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Electronic structure and transport in liquid Te~
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In this paper we explore the consequence of bonding inhomogeneities on the structrual, magnetic, and

electrical transport properties of liquid Te in the temperature range 675-1250 K. Assuming that the short
correlation length b is of the order of several interatomic separations, local electronic structure and local
response functions are defined. The volume fraction C of the metallic regions was determined from Knight-
shift data. The enhancement factor for the spin-lattice relaxation rate is proportional to C ', in good
agreement with the experimental data. The electrical conductivity and the Hall coefficient were analyzed in

terms of an effective-medium theory.

We have recently advanced aphysicalpicturefor
a continuous metal-nonmetal transition is some
disordered materials. ' ' It was pointed out that
local electronic structure and transport properties
can be defined provided that the short correlation
length ' b for fluctuation is long compared to the
phase coherence length E of the conduction elec-
trons. In the vicinity of a metal-nonmetal transi-
tion, the local electronic structure depends sen-
sitively on the local electronic configuration. ' '
As a consequence of the fluctuations, the material
becomes microscopically inhomogeneous as re-
gards transport. For sufficiently large values
of b, tunneling corrections can be disregarded, ' '
and local transport theory is applicable.

We have examined two materials in some de-
tail with the aid of this picture, expanded liquid
mercury2 and metal-ammonia solutions. 4 In the
former case we deal with a unimodal distribution
of density fluctuations, in the latter case with a
bimodal distribution of concentration fluctuations.
In both cases we were able to advance strong ar-
guments for the existence of microscopic inhomo-
geneities to fit the transport data accurately to the
theory of inhomogeneous transport. ' We have
developed this theory, ~' ' to extract the volume
fraction of metallic regions within the inhomoge-
neous material and to estimate b. In the present
paper we continue this program and report a par-
allel investigation of liquid Te, of which a pre-
liminary account has appeared. '

Liquid Te provides an example of inhomoge-
neities originating f rom bonding modif ications in a
one-component system. In liquid Te, Cabane
and Friedel' have already proposed a state of
mixed coordination in order to explain structural"
and magnetic resonance data. '6'7 They suggest
the existence of regions of threefold coordination
which are metallic mixed with regions of twofold
coordination which are semiconducting. Using

crude chemical terms, in the twofold coordinated
state a lone pair does not participate in bonding.
In the threefold coordinated state, the lone pair
electrons become bonding electrons, one being
tied up in the additional bond, leaving one free.
A more sophisticated analysis would yield more
than one electron free to conduct.

As is evident from Fig. 1, a metallic regime
characterized by a conductivity'8 2O c= 2700 (tl c~)-'
which is on the borderline between propagation ' "
and diffusion, 4 fits the transport data above
about 1100 K; this limit will be discussed below.
In the temperature range 650& T &1250 K, in
which the liquid has been studied, the conductivity
varies in the range" 2O 2700 tn 860 jQ cm) ' while
the Hall mobility ' remains constant within 5%.
Matt 38 and Warren' have utilized the Knight-
shiftdata K, Fig. 1, to derivethe g parameter
and conclude that the Mott-Friedman relation gag~
in the form o=A'K2 is obeyed, providing evidence
for the applicablity of the diffusion regime. We
note empirically, however, that an alternative,
linear relation a=A"K-B' also holds over the
temperature range 675 & T & 950 K, Fig. 2. More
important, the applicability of the diffusion re-
gime would require p, to vary by about 60%%up, ac-
cording to Friedman's theory, 7 in the form util-
ized by Even and Jortner ' and by us, while the
propagation regime would require p, to vary by about
a factor of -3.1. Both predicted variations are
at least an order of magnitude larger than what is
observed. We conclude again that neither of the
conventional metallic transport regimes is con-
sistent with the transport data. Accordingly, we

apply our picture of transport in microscopically
inhomogeneous material to liquid Te.

Because the configuration parameter is the co-
ordination number for each atom, the correlation
length b must be at least one interatomic separa-
tion, 2. 8 A, in the threefold coordinated configur-
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ation. The formula for 0 for an isotropic metal
in the propagation regime is Neaf/p~, where N is
the electron density, p~ is the Fermi momentum,
and l is the mean free path. Assuming three con-
duction electrons per atom and a conductivity of
2700 (A cm) ' in the metallic regions leads to a
value of 1.2 for k~l. In expanded liquid Hg the
transition from the propagation to the diffusion
regime occurs when k~l is 2. 3. Thus the con-
ductivity is inconsistent with the propagation re-
gime. The Hall constant" R is such that R/R»
= 1.2 where R» is the free-electron value. This
plus the conductivity implies that electrons in

metallic liquid Te are in the diffusion regime.
l can therefore not be regarded simply as a mean
free path but must be considered a phase coher-
ence length. From our experience~' with Hg we

expect that l&(2. Sk~) '=0. 8 A, and the condition
b &l is well met, as 5/l&3. 5. We can then con-
sider the medium as a submacroscopically inhomo-

geneous random mixture of regions of radius b

which can be treated semiclassically as locally
uniform, The electron wave function does not

actually go to zero within the excluded region.
Nevertheless, it can become small enough there
to be unimportant in a variety of contexts.

Accordingly, we define an allowed volume frac-
tion C(E) as being that fraction of the total volume

030
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FIG. 1. Temperature dependence of the electrical
conductivity 0 {Ref. 20), the Hall coefficient R (Ref. 31),
and the Knight shift K (Ref. 17) for liquid Te. Error
bars on K data {Ref. 17) indicate experimental uncer-
tainty. Accuracy of tr data (Ref. 20) is 5% and of 8 data
(Ref. 31) is 7%.

X&
= CXO+ (l —C)Xi, (2)

where y, and y, are the metallic and the semicon-
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FIG. 2. Plot of 0. vs K for liquid Te with the tem-
perature an implicit variable. Note that in the tempera-
ture range 675 ( T & 950 K a linear 0' vs K relation.
holds.

of the material actually allowed to electrons of
energy E. Now, the Weyl theorem~ tells us that
as long as the shorter of the de Broglie wave-
lengths (or the phase coherence length) is suffi-
ciently small compared to the dimensions of the
allowed regions, the density of states will be in-
dependent of the geometry of the allowed regions
and of the boundary conditions presented by the
forbidden regions and proportional to the allowed
volume. Thus we may take' ' as an approximate
definition of C(E),

n(E) = no(E) C(E),

where no(E) is the density of states per unit volume
of a metallic region of macroscopic extent, and

n(E) is the actual density of states of the micro-
scopically inhomogeneous material. Def ined in
this way, C(E) allows properly for penetration
into the excluded regions.

The quantity C(Ez) —= C is the volume fraction of
the material from which contributions of the elec-
trons at the Fermi energy of the metallic regions
to the physical properties arise. Similarly,
l —C(EF) =—1-C is the volume fraction from which
nonmetallic contributions originate.

Experimental paramagnetic volume suscepti-
bility y, or Knight-shift K data can be utilized to
obtain C. Because local-field corrections are
negligible in y~, effective-medium theory for this
response function is unnecessary, and we can
write
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ducting paramagnetic susceptibility, respectively.
We now turn to the relation between the Knight

shift and the volume susceptibility. The config-
uration relaxation time is much shorter than the

uncertainty time for the Knight shift, so we are
dealing with the limit of extreme motional narrow-
ing for the nuclear resonance, Consequently, the

experimental Knight shift is the mean of the shifts

Kp in the metallic regions, and K, in the semicon-
ducting regions, weighted by the proportion each
region contributes to the nuclear volume suscepti-
bility y~:

K = Ko ~ C+ K, ~ (1 —C),

where y p and y", are the nuclear volume suscepti-
bility in the meta&. lic and nonmetallic regions,
respectively. As each nuclear susceptibility is
proportional to the corresponding nuclear number
density, Eq. (2) can be rewritten as

XK= K~,C+ K,X,(1 —C), (4)

where N is the mean number density, and Np and

N, are that quantity in the metallic and in the semi-
conducting regions, respectively. Comparing (2)
and (4) we see that NK and 1 are linearly related.
Because thermal-expansion effects are relatively
small, 39 (-7%) in the temperature range 492-
1000 C, the number densities N, Np, and N, in

Eq. (4} can be treated as constants. There re-
sults the linear K vs X relation reported by
Warren. '~ Further, ignoring small differences
among Np, N„and N, and neglecting K„we ob-
tain

K= KpC. (5)

Equation (5) permits us to determine the C
scale from the Knight-shift data in the tempera-
ture range 675-1250 K, Fig. 1. In our previous
work' we have extrapolated Warren's data'7 to a
saturation value of 0. 560%%uo at 1350 K and used that
as Kp. A more careful examination of the avail-
able conductivity and magnetic data, Figs. 1 and

2, reveals that & and K exhibit weak temperature
dependence above -1000 K. As in our previous
work' we first neglect the temperature dependence
of Kp, setting C=1 at 950K. We then apply Eq.
(5) together with the experimental value of 0. 517%
for K at 950 K and use that as Kp. The resulting
values of C vs T are shown in Fig. 3. Next, we
account for the temperature dependence of the
Knight shift in the metallic regions. We can safely
assume that above 1100 K the metallic diffusion
regime applies and C= 1. The temperature de-
pendence of the Knight shift K=—Kp in the range
1100~ T ~ 1250 K, which f rom the best fit of War-
ren's data is

Ko(T) = 0. 557[1+y(T —1250)Po,

y= 1.6x10
(6)

=-
dT '+dT{l I. (E }&4(0)'&..9. (6)

Density data are available ' in the temperature
range 668-1273 K. From the density data39 for
1100& T& 1273 K corresponding to the metallic
regime, we estimate —(d lnNO/dT) = l. 5 x 10 4 K ',
which is close to the value of y, Eq. (6), obtained

from the magnetic data. Both the magnetic and

volume-expansion data are not sufficiently ac-
curate to extract the contribution to y originating
from the second term on the right-hand side of

Eq. (6). Equation (6) is now applicable for the

evaluation of the local Knight shift Ko(T} within

the metallic regions in the microscopically in-
homogeneous materials at T & 1100K. The values
of C resulting from use of Eqs. (5) and (6) are
shown as a function of temperature in Fig. 3.
The temperature dependence of Kp has only a mi-
nor effect ((4%) on the C scale. We also note

that C only changes from 1.00 to 0. 98 between

1100 and 950 K, so that the boundary of the in-

homogeneous regime is spread over 150 K, or so.
The C scale for Te permits us to clear up an
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FIG. 3. C scale for liquid Te determined from War-
ren's Knight-shift data (Ref. 17):o: Eq. (5) with Kp

given by Eq. (6); o: C =1 at 950 K, utilizing Eq. (5)
with Kp = 0.517

originates from volume-expansion effects in the

homogeneous metallic material. The metallic
Knight shift is

(K,(T) = (q, /X, Il v&q(0)', &.„,

where &$(0)~~&,„ is the probability for the conduction

electrons at the nucleus averaged over the Fermi
surface. The volume susceptibility has the Pauli
form yp= p~np(E~&, where p~ is the Bohr magneton.

The temperature dependence of Kp is

d lnKp
dT
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interesting puzzle concerning the origin of the
relaxation- rate enhancement observed by Warren. '~

In the case of extreme motional narrowing, the
relaxation rate is given by an equation analogous
to (3),

(9)
Op

0.8

i
'

I
'

t

Liquid Te

1. EMT X=fxIO

2. EMT X=6xI0

:}Experimeotol Dote

The relaxation rate in the semiconducting re-
gions can be safely neglected so that, ignoring
the difference between No and N, Eq. (9) reduces
to

0.6

0.4 I l I

1/T = (1/T ) C. (10) 0.7 0.8 t.o

Warren defines" the relaxation- rate enhancement
via the Korringa relation as

tt = (1/&t)/(1/&t)x „
(1/7', )x.„reft',

t}n(1/r, )Z '.
Substituting (5),and (10) into (13) gives

q=g, C '

(11)

(12)

(13}

(14)

where go is the enhancement for the metallic re-
gions. Equation (14) fits Warren's data for t) to
within experimental error, as shown in Fig. 4,
yielding a value of l. 00 for go. Mott was the
first to give Eq. (14) for t7 based on our picture
of Te; however, his statement that Eq. (14) does
not fit Warren's data is unjustified. In fact, the
fit to Eq. (14) is superior to the fit obtained by
using o' eK3, pea ' proposed by Warren. " We con-
clude that the magnetic data are satisfactorily in-
terpreted via our model.

We are now in a position to analyze the trans-
port data. ' ' ' As the temperature range
for which data are available spans the range 0. 6
& C & 1, there is no need to go beyond effective-
medium theory (EMT}. Moreover, as 2b/f 07,
there is no need to introduce boundary scattering
correct, ions. 4x The EMT can be put into the form

with o, and o, the local metallic and semiconduct-
ing conductivities, respectively. For a high-tem-
perature material like liquid Te with a semicon-
ducting gap of the order of 0. 5 eV we expect a
conductivity ratio of 10 2 & x & 10 ', which rein-
forces the validity of the EMT. "

The conductivity data used derive from several
sources. ' The experimental data were taken
from the smoothed o' vs T curve of Fig. 1. In the

rr =fao&

f=f(C, x) =a+ (a'+ox)"e,

a = —.'[(-'.C ——,') (1 —x) + -.'x],

x = ar/rJo,

(15)

analysis of these data we have first assumed that
oo and Ko are independent of temperature. The
experimental conductivity data were normalized
to the value of rr at 950 K, o, =2620 (Qcm) ', and
C = K/0. 517. Next, we have accounted for the
temperature dependence of o, by utilizing a least-
square fit of Perron's data in the temperature
range 1100-1200K, where C = 1, which results in

FIG. 5. Analysis of the experimental conductivity
data for liquid Te (Ref. 20) in the inhomogeneous regime
T &1100 K in terms of the effective-medium theory
(EMT). Analysis 1:C from Eqs. (5) and (6) &p from
Eq. (16) (o); analysis 2: C=1 at 950 K, op=2620 Q cm
C =E/0. 517 (o).

pro(T) =2700[1+6(T 1200)] (0cm-) ',

g = gx10-' K-'. (16)

c 10
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FIG. 4. Relaxation. -rate enhancement 71 as a function
of temperature. The solid line represents the predic-
tion of Eq. (11) with 71p =1.00. The experimental points
were obtained from Warren's work (Ref. 17).

The C scale is now determined from Eqs. (5) and
(6). The normalized conductivity data are plotted
versus C in Fig. 5 with appropriate error bars.

The temperature effects on Ko and ao do not
modify the relation of rr/ao to C, within the ac-
curacy of the experimental data. In Fig. 5 we
show the fit of the experimental data to the EMT,
Eq. (15), for x values in the range 10 o & x & 10 e,

as appropriate for a high-temperature material.
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FIG. 6. Analysis of the Hall-effect data for liquid Te
in terms of the effective-medium theory (EMT). Ex-
permental Hall data from Ref. 31.

The fit to o/oo is within the uncertainty of the ex-
perimental data. N'e note that because g, has the
temperature dependence appropriate to a small-
gap semiconductor, x decreases with temperature.
Once x decreases below 102, however, there is
no further effect on a/oo for C in the present range.

EMT yields for the Hall coefficient R and for
the Hall mobility p. ,

g=g(x, y, f ) = u/so=[I-&(I —xy)lf ',

h = k(x, y,f) = R/Ro ——[I —8 (1 —xy ) jf
(2f+ 1) (1 —C)

(2f+ 1}'(1-C)+ (2f+ x}'C '

y= P&IPO ~

The Hall-effect data used also derive from sever-
al sources, 3' They are shown in Fig. 6, to-
gether with a fit to EMT with the parameters Ro
=9. 5x10" m /C, x=6&&102, and y=6. The fit
to the EMT is within the experimental error.

The fits to o and R represent a vast improve-
ment over the conventional homogeneous transport
theories, metallic propagation or diffusion, which
led to order of magnitude discrepancies.

Cabane and Friedel' have estimated the fraction
of threefold coordinated Te atoms from the ob-

0
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I

1000
1

1200

served radial distribution functions. " That num-
ber should be approximately equal to our estimate
of C from the Knight shift. We plot both in Fig. 7
with error bars and note that there is adequate
agreement considering the inaccuracy of the for-
mer quantity.

In sum, the structural, magnetic, and transport
data are in accord with each other within the
framework provided by the Cabane Friedel model"
of bonding inhomogeneities and our theories of the
consequences of such inhomogeneities for the
electronic properties.

It should be pointed out that Te is not the only
material which shows such a continuous metal-
nonmetal transition with temperature. Se, Se-Te
alloys, ' and some chalcogenide glasses all show
similar characteristic temperature dependences
of o. Unfortunately, the data are as yet insuffi-
cient for a detailed quantitative analysis of the
sort done here.

We are indebted to Dr. J.C. Perron, Dr. W.
W. Warren, and Dr. J. E. Enderby for supplying
us with their detailed experimental results.

T ('K)

FIG. 7. Comparison between the fraction of three
foldmoordinated Te atoms (circles with error bars)
estimated (Ref. 14) from the radial distribution functions
at different temperatures (Ref. 15) and the C scale
(solid line) obtained from Knight-shift data.
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