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Superconvergence and sum rules for the optical constants:
Natural and magneto-optical activitye
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Superconvergence techmques are systematically applied to dispersion relations for the index of refraction in

optically active systems to find sum rules applicable to the optical constants for circularly polarized
electromagnetic waves. New results include the theorems that (i) the zeroth moment of the circular dichroism
and (ii) the first moment of the circular birefringence are zero. The latter theorem yields the simple rule that
the rotation of the plane of polarization of linear light caused by an optically active medium averages to zero
when integrated over all energies. Generalizations of the f and inertial sum rules to circularly polarized modes
are given, as well as a new rule relating the second moment of the circular dichroism to the cyclotron
frequency in magneto-optics or to the rotatory strengths in natural optical activity.

I. INTRODUCTION

Recently, new sum rules for the optical constants
of isotropic media have been reported. "These
rules explicitly involve the dispersive part of the
optical constants as opposed to the well-known

f sum rule applicable to absorption. For instance,
the real part of the refractive index n(~) of an iso-
tropic medium has been found to obey'

4 0
[n(&u) —1] d(() = 0,

J n( ) ~ n( ) ()„
0 2

a rule resulting' primarily from the requirement
that the dielectric response obey both causality
and the law of inertia.

The proof of these new rules is based on the
validity of dispersion relations of the Kramers-
Kronig form for the optical constants that hold
for the linearly polarized normal electromagnetic
modes appropriate to isotropic systems. However,
in optically active media, electromagnetic modes
are generally elliptically polarized and the dis-
persion relations and sum rules for the optical
constants are more complex. ' Indeed, in certain
cases of spatial dispersion simple dispersion
relations and sum rules do not appear to hold at
all.

In the present payer this situation is considered
for the simple but important case of circularly
polarized normal modes encountered in optically
active systems. Here the left and right circularly
polarized modes do not satisfy the Kramers-Kronig
relations individually. ' " Rather, the dispersion
relations and sum rules couple left- and right-
hand modes. For example, the indices of refrac-
tion obey the sum rules

r y~ ((u) d(u = 0,
0

(4)

a useful consistency check on both experiment and
theory.

In Sec. D dispersion relations for circularly
polarized modes are reviewed and in Sec. III the
most straightforward of the sum rules are sys-
tematically derived by superconvergence tech-
niques. In Sec. I& these are discussed and applied
to various experimental situations.

II. DISPERSION RELATIONS

Both the inverse dielectric tensor e,l((()) ' and,
in all known systems, the dielectric tensor itself
e,&(&u) obey the Kramers-Kronig relations. " Simi-
lar relations hold for the magnetic permeability.
This is a direct consequence of the causal response
of matter. On the other hand, most optical appli-
cations require dispersion relations for the com-
plex refractive index N((d). N((d), however, is

J (u[n, ((d) -n, (&u)] d(u = 0.
0

The first of these relations has the form of E(l. (1),
but with the average index —', [n„((())+ n, ((())] in the
role of the isotropic index n(co) The. second rule,
E(l. (3), is new and involves the first moment of
the circular birefringence n„((()) -n, (&u).

The existence of dispersion relations and, hence,
sum rules involving the difference in optical con-
stants for right- and left-hand modes is of prac-
tical importance since many experiments mea-
sure these differences directly. Thus, The Fara-
day rotation p~((()) is proportional to the difference
in refractive indices for right- and left-hand light
and E(l. (3) yields
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generally a complicated function of the various
e,&(ru)'s and causality arguments are not directly
applicable. Consequently the Kramers-Kronig
relations only hold for N(&u) in special cases such
as linear modes in an isotropic medium. ""

In the case of circularly polarized modes en-
countered in magneto-optics and natural optical
activity, the real and imaginary parts of the in-
dex of refraction do not separately obey dispersion
relations of the Kramers-Kronig form. ' " The
basic reason is that the analytic functions des-
cribing the propagation of circular and elliptic
modes involve one handedness for positive fre-
quencies but the opposite handedness for negative
frequencies. " The crossing relations for the op-
tical constants are consequently asymmetric lead-
ing in turn to asymmetric dispersion relations.

For the present purposes it is convenient to
write these dispersion relations in terms of the
sum and difference of the optical constants. De-
noting the complex index of refraction by

N, ((u) = n, ((u) + f», ((u),

average extinction coefficient —,
'

(K+ + K ). These
reduce to the Kramers-Kronig result in the limit
of no circular dichroism. The second two relations
are significantly different in that ~ and ~' change
roles in the numerator of the integrand compared
with the Kramers-Kronig relations.

In the case of conductors N, (&u) has a &u
'~' be-

havior near m = 0 corresponding to the pole at
cu = 0 in the conductivity term in the dielectric
tensor. It is then necessary to write dispersion
relations for the function &u[N, (&o) —1] which is
square integrable. " This yields four relations
similar to Eqs. (5)-(8) but with additional factors
of ~ and +'. The equations for —,'[n+(&u)+ n (&u)] —1
and K (~) -K (&u) are simply Eqs. (5) and (8) multi-
plied on both sides by u and so are identical to the
insulating results when +w 0. The relations for
K+(ur)+ K (&u) and n+(&u) —n (~) are new":

(dK+~ +g
2

2 " (u" n+((u') + n ((o')
p2 2

0
where n, (&o) and K, (&u) are the real and imaginary
parts, respectively, and where the "+" and "-"
signs denote left- and right-hand polarization, the
dispersion relations for an insulating medium are"

n, ((o}+n ((u)

2

co n+ co -n
(9)

00 p2P2—
2 [K+((d ) —K ((d )] d(d

(10)

K~ ((d) + K ((d)
2

2 p 1 n, ((u') + n ((u')

0 (d CO 2

n, ((o) -n ((u)

(5)

(6)

In Sec. IIIA these will be shown to reduce to Eqs.
(6) and (7), respectively, when cov0 by making
use of the low-frequency limit of &uN+(&u).

The difference relations are of particular in-
terest in discussing optical rotation and its re-
lation to circular dichroism either natural or in-
duced by an external magnetic field. The angle by
which the plane of polarization of linear polarized
light is rotated in passing through an optically ac-
tive sample, is given by"

tdP „—, [» ((u'} —K ((O')]d(O',
2 1

0

(7)

K~((gP) —K (QP)

= ——P I .. . [n,((u') -n (&u')]d&u'.j0 (d (d

(8)

The first two of the circular-mode dispersion
relations have the same form as the Kramers-
Kronig relations but with the optical constants
replaced by the average index —,

'
(n+ + n ), and the

&K(&o) = P,z ~ d&u',
4c "" g(u)')

~0 (d -QP

with the inverse transformation

(12)

((o) =
l „,d&u',

—td n. »(td )

where

EK(&d) = K ((d) —Kp((d) = K„((tP) —K((R).

P(&u) = (&u/2c) (n, n„) = (v-/A. ) (n+ -n ) (11)

per unit thickness of crystal. Here c is the veloc-
ity of light in vacuum. The difference in extinc-
tion coefficients for right- and left-hand light,
AK(&u), as measured in a circular dichroism ex-
periment is therefore related to p(&o) by
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III. SUM RULES

Sum rules for the optical constants may be ob-
tained directly by considering the limiting values
of the dispersion relations for high and low fre-
quencies and then equating these to values known
from physical considerations.

n,(tr) ~ n (o) t)
~l p 2

(18)

This is a generalization of the inertial sum rule,
Eq. (1), to the case of optically active media.
Similarly, the (u =0 limit of Eq. (10) for (u[22+((u)

n ((u}] yields

A. Low-frequency limits K+ (d -K cO de) =0.
0

(19)

The simplest case is the ~ = 0 limit for insula-
tors. In the static limit the dispersion relation
for the birefringence Eq. (7) yields

n+(0) = 22 (0)-=n(0) (insulators) . (14)

This is consistent with the physical argument that
if the modes are to remain circular to arbitrarily
low frequencies, the medium must be isotropic in
the plane perpendicular to the direction of propa-
gation in the limit of co- 0. Combining the cu = 0
limit of Eq. (5) for n+((u) + n ((u) with Eq. (14) yields

1
22(0) —1 = P t ——[K+((u) + K ((u)] d(u

F J p (ut}

(insulator s) . (15)

This is a generalization of the formula" for the
static index (or static dielectric constant) of iso-
tropic media in terms of the inverse first moment
of the extinction coefficient (or the imaginary part
of the dielectric function).

In the static limit there is no dissipation in in-
sulators so that

r 2/(~t2 2) I + ~2/ (~r 2 2) (20)

Substituting this into Eq. (9) yields

2
(u[K,((u)+K ((u)] =-—

Jl [n, ((u')+n ((u') -2]d(u'
0

This sum rule is closely related to one for "ro-
tational strengths" published by Kuhn" in 1929
on the basis of a mechanical model of natural
optical activity. A proof for a quantum model
was given by Rosenfeld in 1928.' ' The present
proof shows that the rule is independent of the
details of the models used and applies to both
natural and magneto-optical activity.

The two sum rules just found are sufficient to
prove that Eqs. (9} and (10}which hold for metals
reduce to Eqs. (6) and (7) originally derived for
insulators provided (uDD 0. Both Eq. (9) and (10)
involve (u "/((u" —(u') which may be written

K (0) = K (0) = 0 (insulators) . (16)
2, t" n, (()u+n ((u') -2 d, (21)
m 0

The (u = 0 limit of Eq. (8) for K+((u) —K ((u) may be
combined with this requirement to yield a second
rule

}( =D (insointurs) . ((t)
4 p (d

but by the generalized inertial sum rule, Eq. (18),
the first integral on the right-hand side is zero
so that for ~0,

K+((u) +K ((u) = — (uP + —„, d(u',n, ((u')+n ((u') -8
0

This result is potentially quite useful as a check
on experiment since rotatory dispersion measure-
ments given the difference [n+((u) -s ((u)] directly.

Note that both the rules Eqs. (15) and (17) hold
only for insulators since the cg =0 limits of Eqs.
(5) and (8) do not apply to metals. In metals
K+((u), K ((u) and n+((u), n ((u) and their differences
have u '~' singularities so that the integrals in-
volved in these rules diverge.

Two additional low-frequency-limit sum rules
applicable to both metals and insulators may be
derived from dispersion relations for (uN((u). Us-
ing the fact that near (u =0, K+((u} and K ((u) behave
as co

' ' for metals or approach zero for insula-
tors, the left-hand side of Eq. (9) for (u[K+((u)

+K ((u)] is zero in the static limit yielding

which is the same as Eq. (6). Similar considera-
tions hold for Eq. (10) with the difference that the
"Kuhn" sum rule, Eq. (19), is used to eliminate
the first integral leaving the equivalent of Eq. (7).
Since it has been shown previously that Eqs. (5)
and (8) hold for metals, we conclude that the gen-
eralized dispersion relations Eqs. (5)-(8) hold for
both insulators and metals provided ~t 0 and that
Eqs. (9) and (10) involving (u[K,((u) +K ((u)] and

(u[n+((u) -n ((u)] are redundant.

B. High-frequency limits

In the limit of high frequencies, photon energies
are much greater than electronic binding energies,
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«, ((d) =O((d 'ln "(d), a& 1, (23)

Applying the superconvergence theorem [in the
form of Eq. (All) of Ref. I] to the dispersion re-
lation for n ((d)+n ((d), Eq. (5), one has

lim[n, ((d) +n ((d} —2]

m' K+ u' +K
W&2

0

Zeeman splittings, etc. , and to a first approxi-
mation the electrons in a medium respond as though

they were free. Thus, the leading terms in the re-
fractive indices for right- and left-hand modes in

a medium with X electrons per unit volume is

lim[N, ((d)- I] = —2IIXe'jm(d' = —
2 (dp' j(d~,

(22)

where e and m are the electronic charge and mass,
respectively. That is, n, ((d) —1 falls off like
——,'(d~ /(d', while K((d) falls off faster than (d '. In

a simple Lorentz model, "'"«, ((d} falls off like
& ', but it is sufficient to assume the less strin-
gent behavior"

«,(«)+«(r«)
() ~

J p 2
(27)

»m N(()dN((d—) = (d,
'

&d, /(d', (26)

where (d, is the cyclotron frequency eH/mc. If
the spin system is polarized, i.e. , (S,) W 0, (d,
is augmented by a term proportional to the spin-
orbit interaction but the asymptotic behavior re-
mains O((d '). This is discussed in Sec. IV D.
Similarly in a naturally optically active sys-

Since this derivation assumes Eq. (6), it applies
only to insulators. However, we have already
shown the inertial sum rule holds for metals by
taking the (d = 0 limit of Eq. (10).

Asymptotic expressions for the difference in

N, ((d) are required for deriving sum rules from
the difference dispersion relations, Eq. (7) and
(8). From Eq. (22) the difference in indices must
decrease faster than & ', but the. exact form may
be calculated in any convenient model since only
the asymptotic behavior is needed. In the magneto-
optic case a classical"' "or quantum" calculation
shows that if spin polarization is neglected

+O((d ln (d} . (24)

Equating the asymptotic behavior of Eqs. (22) and

(24) yields the generalized Thomas-Reike-Kuhn

f sum rule'"

R
QJ ~op 3k ~ (d3

where R„ is the rotational strength,

l K+((d) + K ((d)
M

2
N 4xMP

0
(25) II,.=-R., =Im((a( p. (5) ~ (5( m(a)) (30)

Here the average extinction coefficient ,' [K+((d)—
+ K ((d)] plays the role of the isotropic extinction
coefficient in the usual statement of the f sum
rule for linear light.

Comparison of the generalized f sum rule [Eq.
(25)] and the Kuhn sum rule [Eq. (19)] shows that,
in general, K+((d) and K ((d) do not obey the f sum
rule separately. This will be discussed from the
point of view of transition probabilities in Sec.
IV C.

The inertial sum rule for circularly polarized
modes may also be derived by applying the super-
convergence theorem to the dispersion relations
for K+((d) +K ((d), Eq. (6). Applying the supercon-
vergence theorem (with P = ~} to Eq. (6) after a
change in variables yields

K~((d) + K ((d)lim +

QI ~00

I d ~ O(
- ).

J
— (d + (d

(26)

But the left-hand side falls off faster than

for the transition from state a to state 6 with tran-
sition energy hw~, =E, -S,. The electric and mag-
netic dipole moments have been abbreviated as

p, =e r~ and m=p~

and Xp is the number of optically -active species
per unit volume.

In both cases of optical activity

n, ((d) -n ((d) =O((d '),

while K,((d) -K ((d) falls off faster than (d ',

K+((d) —K ((d) =0 ((d ), (d

(31)

(32)

For present purposes it is sufficient to assume
that"

K,((d) —K ((d) =O((d 'ln "(d), II& 1,

since in an actual physical system K,((d) -K ((d) is
expected to decrease even faster than this. For
example, in the Lorentz model"'" the magneto-
circular dichroism K+((d) —K ((d) falls off like (d

Sum rules may now be derived from the first
difference dispersion relation for n, ((d) -n ((d),
Eq. (7), by employing the identity equation (20)
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to expand 1/(&u" -&u'). This yields

n, ((u) -n ((o)

2 1
[)z,((u') —K ((u')] d(u'

(d 0

frequency behavior of n+((()) -n (&u) given by Eq.
(31) is actually more restrictive than is needed
to derive Eqs. (34) and (37). The fact that N(&u)

N-(&u) =o(&u '), as u&- ~ [which may be inferred
from Eq. (22)] guarantees both of these rules. How-

ever, to obtain Eq. (35) it is necessary that x+(&u)
—)z (&u) fall of faster than ~ '.

The superconvergence theorem [in the form of
Eq. (All) of Ref. 1] may be applied to the second
integral and comparison with the asymptotic be-
havior, Eq. (28), yields two rules

J
[)z,((u) -)z ((u)] du& =0

0
(34)

for the magneto- and natural-optically active
cases, respectively. The first is the "Kuhn" sum
rule already familiar from taking the ~ =0 limit
of Eq. (10). The second is new and gives the split-
ting of the levels absorbing right- and left-hand
light. Equation (35) can alternatively be derived
by applying the superconvergence theorem to Eq.
(10) for (()[n (&()) —zz (&u)].

The second difference dispersion relation, Eq.
(8), yields a second sum rule for zz+((()) -n ((())

that is valid for both metals and insulators. Apply-
ing the superconvergence theorem yields the limit

lim [)z,((u) —)z ((u) ]

(36)

However, from Eq. (32) the left-hand side falls
off faster than ~ ' so that equating powers of 1/m'

gives the rule

(u[n, (u)) —zz ((u)]d(u =0.

This result should be compared with the earlier
sum rule, Eq. (17), obtained from the static limit
which holds for insulators only,

d&u =0 (insulators) .
" n, (&u) -zz ((u)

0 (d
(17)

It should be noted that the ur
' asymptotic high-

(a'[[(,((u) -)z (&u)] d(u
~o

——,'z[~,'(u, , (S,) =0 (mag. opt. ),
c (35)

8m &0
(()~,R„(nat. opt. )

(() [zz, (&())—n (((z)][a,(&)—()[z ((()}]d(() = 0
0

(38)

holds. In addition for insulators a second rule ob-
tains

r"[n,((u)-n ((u)][K, (u))-~ ((u)]

0 QP

(insulators). (39)

These should be compared with the rotatory dis-
persion rules Eqs. (37) and (17) which have an
identical form, but with the factor ~((()}—zz (&u}

replaced by unity. Not only does the rotatory dis-
persion obey a first- and inverse first-moment
rule, but it obeys the same rules when weighted
by the circular dichroism.

A further result is that the norms of the circular
dichroism and the rotatory dispersion obey

t [,( )-» (»)]'d —f [», (w) — ( )]'d
0 0

= -4z['((z (0}-[o' (0)+o,'„(0}]"],
(40)

where (z&&(0) are the elements of the dc conductivity
tensor. This is a generalization of the theorem
that the norm of a function is preserved in Hilbert
transforms [cf. Altarelli and Smith, Ref. (2), Eq.

C. Higher-order sum rules

An infinite number of sum rules may be derived
for the optical constants by considering analytic
functions formed by taking various powers of the
optical constants and their products with powers
of co.'" Vfhile only a few of the results appear
to be of practical importance, some straightfor-
ward relations based on the products N~+ (&()}, N' ((L)),

N, ((())N (~), and their linear combinations may be
derived. For further details the interested reader
is referred to treatment of the case for linear
light in Refs. 2 and 26 which may be extended to
the circular case without difficulty.

By considering the function [N+ ((())-N (&u)]', or
equivalently taking linear combinations of sum
rules for Nz+ ((()), N' ((()), and N+ (m)N ((()) sum rules
for the product of circular dichroism and rotatory
dispersion are obtained. For both metals and di-
electric s
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(55')]. A generalization of the weighted average-
index sum rule is also found,

r (()([n+((d) —1]K+((d)+[n ((()) 1-]K ((())] d(() =0.
0

(41)

This is to be compared with the generalized iner-
tial sum rule Eq. (18}which is similar in form but
does not contain the weighting factors ru», ((d).

D. Summary of results

To summarize the results of this section the
principal sum rules obtained are listed below. For
metals and insulators one ha, s (a}generalized
Thomas-Reike-Kuhn f sum rule

f ( [nf(d)-n ((())][K,((d)-K ((O)] d(() =0.
0

(49}

In addition for insulators on has (i} the inverse
first-moment CD—CB rule

(insulators}; (50)

Sum rules involving higher powers of the optical
constants have also been proved. Most appear to
be of limited value in the analysis of data, but a use-
ful result for checking inversions of circular-di-
chroism-circular-birefringence (CD-CB) data in

metals and insulators is
(h} the first-moment CD-CB rule

l K,((())+K ((()) 7)
(d

2
l(d =4 QPP y

0

(b) generalized inertial sum rule

l .(a) ~ 4u) () z
2

(42)

(43)

(j) the CD-CB norm rule

(insulators). (51)

(c) first-moment circular-birefringence rule

f (u[n, (a)) -s ((u)] d(u =0;
0

(44)

f [K,(&u)-K ((d)] der =0;
0

(e) second-moment circular-dichroism rule

(45)

' ——,v&()~(d„(S,) =0 (mag. opt. )

0
co~2 R„, nat. opt.

(d) Kuhn's zeroth-moment circular-dichroism rule

IV. DISCUSSION

In the present section the dispersion theory re-
sults are compared with well-known predictions
of detailed models and the physical basis of the
sum rules is explored quantum mechanically.
Sections IVA and IV 8 deal with the Drude-Rosen-
feld formula used widely in analysis of rotatory
dispersion and with the use of sum rules to sepa-
rate solute from solvent rotations. In Sec. IVC
the Kuhn sum rule and the generalized f sum rule
are derived by considering transition matrix ele-
ments. In Sec. IVD the classical second-moment
circular dichroism rule for &, is investigated sim-
ilarly. The derivation is extended to include spin-
orbit contributions and the results compared with
the moments results of Bennett and Stern" and
Henry, Schnatterly, and Slichter. "

2 K~ (L) +K (()= 1 + — '
d(() (insulators);

(41)

(g) inverse first-moment circular-birefringence
sum rule

E d(L) = 0 (insulato rs).
0 (d

(48)

for magnetic and natural optical activity, respec-
tively; in addition, for insulators one also has the
following relations:
(f) static index sum rule

A. Rotational strengths, the Drude-Rosenfeld formula,
and asymptotic behavior

A quantum-mechanical description of natural
rotatory dispersion was first formulated by
Rosenfeld" who showed that the rotation, (j)(&u),

of a plane polarized beam of light by a optically
active medium is given by

COyg
—(d

Here 5( is the number of optically active mole-
cules per unit volume and R„ is the rotational
strength. A similar result was derived earlier
by Drude" from a classical model. Comparison
of the Drude-Rosenfeld formula with the disper-
sion theory result, Eq. (13),
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( )
—(d «~((d ) —«i((Ll )

CÃ Q7 —43
(13)

(54)=0.

This is the rotational strength sum rule "as
originally stated by Kuhn. "

The low-frequency behavior of p(&) for both
natural and magneto-optic systems may be in-
ferred directly from Eq. (13). At energies much
lower than any significant circular dichroism the
integral becomes a constant and

P(&u) =A&a' (low frequencies),

where

(55)

A = —(cv) ' (u' '[», (&u') —«, ((u')] d (u'.
0

Similarly, at frequencies higher than any significant
circular dichroism expansion of the factor I/(&u"
—aP) in Eq. (13) and use of the Kuhn sum rule,
Eq. (45), yields

Q(u&)
- ~ 8,

where by Eq. (46},

(57)

(u"[«„(&u') —«, ((u')] d u)'
0

(dp QP

(mag. opt. ),

shows that both the Drude and Rosenfeld models
correspond to a circular dichroism consisting of
5 functions with strength proportional to Rb„

«„((u)- «, (4p) =-
3~

' Q R~,5((u —&u~). (53)
8m'&0

b

Alternatively, one can view «,(~) —», (u&) as giving
the spectral density of rotational strength in a
generalized Drude-Rosenfeld theory in which the
summation in Eq. (52} is replaced by an integra-
tion.

Substitution of Eq. (53) into the sum rule for the
zeroth moment of [«, (u&) —«(&o)], Eq. (45) yields

light as it passes through an optically active sub-
stance. Comparison of Eq. (11) for the rotation
with the first-mument birefringence rule, Eq.
(44) shows that for both conductors or insulators

y(~) da) =0
0

or equivalently

(59a)

~-'y ~ dX =0.
0

(59b)

J e 'P(&g) dv =0 (insulators)
0

or equivalently

J P(A. ) dX=0 (insulators).
0

(60a)

(60b)

Note that for insulators one has the curious
reciprocal requirement that both the zeroth and
inverse second moment of the rotation are zero
using either frequency or wavelength as integra-
tion variable.

These relations provide self-consistency checks
on experiments and on the subtraction of back-
ground rotations when dealing with the rotation of
dilute impurities in an optically active solvent.
Studies of color centers in insulating crystals are
on example of the latter. At low temperatures
paramagnetic color centers display strong mag-
neto-optic activity but this is superimposed on a
background rotation arising from the host crystal
or other centers. ' Since the absorptions re-
sponsible for the host crystal rotation are usually
well removed from the absorptions of the color
centers, the background rotation produced by the
solvent is varying slowly and can be approximated
by a simple analytic form such as a three-param-
eter Drude-Rosenfeld fit

(61)

In addition for insulators the inverse first-moment
birefringence rule, Eq. (48) yields the restriction

or

B=— 0 g uP~R~, (nat. opt. ).35'

(58)
By applying rules Eqs. (59) and (60) to the solute
rotations the consistency of the background sub-
traction can be checked and, where appropriate,
the parameters varied to achieve consistency.

This, of course, is precisely the behavior built
into the theory from the known high-frequency
form of n, (&u)- n (~).

B. Rotatory dispersion and Faraday rotation

The sum rules for differences in refractive in-
dex are directly applicable to experimentally ob-
served rotations of the plane of polarization of

C. Kuhn circular dichroism and the f sum rules

The quantum mechanical origin of sum rules
involving extinction coefficients may be demon-
strated by expressing them in ter.ns of matrix
elements of the electromagnetic field interaction.
In the semiclassical approximation this inter-
action has the form""

-(e/mc)II A~,
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where A~ is the vector potential of the light and
0 is the canonical momentum operator including
spin-orbit effects

II(r, ) =- fkV, —(e/c)A (r, )+(I/2mc')Sx V, V(r, ).

(62}

Here A (r) is the vector potential for the external
magnetic field, 2Hxr, e is the electronic charge
(a negative number} and V(r) is the one-electron
potential assumed in reducing the Dirac equation.

An approximate expression" for K(&u) in terms
of matrix elements of D may be obtained~ by
equating the decrease in intensity of the propaga-
ting wave as measured by 2+K/c to the energy
absorbed by transitions induced by the radiation.
Ignoring the details of band shapes, this yields in
the dipole approximation

f &i S

(63)

Here I is the unit polarization vector; for circu-
larly polarized modes it is (x+iy)/Wp . The
initial- and final-state wave functions are denoted
by p, and pf respectively and the sum over +
runs over all electrons. The circular frequency
for the transition f -f is denoted by &o&, . This
expression may be transformed into the more
familiar dipole form by using the dipole-momentum
identity

(E, Ej}&klr, I7'& =-- (N/m)&klII, Ij&, (64)

which follows directly from the commutator of r
with the Hamiltonian. Combining Eqs. (63) and
(64} yields

2F 2

K(4p) =
g Q l&y~ II Rl y,& I 5((o~, —co) . (65)

f&i
Here R is the dipole operator for the g electrons
in the system Q~, r, . For the present purpose
of illustrating the quantum mechanical basis of
the sum rules, Eqs. (63) and (65) will be used
interchangably. However, it should be noted from
Eq. (64) that it is possible to have &klIII j) =0 but
(klrl j) w0 if u~~ =0. Examples of this occur for
intraband transitions in metals. "

1. Euhn sum rule

In the form given by Eq. (45) this rule states
that the average circular dichroism expressed
as the difference in extinction coefficients in zero.
Since the extinction coefficient is proportional to
the rate of photon absorption, an alternative
statement is that the net transition rates for right-
and left-hand light are equal. The direct quantum-

mechanical proof proceeds by substituting Eq. (65}
into Eq. (45}and using closure

[K„((O)—K, ((u)] d &O

0

g i&pl(x- fY) I Q;&I —I&py((x+I Y)ly(&l'

=-0, (66)

where X and Yare the x and y components of the
dipole operator R. The sum over f in the second
line originally excludes ft), , but may be extended
to include this state since I&p, IX+ i Ylp, &I2

3I= Qf 8=
II Q (E8-E )l&yglR, I4.&l' (6'I}

8 8

Here f„& is the oscillator strength of the transition
from state n to state p and 8, is either X, Y, or
Z, the dipole operators for linear light. The sum
over P runs over all possible final states of the
system. On the other hand, the sum of the oscilla-
tor strengths associated with dipole transitions
of circularly polarized light is

2m X+iYQf. 8= g2 Q(E8-E ) &48I
8 8~a

E —E2m

8

&& 1m&4 IXlgg&&QSIYly &.

(66)

Here Eq. (67) has been used to replace the sum-
mation over the direct terms involving matrix
elements of X or Y by X. The cross term in-
volving dipole matrix elements of X times dipole
matrix elements of Y is in general nonzero so
that the f sums for right- and left-handed light
are greater or less than X by the magnitude of
the cross term's contribution. However, if the

2. fsum rule

While the total transition rates for right- and
left-hand light are equal, the oscillator strengths
(which are proportional to energies times trans-
ition probabilities) are not equal and the f sum
rule does not apply to either mode separately. "

The physical origin of this may be seen from
the conventional quantum mechanical proof of the f
sum rule. By evaluating the position-momentum
commutator, it is easily shown that the oscillator
strength for each orthogonal component of linearly
polarized light equals the electron density X of
the system. * That is,
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f sums for right- and left-hand light are added,
the cross terms cancel yielding

~f. e+f (
2

That is, the average oscillator strength is just X
in agreement with Eq. (42}.

A particularly simple form for the cross term
may be obtained by using the dipole-momentum
identity Eq. (64) and the property of closure to
perform the sum over P. Equation (68} then be-
comes

(69)

pf...=s&+s(&six. lv& s&vlx' x-'Is&

~
s +&vis.&xv, v+sv, v&(~v, ),

(70)

where I., is the z component of the angular momen-
tum operator. This result, with the exception of
the spin-orbit term, has been given previously by
Hasagawa and Howard. "

l. Exact evaluation of the second moment and the classical limit

An exact result for the second moment of the
circular dichroism in the magneto-optic case may
be obtained from the kinetic momentum expression
for K. From Eq. (63) the second moment is

l &d'[K, (&d) —K (&d)] d&d
0

g (4, i + 1, fl(r, )iy,)
f ~ j l S

D. Second-moment circular-dichroism (CD) sum rule

The second-moment CD rule for magneto-optics
given by Eq. (46) has been derived ignoring the
possibility of spin polarization. Considerably
deeper insight may be obtained by a more detailed
quantum calculation including spin-orbit effects.
In the present section we show that in the dipole
approximation nonzero contributions to the second
moment of the circular dichroism arise only from
velocity-dependent terms in the Hamiltonian (such
as the magnetic and spin-orbit interactions). This
is the source of magneto-optical phenomena.
Natural optical activity enters the theory as a
consequence of the spatial variation of the electro-
magnetic wave over the system and will be dis-
cussed elsewhere.

Here the sum over f has been extended to include

4&,. because the Q,. term is identically zero and

closure has been used to obtain the second line.
Explicit evaluation of the commutator yields

[fl„(r,), ll, (r, )]

" &x&z ~ eyaz

(72)

The first term arises from the magnetic field
which is the z direction; the second from the spin-
orbit interaction. The latter is important in mag-
netic materials and at low temperature where spin
polarization is possible.

In the classical limit the expectation value of
spin is zero and the second moment becomes

l (d [Kv(&d) —K (&d)] d(d = —x Ã &dp&ds s

0
(73}

in accord with Eq. (46).
This result is closely related to a magneto-

conductivity sum rule discovered by Bennett and
Stern"'e for the imaginary part of the conductivity

&d fmo, (&d)d&d =
2 H.me'g

0 2m2g (74)

E ( )(s= &5d;s +41ff8(i(&d)/&d s (76)

and combining this with Eq. ('l5} completes the
proof of the conductivity sum rule, Eq. (74). The
point of importance here is that the physical basis
of all these rules is identical, viz. , the asymptotic
behavior of the off-diagonal response of the sys-
tem

The relationship may be seen by observing that
according to the argument of Ref. 31, Eq. (73)
implies a sum rule for the corresponding di-
electric functions es(&d) =N', ((d),

00

&d' fm[N, (d) -N' ( d)]
~sP

= 2 &d' Rem, „(&d) = —v~~a (d, = —,H, (75}
4r'e'X

N p

where the second form for the integral follows
from N', = c„„+i&„. However, the conductivity is
given by

$(dp(a7
lim e„(&d) =-

QJ + Oo

(77a)

(y, ig [ff„(T;),fl,(r, )]i@,).
(71)

which implies

(d
lim (N, N)=- (77b)
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and

CO 43
lim c„,(a)) =—

47k (d
(VVc)

potential and the spin-Zeeman interaction;
2

H, = g —' + V, (r) +giLe H ~ S, . (80}

2. Role of velocity-dependent potentials and approximate
formulations

The velocity-dependent part h is then the sum of
orbit-Zeeman and spin-orbit terms

The importance of velocity-dependent potentials
and the connection between the exact second-
moment sum rule and previous approximate treat-
ments2S may be brought out by expressing the sum
rule in terms of position matrix elements. Using
Eq. (65) the second moment becomes

h= g$(r) ~ L,= gpeL, ~ H+f(r)L, 'S,.

It is easily shown that

[[[r„H,],H, ],r, l
= 0

(81)

(82)

r (d [K~(ld) —K ((d)]d(d
0

n2 2
= 8' Q ~g;(l&yglx+tYI@;&I'-l&e~lx iY-I@g&l')

f Wj

for r, and r~ any combination of position vectors.
Thus from Eqs. (78) and (82): If the Hamiltonian
contains no velocity dependent-potentials the sec-
ond moment of the circular dichroism is zero in
the dipole approximation

, &4;I[[[(x-tY), H], H], (x+iY}]III& (f&) (d K+ (d —K (d dR =0.
0

(88)

The last line is obtained by adding the term f =i
to the sum and using completeness. To evaluate
the triple commutator it is convenient to use a
model Hamiltonian which explicitly separates
velocity-dependent and velocity-independent po-
tentials. Let

H =Hp+h,

where H, contains the kinetic energy, and the ve-
locity-independent potentials including the crystal

Furthermore, it is easily shown that

[[[r„h],h], r, ] = O. (84)

That is, there is no contribution to the second-
moment quadratic in velocity-dependent potentials
in the dipole approximation. Nonzero contributions
arise only from commutators with cross terms in
h and H. In evaluating these H may be replaced by
H, if desired because of Eq. (84). Explicit evalua-
tion then yields

(gp K+ (Jg K CO d(0 I,3 @) —iY,h, H, +i + —iY,H, h, +i
0

[(Ef+Ep-2«)((@~lx IYl yt&&ytlhl @t&g t Ix+iY

Ix+iYI Q.y & &Q&.Ihip, & &y, lx iYI y, &)-

+(E, +E, —2E, ,)(&y, Ihip, &&@,lx iYly, &&y,-. lx+iYI@,&

—&Q;IX+iYI@y ) &0&t IX —iYI@f&&@&Ihip;&)] . (85)

The right-hand side of the last expression is of
the form of a generalized oscillator strength
(energy times the product of dipole matrix ele-
ments) times the matrix element of the velocity-
dependent potentials in the Hamiltonian. The
energies E, in Eq. (&5) may be either those of H,
or H as indicated above.

A particularly simple example3' occurs when the
initial state Q, is a singlet and the only excited
states to which there are significant optical tran-
sitions from a triplet transforming like x, y, and
z which is unsplit by velocity-independent poten-
tials in the Hamiltonian such as the crystal field.

Taking advantage of the freedom of choice in en-
ergies, the excited-state energies will be taken
as the (degenerate} eigenvalues of Ho, Eo. One
then finds

N 0
~'[v+(&o) —K (~)]d&u

4m2 '
F&) 0& Y Q„) Q, X Q&)

(86)

where the excited states in the lth triplet trans-
forming like x is denoted by Q„', etc. Since the
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triplet states transform like x, y, and z,

for the orbital g factor and

~'=- -'f&e,'I «r)~. le.'& (89)

for the spin-orbit splitting of the lth triplet. The
ground-state expectation value of the z component
of spin is devoted by (S,&.

Taken at face value Eq. (8V) appears to be con-
tradictory to the exact result for the second mo-
ment, Eq. (V3). For example, with (S,)=0 the
approximate result involves g,',b, a parameter
depending on the excited state, whereas the exact
result involves only the fundamental constants
via co~ and ~,. The reason for this apparent con-
tradiction is the assumption that all but the most
prominent absorption can be neglected. This leads
to the replacement of (&v)H~ in Eq. ('I3) with the
quantity g,'„xf &o[«t(&o)+ «'(&o)]d&o, where l labels
the band in question. Indeed it is clear that g,',„
can be measured only if it is possible to separate
the circular dichroism of an individual band from
that of other bands, otherwise one just measures
~, corresponding to the classical case of g,pb 1.

To resolve the conflict it is necessary to include
all final states in discussing Eq. (8V). In the case
of a system with well separated absorptions for
which there is negligible magnetic mixing between
excited states, an orbital moment g,',b may be de-
fined for each group of sublevels. Then from the
f sum rule, Eq. (42),

g7NO~ = 4)[«~(Q7)+ «(&0)]de
0

47[«+((d) + «(CO)]de).
0

(90)

Moreover, by summing Eq. (8V} over all groups
of states and using the exact result, Eq. (V3), one
has (still assuming &S,)=0 for simplicity}

the term in large parentheses in Eq. (86) may be
shown to be proportional to the sum of oscillator
strengths for transitions of "+"and "-"light to
the lth triplet, f," to[«,'(~)+ «'(v)]de. Equation
(86) then becomes

f, uP[«,'((o) —«'((o)]d(o . 2

f [ f( ) l( )]d„f-f-f&&l I 0.&.l
e'&

=1= z(2g.',+N+ 3&'&S,&).

(8V}

The last line follows by substituting for q from Eq.
(81) and using the definition"

g.'„=- &e,'l~.
l e„'& (88)

r [«(&a&) —«((d)]dbms
0

2= —p 7TCOpCO~

=-(u,Q g,'„, ra[«t((u}+«'((o)]d(o, (91)

where the fact that (2/K) p~ = —~, has been used.
Substituting for uP~ from Eq. (90) then yields

r f~
orb f (92)

where f, is the oscillator strength for absorptions
to the Lth groups of states

(d[«+(co) + «((a)}]de),
2m e

and f is the total oscillator strength for absorp-
tion to all levels P,f'. That is, the average of
the orbital moment as weighted by the relative
oscillator strengths is just unity, the classical
value.

3. First-moment formula ofHenry, Schnatterly,

and Slieh ter (HSS)

The approximate result obtained in Sec. IVD 2
is reminescent of the widely used result of Henry
et al."for the change in first moment of an iso-
lated absorption band caused by a magnetic per-
turbation. The "first-moment" result may be
obtained from Eq. (8V) by rewriting and making
several minor approximations.

The integral in the denominator of Eq. (8V) may
be expressed in terms of the first moment of the
absorptions ~, via the definition

J &aP[«~(&d) —«(&d)]dc'
0

= 2(o, ((o —~,)[«t((o) —«'(~) ]d&o
0

+ (~ —u&,)'[«,'(&o) —«'(+)]d~ (94)
0

on applying Kuhn's sum rule, Eq. (45), to eliminate
co', terms. By virtue of the choice of ~,as the center
of gravity of the composite band «,'(+)+ «'(e), one
expects large cancellations in the second integral Eq.
(94). Moreprecisely, if, with Henry etal."one as-
sumes no mixing of the states responsible for the ab-
sorptions, the Kuhn sum rule holds for the individual
absorption bands that is, the areas under «,'(&u)

and «'(~) are equal. Further for a bell-shaped

lO[«~((0)+«((d)]d(a —= (Oo [«t((0)+«((d)]dbms.
0 0

(93)

In terms of co, the numerator becomes
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band the circular dichroism x,'(&o) —z'(&o) will be
approximately an odd function about the center of
the band" ~„so that the second integral in Eq.
(94) will be small relative to the first.

Combining Eqs. (8'I), (98), and (94) and approx-
imating 2f" [z,'(ur)+ z'(~)]d&u by the zeroth mo-
ment of «(&u) before application of the field,
f" ~,'(co)d&o, yields

( —,)[«,'( ) —«'( )]« f «,'( )dt«
0 0

This is the celebrated HSS first-moment formula
in the present notation. Note that because of the
Kuhn sum rule, the ~0 in the numerator of Eq.
(95) is unnecessary. Indeed, the first moment
may be taken about any convenient origin.

E. Summary

In this section the predictions of dispersion
theory have been compared with earlier model
calculations and the circular-dichroism sum rules
have been investigated quantum mechanically.

It has been shown that the Kuhn sum rule,

[~,(&o) —x (&o)]dry=0,
0

is equivalent to the statement that the net transi-
tion probabilities for right- and left-hand light
are equal. Since the oscillator strength is pro-
portional to the transition probability times the
transition energy, it follows that the oscillator
strengths for right- and left-hand circularly po-
larized light are unequal if the spectra are dichro-
ic. However, the average of the oscillator

strengths for right- and left-hand light is just equal
to the electron density in analogy with the f sum
rule for linear light.

In the dipole approximation the second moment of
the circular dichroism may be related to the ground-
state expectation value of the commutator of the
x and y components of the canonical momentum.
Nonzero contributions to this arise only from
velocity-dependent terms in the Hamiltonian such
as the orbit-Zeeman and spin-orbit interactions.
If the complete magneto- circular-dichroism
spectrum is considered, the second moment is
proportional to the total oscillator strength times
the cyclotron frequency in the absence of spin
polarization. On the other hand, the second mo-
ment of the magneto-circular dichroism of indi-
vidual absorption bands arising from orbital sing-
let-triplet transitions is in addition proportional to
the orbital. gfactor of the final states. This leads
to the rule that the average orbital g factor when
weighted by the absorption strength is just unity.
By making a number of approximations the sec-
ond-moment circular-dichroism sum rule has
been shown to be equivalent to the well-known
Henry- Schnatterly-Slichter first-moment relation
for the orbital g factor and the spin-orbit splitting
of a color-center absorption band.
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