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Electron mean free paths for free-electron-like materials
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(Received 6 August 1975)

Mean free paths for electrons in bulk jellium are calculated for electrons with energies from a few hundred to
a few thousand eV and for values of r, for 1.5 to 5 where r, is the average distance between valence electrons
measured in units of the Bohr radius. Account is taken of exchange and correlation effects in an approximate
way. The present theory is compared to previous theories and to experiments on Al, Be, Si, SiO, , and A1,03,
and in most cases the agreement between theory and experiment is quite good.

I. INTRODUCTION

The experimental techniques of photoelectron
spectroscopy and Auger-electron spectroscopy
are surface sensitive because of the small mean
free path X of electrons escaping from the solid.
This quantity determines the average depth beneath
the surface probed by these techniques, and must
be known accurately for a quantitative understand-
ing of photoemission and Auger experiments.

We present a calculation of the mean free path
in the energy range from a few hundred eV to a few
thousand eV, and we also give an asymptotic form-
ula for X valid above a few thousand eV. The cal-
culation is valid for free-electron-like materials.
We consider a material to be free-electron-like
if its loss function -1m[1/«(q = 0, ~)], as deter-
mined from characteristic energy-loss experiments
or from optical experiments, shows that the pre-
dominant loss mechanism is due to well-defined
plasmons which have an energy close to the free-
electron value, ~ ~

= (4vne2/m)'12. Roughly speak-
ing, materials which are not composed of transi-
tion- or noble-metal atoms are free-electron-1ike
for our purposes. For such a material the in-
elastic mean free path due to valence-band excita-
tions depends only on the energy of the hot elec-
tron and on the average electron density, n, of the
material which is parameterized by r, = (3/4vn) ~'

x (I/ao}, where ao is the Bohr radius. r, is the
average distance between valence electrons in
units of a0.

Although the primary cause of the electron at-
tenuation is due to the inelastic scattering of the
hot electron from the valence electrons via plasmon
and electron-hole production the excitation of core
electrons must also be considered as it typically
reduces the mean free path by about 10% or so.

Previously, Quinn and Kleinman have calcu-
lated the mean free path for Al and Shelton has
carried out similar calculations of X as a function
of r, up to hot-electron energies «/«z ~ 25, where

&~ is the Fermi energy. We present here what we
feel is a more accurate calculation than that of
previous workers due to inclusion of exchange and

II. CALCULATION OF MEAN FREE PATH

Quinn' has calculated the mean free path Xo(k) of
a hot electron with momentum k in bulk jellium
from the relation

where Ik/m is the velocity of the electron and

2M&/S is its lifetime due to inelastic scattering
from other electrons or from plasmons. In Eq. (1)
the imaginary part of the electron self-energy
evaluated at energy «, =I k /2m is given by

M k)= — 2 ~Im 1
2n' q' «(q, «, —«r q)

&)t ~ &a-q ~ &s' ~

(2)

where «z is the Fermi energy and Im(1/«} was
chosen by Quinn to be the imaginary part of the
inverse of the Lindhard dielectric function which
we will denote by «~. It is convenient to rewrite
Eq. (2) in the form

g2 Olf SP dq 1
M,(k) =, d(a~), Im

0

x5(Kd -«, + «r r),

which can be transformed to

correlation effects and we extend the calculations
up to several thousand eV. Scattering due to sur-
face plasmons is neglected; this is reasonable be-
cause of the rather large mean free paths at high
energies which we are concerned with, and because
at the surface there is some compensation between
the decrease in bulk-plasmon scattering and the
increase in surface-plasmon scattering.

In Sec. II the theories of Quinn and Shelton are
reviewed and a more accurate theory is proposed.
In Sec. III numerical results are presented for X

as a function of r, and a comparison is made with
the relevant experiments.
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which an electron can lose momentum q and energy
RId~(q} to a plasmon, the plasmon dispersion rela-
tion being KId = hId&(q). The plasmon contribution to
M, is obtained by integrating over the line co

= ~»{q) as indicated in Eq. (4a) and this contribution
to MI can be approximated by an analytic expres-
sion', however no corresponding analytic expres-
sion has been derived for the electron-hole con-
tribution to Mz which can be a significant fraction
of the total self-energy.

Quinn' and later other authors' have evaluated
Xc of Eq. (1) for hot electron energies z~ such that

4,/4» ~ 25 and we have extended the calculation up
to c~ 2x 10 eV by evaluating Eq. (4a) numerically
and using the results in Eq. (1). Figure 2 shows
) p as a function of the hot electron energy g, for
r, =1.5, 2, 3, 4, and 5.

As noted by Sheltons and by LundItIvist, 4 Xz(k) in
EII. (1) for the mean free path should be replaced
by

MI(k) r, ~ ~
dq 1

d(ii III) Im
( )

where

2qk -q 2~ P~,
(4a)

q
FIG. 1. Region over which q 1m& '(q, ~) is inte-

grated to obtain MI in Eq. (4a) is enclosed by the solid
line. Its shape depends on the momentum k of the hot
electron. Im~ ' is nonzero between the dashed lines and
is singular along the dotted line.

(5)

where E(k) and I'(k) are the real and imaginary
parts of the energy of an electron with momentum
k. The electron velocity is (I/K) BE/sk and the
electron life time is 21'/K. E and I' are determined

E(k) +i F(k) = I4+M,[E(k) + iI'(k)],

w here the self-energy M, is

cd 1 1
q' 4(q, Id) 4 -ffId sI, g+i-0'

'

The quantity Mz(k) appearing in Eq. (1) is related
to M, (4) by

100

k=k/k»,

q = q/kq»

@III =%II/e»,

(4b)

(4c)

(4d)

and k~ is the Fermi momentum.
The region in q, Id space covered by the integra-

tion in Eti. (4a) is shown in Flg. 1 as the area
bounded by the solid curve. The region bounded
by the dashed curves is that for which 1m[1/e(q, Id)]
WO and represents the portion of q, co space in
which an electron can lose momentum q and energy
h(d to another electron, i. e. , electron-hole excita-
tion. If the point (q, III} lies outside this region the
collision process will not be energy and momentum
conserving. The dotted curve is the line along
which Im I/e(q, Id) is singular due to the neglect of
plasmon damping and corresponds to a process in

I

10 50 100
I I I I I I I I

500 1000.-.,(eV)
5000

FIG. 2. Mean free path calculated according to the
Quinn theory vs the hot-electron energy measured with
respect to the Fermi energy as a function of the
parameter r~.



5250 DA VID R. P ENN 13

Mq(k) = Im Mg(sg). (6)

In the limit that the electron-electron interaction
is weak, Eqs. (6) and (7) would give E(k)-c(k)
and P(k)-Mz(k). Equations (6) and (7) for the mean
free path reduce to those used by Quinn only if
Mz(k) - I'(k), which is not true except for very large
values of k. Equation (6) can be solved approxi-
mately for E(k) and I'(k) to obtain

as the plasmon line (dotted line) are replaced by a
single line. The one-mode formulation as restated
by Gersten and Tzoar is as follows. The one-mode
approximation is expressed by

Im[1/e(q, (g)] =X 5((g —&g ),

where X, is determined from the sum rule

(12)

E(k)+ir(k) =4, +c, +Z(k) [M,(c„)-cg],

~0= M.,(e.„),

(9a)

(9b)

where (d~ is the plasma frequency for the electron
gas, a~~=4wne~/m. Use of (11) in (12) gives

() (
M,() )' (9c)

X4f
= g 7T(dPI QP ~o

1 2 I

The Kramers-Kronig dispersion relation is

(13)

(10a)

(lob)

(10c)

(iod)

8=8+8~'g y

m=grv,

V=v/e =v/(1 -vP),

~=grg,
where (klgl» =(s -&.) ' an«klgl»= « -&),
-(klJltlk)) ~ are the one-electron Green's functions
in the absence and presence of the Coulomb inter-
action v. M is the self-energy, v is the effective
electron-electron interaction, and I' is the vertex
correction. Equation (7) is obtained from Eq. (10)
by setting I'= 1 and g g in (10b). Shelton used
4 = s~ in Eq. (7) which corresponds to setting I'= 1

andy g in Eq. (10d) as well as in Eq. (10b). We
next obtain a more accurate result for Ott by using

Eq. (7) in place of 4 a dielectric function which

includes the effects of exchange and correlation.
Singwi et a/. have developed a theory of the di-
electric function which includes the effects of ex-
change and correlation but their theory does not
yield a particularly tractable form for the dielec-
tric function. We therefore turn to a simplified
theory of electron correlation developed by Over-
hauser. The theory employs a one-mode excita-
tion spectrum; the excitations of the electron gas
which consist of plasmons and electron-hole pairs
are approximated by a single mode with a plasmon-
like excitation spectrum. In other words, the
region in Fig. 1 between the dashed lines as well

Lundqvist chose s(q, ~)=e (q, &o) in Eq. (7) and
then determined E(k), I'(k), and Z(k) from Eq. (9).
Shelton~ used Lundqvist's results to obtain Xz(k)
from Eq. (5) and the resulting values of X~ differ
from those obtained by Quinn from Eqs. (1) and (2)
by roughly (5-20%) depending on r, and on k. As
in the cases studied by Quinn, Shelton restricted
himself to energies such that 4Jar ~ 25.

Equation (7) for the self-energy M~(s) is of course
an approximation to the true self-energy' which is
determined from the system of equations

1Re
( )

——1+—P d(g' ~ p Im
( ),

and use of (11) and (13) in (14) gives (14)

Re [I/c(q, (u)] = 1 —(u,'/(&o,' —(g '). (i5)

In the limit ~-0, Eq. (15) gives

= (gp c(q, 0)/[&(q, 0) —1].
Consequently c(q, 0) determines all the quantities
of interest in the one-mode model.

Although the correct dielectric function c,—= c(q, 0)
is not known the effects of exchange and correla-
tion on e(q, 0) can be approximated by assuming that
the exchange and correlation potentials are local.
Overhauser then found that

(16)

G(q)=0. 275q /(1+2. 5q +0.09375q ) . (18)

In the absence of exchange and correlation the
electron-plasmon coupling constant in this model
is

M, = (e'I(o'/2q'(g )'i' (19)

while in the presence of exchange and correlation
the coupling constant is given by

M,'=M, [1 -G(q)]. (2o)

The electron self-energy in the one-mode model
is obtained from Eq. (7):

e, = I+(e', —i)/[i —G(q) (s,'- i)],

where &0 is the dielectric function in the absence
of exchange and correlation and G(q) is related to
the exchange and correlation potentials. Overhauser
chose G(q) to be such that the correlation energy
predicted by the one-mode model agrees with that
calculated by Singwie and also such that &, given by
Eq. (17) agrees with estimates obtained by other
workers in the limits q-0 and q
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3 e 2', 1
Mz(s) Ms» (k) +

(2 }4 td(0 (f q Mz (g }2 (g )2 '0y '

g '0(' (21a)

where MHz is the Hartree-Fock exchange energy

(k)
g k»- 1 @ ~In k»+k
mmes 2kk k -k )'

and ~, is obtained from the use of Eqs. (18) and (17) in Eq. (16).

dq
[ ( )]2~/

(4» -4 -I(04) (Cz~~ -4+kdq)
quar, ( (4» —4 + s&o,) (sz, -c —Ro, )

(21b)

Equation (21a) is integrated to obtain'

—vie(4, —@+II~,) e(s -Ko, —s, ,))

—IIIB(E,—~ +Il,) 8 (\ -Kd, —
Cg))

~S

+ [1 -G(q)]' ln ' '
xe-z(4, , -4 K+&o,) e (4 -Im, -4, ,)

Cy ~ C +SQ)~,
(22)

(gz=(g»2+ z(ak»/m) q +(Iq /2m) . (24)

This describes the electron-hole excitations for
large q and leads to an expression for s(q, 0}via
Eq. (16) which gives Fermi-Thomas screening in
the limit q -0. Equation (24) provides an expres-
sion for Im [I/4(q, &o)] via Eqs. (11) and (13). Be-
cause of the simple form of Eq. (24) the integral in

Eq. (2) can be done analytically and the result in-
serted in Eq. (1) to obtain

X(k}=2.24$ r, 4 2[lng(q~)/g(qz)] ~, (25a)

where e(x) = 1 if x & 0 and e(x) = 0 if x & 0. We have

retained only those terms in Eq. (22) which are non

zero for 2 mz because Mz' is to be used in Eq. (9).
In order to estimate the accuracy of the one-

mode model for energy-I. oss calculations we cal-
culate A.2 from Eqs. (1) and (2); but rather than

using the Lindhard dielectric function in the term
Im [I/c(q, ~)] of Eq. (2) we use the approximation
given by Eqs. (11) and (13},

1m [I/&(q, (o)]= - 22(~', /(o, ) 5(~ -(o,), (23)

where ~, is determined from Eq. (16) and the quan-

tity s(q, 0) appearing in (16) is taken to be the Lind-
hard function 42(q, 0). The resulting values for Xz

differ from those obtained by using the 42(q, ~)
directly in Eq. (2) by typically 5%. A somewhat
different form for s(q, 0} has been suggested by
Lundqvist and its use in Eq. (16}gives

which has the approximate solution

q', &',/(4k'- $ —~~),
and qz is determined by

(g =k -1
which has the solution

(25e}

(25f)

0

,2'
1
-G(q) = ((o',)' -(o', G(q),1

where ~, is the one-mode dispersion relation that
obtains in the absence of exchange and correlation.
We now combine Lundqvist's version of the one-
mode model, Eq. (24), with Overhauser's treat-
ment of correlation and exchange, Eq. (17), to. ob-
tain

-2 2 [(z)2 (kz I}2 2]1/2 (25g)

The mean free path given by Eq. (25a) differs from
that obtained in the Quinn theory {which uses
Im [I/s (q, &)] in Eq. (2})by less than 1% for hot
electrons with sufficiently high energies; sz/
4» «9. Thus the Quinn results for the mean free
part of a hot electron can be obtained almost ex-
actly from the Lundqvist version of the one-mode
model as specified by Eq. (24). The reason for
this is not clear at present.

Eliminating c(q, 0) —= c, from Eqs. (16) and (17)
gives

where X is in angstroms and

g(q ) =In~, ' +
p

where ~»=S&oz/4», q=q/k„, and

(-2+y —2+—4)4 /2

and qz is determined by the equation

(g) = 2kgg —ig gy

(25b)

(25c)

(25d)

~2=F2»[1-G(q)]+2(gk»/m) q +(Iqz/2m) . (27)

We use Eq. (27) in Eq. (22) to obtain M„'(c) and then

the mean free path X is found from Eqs. (9) and

(5). As stated above, in the case G(q) = 0 deter-
mining the mean free path from Eqs. (1) and (2)
gives values f/zr X which agree with the Quinn theory
to within 1% for cz/c» «9, where cz is the energy
of the hot electron. The calculation carried out by
Shelton is essentially equivalent to taking t" =0 in
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sidered and for s = 2000 eV it is less than ~% so the
difference between the two theories comes about
because of the difference between I and M. The
origin of this difference can be understood by ex-
amining the asymptotic k dependence of the quan-
tities Z(k) and M„(e,) which determine I' via Eq. (9).

It follows trivially from Eq. (22) thatforlargek

Mz(k)= Im—M, (s„)= -a(ink+/)/K, (2Sa)

ReM„(~,) = -5/k, (28b)

I

i0

Quinn—Quinn, exchange 8 correlation
Shelton- Lundqvist

I I I i ) I I

50 i 00 500 1000.-+ (eV)
5000

FIG. 3. Comparison of the mean free paths calculated
via the theories of Quinn, Shelton and Lundqvist, and
Quinn with correlation. and exchange.

Eqs. (26) and (20) and then determining X from
Eqs. (21), (9), and (5).

III. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENT

A. Numerical results

In this section we discuss the results of (a) ex-
tending the Shelton-Lundqvist theory of the mean
free path to higher energies by solving the system
of Eqs. (5), (6), and (22) and using the Lundqvist
version of the one-mode theory, Eq. (24), to de-
termine ~, and s„(b) including exchange and cor-
relation in the Quinn theory of the mean free path
by solving the system of Eqs. (1).and (22) and using
the one-mode theory as specified by Eq. (27) to
determine ~, and e„' (c) determining a "best"
estimate of the mean free path by including some
of the effects of exchange and correlation on the
Shelton-Lundqvist theory [Eqs. (5), (6), and (22)]
by using the one- mode theory as specified by
Eq. (26) to determine ~, and e,. The main purpose
in presenting the results of (a) and (b) above is to
separate the effects of the corrections to the Quinn
theory included in (c). Finally, the results of (c)
will be compared to experimental measurements of
the mean free path in Al, A1203, Be, Si, and Si02.

The results of (a) for the mean free path as a
function of energy for r, = 1.5 and z, = 4 are shown
in Fig. 3. The calculation is restricted to values
of energy such that c/cz &9 because, as discussed
in Sec. II, it is for these values that the Lundqvist
version of the one-mode theory reproduces the
"Quinn" theory of Fig. 2 to an accuracy of better
than 1%. Figure 3 shows that the mean free paths
calculated in the Shelton-Lundqvist theory are
(10-25%) smaller than those given by the Quinn
theory for ~ & 200 eV, we find [(I/If) (sE/ek) -Ik/m]
/(Rk/m) is less than 3% for the values of r, con-

Re Z(k) ~ 1,
Im Z(k) - -&/k,

(28c)

(28d)

where e, P, 5, and y are constants that depend on
r, and on the explicit form of u, and G(q). Use of
Eq. (28) in Eq. (9) gives for large k

E(k) = co+a„,

r(k) = —a (Ink+ P —yco)/ k,

and use of Eq. (28) in Eq. (5) yields

X(k) = (0 276r.,/u)k ~/(Ink+ P),

O' = P -r~oy

(29a)

(29b)

(3Oa)

(3ob)

Quinn
8helton-
Lundqvist Quinn~

1.5 0, 45
2 0. 70
3 1.3
4 2. 0

0.74 0.45 1, 1
0.69 0, 70 1.2
0.62 1.3 1,4
0.57 2. 0 1.5

0.45
0, 70
1.3
2. 0

0.41
0.34
0. 23
0. 14

& (A) =0.276 r k /[o. (ln k+ 6)]

No exchange or correlaticn.
Includes exchange and correlation.

for the asymptotic form of the Shelton-Lundqvist
mean free path Equ. ation (28a) and Eq. (1) show
that the Quinn mean free path also has the form
(30a) with P = S. Vaues of a and P as functions of
r, are given in Table I for the Quinn theory and the
Shelton-Lundqvist theory, (a). ~ Because —pfp as
well as 8 in (30c) are positive the Quinn mean free
path is longer than the Shelton-Lundqvist mean
free path.

The results of (b), including exchange and cor-
relation effects in the Quinn theory, for the mean
free path as a function of energy are shown in
Fig. 3 for r, =1.5 and 4. It is seen that the effect
of including exchange and correlation in the Quinn
theory lengthens the mean free path by (10%-20%).
The effect of correlation and exchange is to weaken
the effective electron-electron interaction and this
naturally implies longer mean free paths. For

TABLE I. Values of o, and Q that determine the as-
ymptotic form of the mean free path for various theo-
ries. In all the theories, ~ =0.246 r, and in the Quinn
theory P =-y l.n(&& +8&&).
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IOO

fs*l.5

TABLE III. Values of A, p, N, and ~ used to estimate
&„ the mean free path due to core excitations. The
values of ~ are crude estimates but are sufficient be-
cause &~&&&.

IO—

I

IO

I I I I I I i

50 100
I I I I I I I

500 IOOO.-+(eV)
5000

Al
Be
Si
Si02
A1203

26. 98
9.012

28. 09
60. 06

102.0

2. 7
1.85
2. 42
2. 3
3.7

2. 55X10'A ~

p5'/~)ln(4~/~)

8
2
8
8

16

150
150
160
160
150

FIG. 4. Mean free path vs hot-electron energy mea-
sured with respect to the Fermi energy as determined by
the "best" theory (see text).

large k, kfz(k) is given by Eq. (28a) and X(k) by
Eq. (30a) with a and p = fI given in Table I.

Finally, the results of (c), the "best" estimate
for the mean free path, are shown in Fig. 4. The
corrections to the Quinn theory considered in (a)
and (b) tend to cancel and the resulting mean free
paths of Fig. 4 are lower than those given by the
Quinn theory (Fig. 2) by at most 10% and typically
5%. For large k, Eqs. (28)-(30) are valid and the
quantities o, Q, co, y, and 5 are given in Table II
as functions of r, .

Because the corrections to the Quinn theory turn
out to be fairly small and because the Lundqvist
version of the one-mode model reproduces the
Quinn theory to better than 1% we expect that the
results of (c) given in Fig. 4 are quite reliable
within the context of the approximations I'-1 and
9-g made in Eq. (10b). It is difficult to assess the
errors made in those approximations.

We expect the results fer the mean free path
depicted in Fig. 4 to be valid for materials which
are nearly-free-electron-like. As a rough crite-

B. Comparison with experiment

The status of experimentally determined mean-
free-path measurements has been reviewed by
Powell. ~'~3 As discussed by Powell the experi-
ments are difficult and tedious and it is not easy
to determine their accuracy. We will only refer
to those experiments in which the mean free path
has been measured for several values of hot-elec-
tron energy by one investigator. Such experi-

IOO
I I I I I I I I I I I

AI

rion we assume that a material is free-electron-like
if its q=0 loss function, -1m[1/4(0, ~)] as deter-
mined from characteristic energy-loss experi.-
ments or from optical experiments indicates that
the primary loss mechanism is due to well-defined
plasmon excitations which have an energy that is
reasonably close to the free electron value, ~
= (4wne /m) ~ . As a rough rule of thumb, most
materials which are not composed of transition-
metal or noble-metal atoms fit into this category.

TABLE II. Values of parameters for the "best" theory
that determine the asymptotic form of the mean free path
and other quantities of interest.

IO

e $ P Cp 'y

—0. 56
—0. 76
—1.2
—1.6
—2. 1

1.5 0.45 0. 89 0.41 0. 72
2 0. 70 0. 91 0.34 1.1
3 1.3 0.95 0.23 2. 0
4 2. 0 1.0 0.14 3.1
5 2. 8 1.1 0. 081 4. 3

0. 39
0. 52
0.78
1.04
1.3 IO

I I I I I I I I

50 IOO
E -)tf, (ev )

I I I I I I I I

500 IOOO

A (A) =0.276 ~, k /[n(ln k+ ftI)]

MR/ ~F 'Vk Ml/ F

ZR =1, Zl 'y/k

FIG. 5. Total mean free path for Al including in-
elastic scattering by both valence and core electrons is
denoted by the solid line. The experimental points are
due to Tracy.
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IOO

),(A)—

IO—

I I I I I I I I

j
I I I I I I I

si
St02

y,(e,)=2.55xl0'e, A pg ' ln ' (A),
(31)

where c„ is the energy of the hot electron, A is the
atomic (or molecular) weight of the component
atoms or molecules of the material, p is the den-
sity, and 4E& is the average characteristic energy
loss associated with the N, core electrons. Equa-
tion (31) can also be used to calculate X due to the
valence electrons; however, it leaves out the con-
tribution to A, from electron-hole excitations. The
effective mean free path Xr is given by

~ Si
~ Si0~ I/Xr = I/X, + I/X, (32)
o Al, O,

Se

I

100
I I I I I 1111

500 1000
e-p, (eV)

I I I I I I I I

5000

FIG. 6. Total mean free paths for Be (Ref. 15), Si
(Ref. 16), Si02 (Ref. 16), A1203 (Ref. 17), are compared
to experimentally determined points.

ments on free-electron-like materials have been
carried out on Al, ~~ Be, '5 Si, '6 Si+, ~e and A1303. '~

The theory discussed in Sec. II is incomplete in
the sense that it neglects the inelastic scattering
of hot electrons by the core electrons of the mate-
rial under consideration. Powell~ has worked out
a theory of this effect and finds

where A, is the mean free path due to the valence
electrons and given in Fig. 4. Typically Xr is
smaller than X by roughly 10%. Values of A, p,
N;, and AE; used in Eq. (31) are given in Table III
for Al, Be, Si, SiO&, and A1203. X~ as determined
from Fig. 4 and Eqs. (31) and (32) for Al is shown
in Fig. 5 as are the experimentally determined
points. ~ The agreement between theory and ex-
periment is excellent; however, this must be in
part fortuitous since the agreement is far better
than could possibly be expected due to the uncer-
tainties in both the theory and the experiment. In
Fig. 6 we compare the results of the theory, in-
cluding core excitations, with the experimental
results for Be, Si, Si+, and Alz03. The agree-
ment is reasonable in all cases except Si+.
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