 using a 2-OPW Debye model; the
2-OPW electron states are used both for the e - ¢
matrix elements and Fermi-surface shape, and
the usual Debye model is modified as described in
Ref. 13 to allow for the almost complete (order-of-
magnitude) predominance of transverse phonons at
low temperatures. The result is

. _ 91 /m m T \®
lim p, =3 (ne2> ZM <9D> J5(=)

G (_E*GG)
x ZG: P ”G(rszeDV(G)>I(“G)’ (6a)
where
I(ac)=f‘ ay(y?+1)" ¥agy?+1)°/?
x[y2(1-%ag?+§]. (6b)

The summation is over all pairs of zone boundaries
(G) which intersect the Fermi surface, and v is
the number of sheets intersected by (G). V(G) is
the usual Fermi-surface distortion parameter (or
band gap) and E(3G) is the free-electron energy at
éa, the center of the neck. M is the ionic mass,
Z is the. number of electrons per atom, and J(«)
=124 .4 is the usual low-temperature limit of a
Debye integral J4(x) = fox tSdtlet-1)*(1-e"f)?, ex-
cept that here the upper limit x =0,/7 is deter-
mined by a characteristic temperature associated
with the scale of Fermi-surface distortion'®

eG~eDV(G)/E(%G) ’ (7)

rather than by the usual Debye temperature ©,.
Accordingly, deviations from the 7'° asymptote
occur at lower temperatures than expected on the
basis of the usual Bl6ch-Griineisen formula. The
integrand in (6b) represents the relative contribu-
tion from a Fermi surface point K near the plane
(G), and it falls off rapidly with the dimensionless
“distance” a,y =12k - G/2)* G[2mV(G)]™ between
them. Because of the sharp peaking at the zone
boundary (y=0), the extension of integration limits
to +~ is inconsequential. The geometrical param-
eter g, is the ratio of the Fermi-surface neck
diameter to |G]|.

Almost the entire dependence of (6a) on the neck

TABLE I. Numerical values for the calculated resistivity contributions [Eqgs. (3) and (8)] are given, together with
the necessary material parameters. Entries in the last two columns are from Ref. 14. Values of ®p are the averages
of those listed, which vary over a (10-15)% range [+(5-8)%]. The consequent uncertainties in Py are +30% for Cu and
Ag, and +50% for Au.

7(10%2 cm™¥)  A=30%) p.TH107M QcemK ™) pu,TT%107Y QR emK Y E(3G)eV)  V(G)/E(G)  ©p(K)
Cu 8.52 0.79 7.6 3.8 8.66 0.40 320
Au 5.92 0.77 14 35 6.78 0.376 180

Ag 5.88 0.73 14 24 6.76 0.336 215
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size occurs through the relationship
i ~ -1
1T1£13 P ~VHG).

Additional dependence which occurs through I(a;)
is very minor. For example, as the neck con-
tracts, I(a;) approaches a finite limit: I(a;)—~5

as a; -~ 0. The neck diameters of Cu, Au, and Ag
are given by a;=0.18, 0.162, and 0.126 respective-
ly," and I(a;) =0.41, 0.42, and 0.43. Taking the
average of these, substituting Z=v,=1, and noting
that there are four pairs of zone boundaries

G =(111), 0one finds for the noble metals that

e\ m (TN E'(G)
umee=25(25) 5 (6) 5 perter)
(8)

in the low-temperature limit. Numerical values
of the coefficients of T° are tabulated. Deviations
from this asymptotic form evident in Fig. 1 are
calculated by means of the method described in
Ref. 13. They are not of interest here except to
illustrate that the T'° regime is approached for
temperatures below about one-fifth of 6, [Eq. (7)

and Table I].

In conclusion we may understand, within the
framework presented here, why the noble metals
should present greater possibility for the observa-
tion of electron-electron scattering than do the
simple metals. The first point is that p, is not
much greater for the noble metals than for typical
simple metals. In fact (according to Table I of
Ref. 2) potassium has a larger p, than Cu, Au, or
Ag. The main reason then is that p, is small for
the noble metals (compare potassium, for ex-
ample'®), and this follows (8) from the combination
of large band gaps V(G) and fairly large Debye
temperatures. Except for the alkalis, simple met-
als (by definition) have small V(G). Moreover, if
a metal has several V(G), then the smallest (6a)
is most important, both for the magnitude of p, at
low temperatures, and the regime T<36, over
which p,~T?® holds. The smallest band gap of a
simple metal is typically an order of magnitude
smaller than those of the noble metals.

I am grateful to A. J. Barber and to E. R. Rumbo

for discussions of their results prior to publica-
tion.
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