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Coherent-potential approximation has been used to derive an expression for the Hall coe5cient in the two s-d
hybridized band model of Brouers and Vedyayev which has been used to describe the conductivity of
disordered alloys of noble and transition metals. We investigate the effect of hybri+~~tion and d disorder on

the alloy Hall coef6cient, and this allo~s us to generalize and improve the discussion already presented by
Levin et al. in a one-band picture.

I. INTRODUCTION

The coherent-potential approximation (CPA) has
been extensively used to provide a description of
equilibrium properties of elementary excitations
in disordered alloys. The theory of transport
properties of disordered alloys has not yet re-
ceived as much attention as the study of the den-
sity of states. A theory of electronic transport in
substitutionally disordered binary alloys was de-
veloped by Velicky. ' In that paper, an expression
for the static electrical conductivity of a single-
band model with short-ranged random scatterers
was developed in the spirit of single-particle
CPA. Brouers and Vedyayev (hereafter referred
to as BV) extended the CPA theory to the calcula-
tion of the static conductivity of a two s-d band
model introduced by Levin and Ehrenreich. The
BV model contains some of the features of noble
and transition-metal alloys and includes the effect
of s-d hybridization and the width of the d levels
due to d-d hopping. This model was found to ac-
count for the Matterhorn-type behavior of the re-
sidual resistivity of transition-noble-metal alloys.
This conductivity theory was later developed to
deal with ferromagnetic alloys and can provide an
explanation of the anisotropy of the residual re-
sistivity in some of them. Moreover qualitative
information has been obtained for the frequency
dependence of the optical relocation time in gold-
silver alloys and for the temperature dependence
of the static resistivity in transition-noble-metal
alloys. 6

Other alloys transport properties such as Hall
effect and thermoelectric power have been dis-
cussed in the one-band model by Levin, Velicky,
and Ehrenreich (thereafter referred to as LVE).
In that paper, no attempt was made to relate the
theory to experimental data. One of the reasons
is that even in pure transition metals, it is very
difficult to interpret Hall-effect and thermoelec-
tric power measurements and to relate them to

single and precise physical information. These
transport properties involve electrons of different
characters s and d with very different effective
mass and scattering and depend strongly on the
anisotropy of the Fermi surface. Moreover the
type of electrons involved in the transport process
depends on the strength of the magnetic field. At
very small field, the Hall effect depends mainly
on the number of the most mobile electrons, the
contribution of the less mobile ones increasing
with the field and therefore Hall effect gives only
indirect information on the conduction band.

However, with the development of the theory of
alloys, one could hope to be able to explain the
variation of the Hall coefficient with concentration.
A good summary of the experimental situation can
be found in the book by Hurd. ' To go in this di-
rection, one cannot use the LVE model because of
the presence of both s and d electrons interacting
via an hybridization, the d electrons being more
affected Chan the s ones by the configurational dis-
order. The present paper uses the BV model to
the calculation and discussion of the weak-field
Hall coefficient. Although this theoretical formal-
ism is more realistic, we do not make any attempt
to apply it to any particular system. This is be-
cause of the following limitations:

(i) The model used here should be applied to
nonmagnetic noble and transition-metal alloys
(i.e. , the components of which are Au, Ag, Cu,
Pt, Pd) at very low temperature. In Table I, we
have summarized cases where the Hall coefficient
has been measured for a wide range of concentra-
tions at relatively low temperature. Although the
completely disordered phases of these alloys ex-
hibit a Matterhorn-type concentration dependence
for the residual resistivity, the experimental
curves given in the references in Table I do not al-
low to establish such a regular feature for the Hall
coefficient. As an example, in Au-Ag and Ag-Pd,
the concentration dependence of the Hall coefficient
is quite different.
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TABLE I. Experimental curves for the concentration
dependence of the Hall coefficient in various alloys.

Alloy

Au-Ag

Au-Cu

Ag-Pd

AU-Pd

CQ-Pd

Pd-Pt

Temperature ( K)

90-800
6-300

10-300
4. 2

80-800
80-400

4. 2

300

300

300
4. 2

Authors

Koster et al. (Ref. 9)
Barnard et al. (Ref. 10)

Barnard et al. (Ref. 10)
Caton et al. (Ref. 11)

Koster et al, (Ref. 9)
Ricker and Pfliiger (Ref. 12)

Greig and Livesey (Ref. 13)

Kim and Flanagan (Ref. 14)

Kim and Flanagan (Ref. 14)

Koster et al. (Ref. 15)
Greig and Livesey (Ref. 13)

(ii} In order to make our model tractable we
have been forced to make a number of assump-
tions. These are: the use of a single-site ap-
proximation, tight-binding bands, s-d hybridiza-
tion constant throughout the Brillouin zone, vir-
tual-crystal approximation for the s bands and the
s-d hybridization, off-diagonal disorder neglected
and finally, the same shape for s and d dispersion
curves.

(iii) To make our calculations amenable to nu-
merical computations, we have made supplemen-
tary assumptions discussed in Sec. VI. Two dif-
ferent approximations have been investigated:
Hubbard semielliptic density of states for the pure
metal and Velicky-type approximation to describe
the energy dependence of the velocity and, second,
the use of the simple-cubic tight-binding disper-
sion curve. These approximations allow vs to
avoid integrations over the Brillouin zone.

The purpose of the present paper is to give a
complete formulation of the Hall coefficient in the
framework of the approximations (ii) given above.
Some of them can be avoided in a reasonably sim-
ple way: the virtual-crystal approximations for
the s and s-d disorder are replaced by self-con-
sistent solutions in the model introduced by Gelatt
et al. '; effect of d-off-diagonal disorder can also
be taken into account for transport properties in
the two s-d band model. '~ However a complete
theory would use the detailed band structure of the
pure metal density of states and an exact repre-
sentation for the velocity function in the Brillouin
zone.

The present work is thus a first step in under-
standing the Hall effect; the model used is more
realistic than that of LVE and allows to rediscuss
their conclusion, the sign of the Hall coefficient
being now related to the quantity E& —ReZ„where
e& is the Fermi level and Z, an effective s self-
energy including the effect of the d disorder.

On the other hand, the present formalism could
be applied to investigate the Hall effect in liquid

transition metals and alloys (as this has been done
for the static conductivity ) where many inter-
esting and unexplained features have been ob-
served. ' Other possibilities to apply the present
formalism are, at first, the Hall effect in heavily
doped semiconductors at very low temperature
(which has been considered in a one-band picture
by Matsubara and Kaneyoshi 0) and, second, the
Hall effect in the Hubbard model (already consid-
ered in a one-band picture by Malwah and Bend '}.

We finally give an outline of the paper, insist-
ing on the new formal results.

In Sec. II, we establish the two s-d band model
alloy Hamiltonian in presence of a magnetic field,
using a procedure similar to that of Malwah and
Bene ' in the calculation of the Hall coefficient for
the Hubbard model.

In Sec. III, we give the Kubo formalism for the
configuration average of the transverse conduc-
tivity p,„and, in the two following sections, we
evaluate in the CPA the configuration average for
the Green's function and for the other quantities
related to two- and three-particle Green's func-
tions and needed in the evaluation of a,„.

In Sec. V, we give an expression for o,„which
generalizes that obtained by LVE in the one-band
picture. We have moreover retained the off-di-
agonal components of the inverse effective-mass
tensor, which were neglected in LVE. In the case
of an isotropic band structure, we show that our
formulation generalizes that obtained by Mat-
subara and Kaneyoshi for the Hall coefficient of
an impurity-band model.

In Sec. VI, we give a numerical illustration
showing, within the assumptions (iii) presented
above, the behavior of the transport properties
as functions of the band filling.

Finally, in the Appendix, we give an analytical
expression for the longitudinal conductivity o„ob-
tained from residues calculations in the case of
Velicky-type approximation for the velocity func-
tion. This reduces considerably the computation
time in the evaluation of cr and also to relate e
to the alloy s density of states and the effective
s seU-energy, that gives a direct qualitative un-
derstanding of the dependence of o with the band
filling. Such a relation has been obtained by Chen
et al. in the one-band model using a more com-
plicated procedure.

II. TWO s-d BAND ALLOY HAMILTONIAN IN PRESENCE
OF MAGNETIC FIELD

We want to calculate the configurationally aver-
aged Hall coefficient of a completely random bina-
ry alloy A+, , whose Hamiltonian has the form

= Zi ~mn~gm+sn+ ~ en +sn~sg
t ~ e t

fnfn n
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+ ~ ~mn+un+un+ ~ +n&n+gn

+Q r(e'„) (a',„a,„+a,'„a,„), (1)
n

where at (a~t ) and a,„(a~ ) are, respectively, the
creation and annihilation operators for an s (d}
electron at the site m, and we have

Proceeding in a manner similar to that given in
Malwah and Bene, ~' we have

X =(eH/4c)[(V, Y+ YV,) —(V++XV)], (6}

where V stands for the velocity operator and H for
the magnetic field directed along the z direction.

The position operator in the Wannier basis is
defined

(k) s"'"--" & (2) R'~ = Q (R„Ins} &ns
I

+ R„Ind }&nd
I
) . (7)

The lattice is assumed to be monoatomic with N
sites in a large volume G. Each site n is occupied
at random by an atom of type A or B with respec-
tive probabilities x and 1 —x. The crystal is sup-
posed to have an s band and we assume the d band
to be made up of five independent subbands. The
function e«~& (k) gives the dispersion relation of
s (d) electrons. Its interaction with the Brillouin-
zone boundary determines the width 2w, (2w„) of
the unhybridized s (d) bands. The unhybridized d
band can be calculated as in a nearest neighbor
tight-binding model and will have the general form

e~(k) = w, s(k), (2)

with

—1 ~ s(k) ~ 1, kc BZ .
The first two terms of the model Hamiltonian de-
scribe the s electrons, the third and fourth terms
represent the d electrons, and the last term rep-
resents the s-d hybridization. The unhybridized
s band and the hybridization constant are treated
in the virtual-crystal approximation, whereas the
d bands whose potentials are not expected to be
weak are treated self-consistently in the |.PA.
The hybridization parameter in the alloy, for sim-
plicity assumed to be k independent, is given by

r =xr(ea)+(I «) r4s),- (4)

where z& and az are the random d energy levels
corresponding to A and B type of atoms, respec-
tively.

For arriving at the form of the Hamiltonian in
the presence of a magnetic field we assume that
the only effect of the magnetic field is to change
the kinetic energies of s and d electrons given re-
spectively by the first and third term in Eq. (1}.

The Hamiltonian of a free particle in a magnetic
field is given by

X„=(1/2m)[p —(e/c) A]~, (6)

where A is the vector potential. We have omitted
the Zeeman term since our interest is to calculate
the Hall coefficient of a nonmagnetic alloy. The
kinetic energy of an electron in the absence of a
magnetic field has already been included in the ex-
pression for Xo.

In (7) we have tacitly assumed that the position
operator is diagonal in the [Ins), I nd}] basis.
Strictly speaking this is true only in the case of a
free atom where the matrix elements of R"be-
tween s and d states vanish in accordance with op-
tical selection rules. However in order that our
formalism does not become too unwieldy we as-
sume that in the alloy the position operator is giv-
en by (7) so that

&«IR" ImP) =R„„6..6s. (6}

Furthermore we assume that the velocity operator
is diagonal in the band indices so that

&naI V, Imp} = V„"„6.,
Since the velocity operator in the presence of a
magnetic field is given by

V~=(-i/K) [R",3:],
where

(io)

we now write X~ in the form

0X~ ~ ~pgttgO Ntg4g ~ (i2)

+—g Q(Y + Y„)(v,")..-(x.+x„}(v„")..]4c

x(X —X))a „) .

In the weak-field limit, we can write

(v„")..=(-I/a) t„„(x -X„)(I-q „)

(V„")..=(- Ilh) t:.(Y.—Y.) (1-e..),
where

(14)

(i6)

(16)

where a(-=s, d) denotes the band index and h'„ is
given by

h'„=(eH/4c)[(Y + Y„}(V„}
-(X +X„)(V„)..] . (IS)

In (18}, (V„} stands for &mal v„'x„~na}. From
(10), one gets after some straightforward algebra
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q.„=(feH/4ffc)[(X„-X„) ( Y.+ Y„)

-(Y —Y„)(x+x„)].
Substituting the expressions for V„and V„"into

(18) we get to first order in the magnetic field

k „=(-feH/4ffc) f „[(Y + Y„)(X -X„)

-(x.+x„)(Y„-Y„)] . (is)

III. KUBO FORMULA FOR HALL COEFFICIENT

In the weak-field regime the Hall coefficient is
defined'

R» = [g„„(H)—a'~(- H)] /ag~ H

= o;,(H)/o', „H . (i9)

Here 0,„is the longitudinal component of the elec-
trical conductivity in zero magnetic field and has
been already obtained by Brouers and Vedyayev
for the two s-d band model; o,',(H) designates the
antisymmetric part of the transverse component
of the electrical conductivity. For finding 8& our
task reduces to deriving an expression for o,'„(H).

Starting with the linear response theory of
Kubo, one gets the following expression for the
magnetic-field-dependent conductivity:

(cii()))& = -
c)

c' f cnc (p(n) p('n+ )i

xTrJ (S(ri+(g-X) J, |i(q-X)), (ao)

G„(z)=(z-X) ',
G(z)=(z-Xa) '.

To first order in the applied magnetic field

G„(z)= C(z)+ G(z)X„C(z) .

(22)

(as)

(24)

Using (24) and the well-known representation for
5 function, namely

S(~-X)=(i/afz) [G„(q') —G,(q-)], q'=q+fO,
(as)

we can write

where the symbol (' ' ') indicates a configurational
averaging', the suffixes i and j stand for the carte-
sian coordinates x and y, and 0&' designates the
current operator in the J direction; p(ri) is the
Fermi function

p(n) =(em[P(n z-)]+ i] ',
with ez as the Fermi energy and P=(ksT) '.

We now introduce the magnetic-field-dependent
and field-independent Green's functions, respec-
tively, by

(,(W&= ~ n ffcnc.='(n(n) n(n ~ n))n -n ((~(n*+ ) ~ ~(n n)«(n' '~ )-~(n ~ )

—G(q + (o)X„G(q + (u)]J„"[G(q') + G(vP) X„G(rP) —G(q ) —G(t) )X„G(q )]) . (as)

It is now convenient to decompose the current operator into two parts: one independent of and the other
proportional to the magnetic field

with

J„"= ——Q f „(X —X„)gt g „,
HJ', =-4'~z Q P„„(X.-X„)[(X~-X„)(Y„Y+„)(Y~ Y„)(X +X„)]gt„g.„.x 4g2 fftff m

We also introduce a new variable defined by

(as)

(29)

Zg = 'g+ gskg

where i)., = + i and s is an infinitesimally small positive number. Using Eqs. (2V)-(29) and retaining only

terms linear in H we have from (26)

(:.(cc))=c~c)n f jcnc '(n(n)-n(n ~ )) + (-c)'"'"'" I&(&.', n, ,
+ '~.",n, )

jlgs Xg~y1

+ A(J,Z) + (dc cT, Z) ) + B(J~ c Z), + (c)c cd c Zg 'cXzc Zg ) + C(cT~ c Zg + (d; Xzc Zg + (c)» cT „,Zg )] (ao)

where we define A, B, and C by

A(O„z, ; Oz, zz) = Tr0, (G(z,)Oz G(zz)),

B(O„z,', Oz, zz, Xzc z))) = TrO~(G(z, )Ozc(z())Xzc(z~)),

C(O» z, ;X„,zz', Oz, z3) = TrO~(G(z~)Xzc(zz)Oz G(z~)) .
(si)

The important task now is to perform the config-
urational averaging of products of two and three
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Green's functions as given in Eq. (31}. For this
we need a knowledge of (G& =—G. The averaged
Green's function for the two s-d band model has
already been evaluated in CPA by BV. We sum-
marize these results in Sec. IV.

IV. CPA FOR 6 IN TWO-BAND MODEL

r 8(e —z.(k))
Z-Z, —[z-y(z-~-z}- df )

(37)
where 0, is the volume of the unit cell. In terms
of the Hilbert transform of the density of states of
the pure crystal s band, namely,

Since in our present case the only random term
in the Hamiltonian is the one involving random d
levels we can define a self-energy in the space of
d states as

Zz„(z)
I
kd) &kdl

and write the averaged Green's function as a 2x2
matrix in the (iks), I kd&) representation:

we get the following expression for F«.
E~~(z, Z~) = [$(E —E,)] '

x [(z —6 —E,)FQ~(E,)

—(z —& —E )Eo,(E )],
with

(38)

tz —4 —z (k)
G(k, z)

j/ z —Z, —z,(k))

1 Z-Zd Z-Z, ' 4y'
E,=- z —4, + + z —4—

2
+

The function
(39)

Z(((z) = t(( —(zg —Z(()E(M(z, Z(() (fs —Z((),

where

~~ = zc~+ (1 —x)esd d

and

(34)

(38)

F~(z, z.) =lv ' ».G(z) =~'~&kdl Glkd& . (38)

To derive an expression for F«which will be eas-
ily amenable to numerical computations we make
the following approximations. First we assume
that in the pure metal the unhybridized s and d
bands have the same shape but differ in location
and width so that we can write

e„(k) = gz, (k), t'(1 .
We also fix the energy origin such that a„=& 5 and

ea = —
& 5, the parameter 5 being a measure of the

strength of the scattering potential.
With these assumptions we can write

We have assumed that in the pure crystal the cen-
ter of the unhybridized d band is located at the en-
ergy origin while the center of the s band is located
at ~.

From (33) we have

G„(k,z) ={z—4 —e,(k) —y'[z —Z, —e~(k)] 'j

G~(k, z) =(z —Z~ —e~(k) —y [z —& —e~(k)] ].

G~(k, z) = G„(k) z) = y([z —& —e,(k)]

x[z —Z, —e,(k)] -y'p'

In the two s-d band model, the CPA self-consis-
tency condition is

F„(z,z,) =f)))-' g &ks
I
G(z)

I
ks&

can also be expressed in terms of E(),(z} as

F.,(g, ):)=(E —&.)'
(

' —.&.))'0(E.
—( —E) F„(E ) (4O)

V. EVALUATION OF A, B, AND C IN CPA

In this section we discuss the procedure for
evaluating the quantities A, B, and C defined by
E(l. (31). A is related to a two-particle Green's
function and describes the averaged propagation of
two particles. B and C are related to three-par-
ticle Green's functions.

Velicky' was the first to apply the CPA to the
calculation of the electrical conductivity of dis-
ordered binary alloys in a one-band model. In
this context he derived the important result that
in CPA the vertex correction defined as (GG)
—(G) &G) vanishes. This result has been shown to
follow as a consequence of the single-site approx-
imation in usual CPA and the short-range nature
of the scattering potential. By establishing a con-
tact with the Boltzman transport equation, Velicky
pointed out that the vanishing of the vertex cor-
rection and of the back scattering in the collision
term of the transport equation are physically re-
lated.

Generalizing Velicky's arguments, BV have
concluded that as in the one-band model and for
the same underlying physical reasons, the vertex
correction for the product of two Green's func-
tions vanishes in the two s-d band model also.

The work of Velicky has been extended by LVE



HALL EFFECT IN CONCENTRATED ALLOYS 5219

for calculating Hall coefficient and thermoelec-
tric power of a one-band alloy model. In the cal-
culation of Hall coefficient from the Kubo formal-
ism one invariably encounters the averaging of a
direct product of three Green's functions. A
straightforward extension of the algebraic ap-
proach used by Velicky for averaging the products
of two Green's functions becomes unwieldy in this
case. LVE have however devised a simple dia-
grammatic procedure for finding vertex correc-
tions for a product of three Green's functions. It
is quite easy to generalize the arguments used by
LVE to our present model and verify that as in the
one-band model, the vertex corrections for B and
C also vanish.

Using the arguments outlined above we have

A(O„z,; Oz, zz) = Tr0,G(z,)OzG(zm),

Turning back to E(l. (30}we see that for finding

(a~(H)) we have to evaluate to following traces:

A = Trg, G(z~}J"„G(zz),

A =TrJ"„G(z,)JsG(zz),
A' = TrJ„"G(z,)Z"„G(z,)X„G(z,),
A = TrZ„G(z~)3CzG(zz}J„G(zs) .

(42)

where

a,g

We evaluate these traces in the (~ ns), Ind)} basis.
In this representation the Green's function and the
current operators are given by 2x2 matrices. We
have therefore

B(O~) zg& 0 zz)2')+e) z~)

= Tro, G(z, )O,G(z,„G(z, ),
C(01)zl')3') z2) O2) zs)

= TrO, G(z,)X„G(zz)OzG(z, ) .

(4l)

A'„= g (J,' )..G.,(m, n;z, }ag «& oo ep

x(~"„)»G»(P, l; z&) . (43)

Using E(ls. (28) and (29) for J"and J'z, A~» can be
expressed in the form

A'() —— , g [t, (X, -X ) Y G ])(m, n;z~)tt&(Y„—Y&)G ])(P, l;zz)+ t, (X, —X ) G»(m, n;z, )t»z(F„—F&)F,4+3 ~ l fg

xG»(P, l;zm) —t, (X, —X )(F, —Y )X~G»(m, n;z~)t ~(Y„—F~)G»(P, l, zz) —t, (X, —X )(Y, —Y )

x G,~(m, n; z) (~( Y„—)))x (',~(P, (;z~) ]) . (44)

For expressing A'z in the k representation we use the following identities ' which are easy to verify:

Z

(X —X„)t „=—+[V z (k)] e+'"

(X -X)'t =- —g [V' c.(k}]e"'"--"~ (45)

(X -X„)(F —Y„)t'„„=(Y —F„)(X -X„)t'„=-—+[V V e (k}]e"'"

We consider only one term in (44), say the first, and express it in the k representation. The correspond-
ing expressions for the other terms can then be written down by analogy. Using (45}we have after some
straightforward algebra

g P, (X, —X ) Y~G»(m, n;z, )t~(Y„—Y&)G»(p, l;zz)=-g +
' ~ G»(k;zz) .

Jm

Simplifying the other terms in (44) in a similar manner we have finally

(45)

M„„~km k „k —M i ke„kv„N X~k;gi, gg

where

and we have defined the effective-mass tensor and the velocity function, respectively, by
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Using the fact that trace operation is invariant under a cyclic permutation and interchanging the indices x
and y in (47), it is easy to see that

2 1
A~~ ——A~

Following the method used for simplifying the form of Ao&, it is easily verified that A z = A
&

= 0.
Substituting the expressions for A' and A in (30}we have

[0, (B))= tPJ fed [p(q) —p(g+a)] Q (—1)t i "Jl™Zc g[M, '(k)v, (k)e+(k)
8 cA X]s A,~~+1

(43)

(50)

—M,,', (k)v (k}vzz(k)] X z(k; Z„.+ [d, Z„,), (49)

where C„=2, C~ = C~, = v 20 and C~~ = 10. Performing first the summation over the indices X; and X& and
then integrating over v, we have

S eH
(o'„(H})= ~ dq — c [[[M„„'(k}v„(k)v„(k)—M „(k)v„(k)v -(k)] I' [[(k; [7)cQ

where I'~(k;z) =ImG~(k; z) and R~&(k; z) =ReG~&(k; z). Since we are interested in the region of very low
temperature we can approximate dp(7})/dq by —5(g —zz) and write

(o„'„(H))= + pc &[M„„' (k)v (k)v„~(k) —M,„' (k)v (k)v„~(k)] 1 &(k; z ) (51)

The only other quantity that we need for finding the Hall coefficient as given by (19) is the longitudinal com-
ponent of the conductivity in the absence of the magnetic field. This has already been calculatedbyBV, and
is given in the form

(o ) = gc zv„(k)v, (k)[I'~(k; z )] (52)

The one-band analog of our expression for o,',(H) reduces to the expressions obtained by LVE and
Fukuyama. LVE have assumed M„,' = 0 in their calculation. We have however retained the off-diagonal
components of the effective mass tensor in our formulation.

If we assume an isotropic band structure so that z(k) = z(1 k '), our Eq. (51) reduces to

(c,'„(H)) = — + „z c., [v-(k)]' r.,(k;z,)

oB

which is a generalization of the result obtained by Matsubara and Kaneyoshi 0 for the Hall coefficient of an
impurity band model.

VI. NUMERICAL RESULTS AND DISCUSSION

We make the following two different types of ap-
proximation in our numerical work: (s,) Hubbard
semielliptic density of states and a Velicky-type
approximation' for the velocity function so as to
simplify the evaluation of the summation over k
vectors implied in Eq. (51). (b) For the case
$ = 0 we use a simple-cubic tight-binding band
structure as in LVE. (a} and (b) represent two
extreme ways of incorporating the effect of band
structure in our calculation without going through
a Draconian integration over the Brillouin zone.
In principle there is no difficulty in assuming a
more realistic band structure. But in view of the
limitations of our model such a detailed numerical

g„(z)= H-' +5(z —e,(k))

(2/v)(1 —z )'~ for Izl ~ 1,
0 elsewhere,

I

calculation does not seem to be worthwhile.
In both of our approximations we assume that

the off-diagonal components of the effective-mass
tensor are zero. This is certainly true of a sim-
ple-cubic tight-binding band structure and corn-
patible with approximation (a).

To proceed with approximation (a) we assume
that the density of states (per site) of the unhy-
bridized s band is given by the Hubbard semiel-
liptic form, i.e. ,
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where c designates the energy in units of the half
s bandwidth. The alloy density of states at the
Fermi level is then given by

expression reduces to

-9~X y[ (k)] (g
I' (kate } (q

g(ez) =g,(&s) + gs(&z),

where

(54)

where
(6o)

g,(e ) = —(2/v)lmE„(e +$0, Z ),
g,(~,) = -(IO/v) 1m'„(~,+ fO, Z,),

(55}
= 2Xss= 1

y Xw=Xus= 5 y Xgg= 5 ~

At a natural generalization of (57) we assume fol-
lowing Fukuyama

and the Fermi level &~ is determined from the re-
lation

f'z
J~ g(c) de = en~+ (1 —x)ns,

nOO

(56)

g& and n~ being the number of electrons per atom
for pure A and B metals.

For computing the longitudinal electrical con-
ductivity we adopt Velicky's approximation' for
the velocity function, namely,

N 'Q[v"(k)]'5(e —e,(k))- "(1—0)'~',
7r

(5V}

where vss(k) = ff [ V„Cs(k) [ and n is the maximum
velocity in the band. Equation (57}produces the
correct behavior at the band edges. Using (57) the
longitudinal electrical conductivity is given by

where

(eE) +(eF)+ 2o (~E)+ C(et) (56}

1

o„'(e~) = o,q,~ da(1 —c')' '[I'~(e; e )]', (59)

with

op=4@ e 5
2pfl i qss=2 ~

C

q„=P~!0(, %u = 1082

Q 8 c (k) sc (k) sc (k)
( )

sR (k;e )
si,' ay„se„.& "" se.(iq

Changing the k summation to an integral and inte-
grating by parts, it is easy to see that the above

I' ~(e; ez) in (59) has the same analytic form as
I"~(k;er} with e,(k) replaced by e.

Using residue calculus it is possible to obtain
from (59) algebraic expressions for a,'„(er). We
thus need not perform the numerical quadratures
which because of the sharp variation of the inte-
grands are difficult to evaluate accurately. We
relegate to the Appendix the derivation of these re-
sults. Somewhat similar results have been ob-
tained earlier by Chen et al. by following an
analysis more involved than that of ours.

For calculating the transverse electrical con-
ductivity we start with Eg. (51}and assume M, '„

= 0. We thus need to evaluate

N Q[v"(k)] 5(t—e' s(k))- (1 —e ) ~ . (61)

Expressions similar to (59) can now be deduced
for the magnetic-field-dependent transverse con-
ductivity

ass(cr) = oss(Es) + 2oss(t g) + o~(fy)

where

1

o„'(e~}= o„q~, de(1 —a')' '6'„(e;e~), (62)
a]

with

(e t )= I (ec )
S R s(g; tr}

aq

sR„(c;qr) sl'~(&; c~}
8& 9&

and

os ———2vtf e H/9v cA, .
For the purpose of numerical illustration we as-

sign the following values to the alloy parameters:
&=2. 8eV, y=leV, )=0.2, so, =7eV, thepositionof
the common s band being such that its bottom is 4.4
eV lower than the zero of energies situated midway
between && and E~. Figure 1 shows the alloy den-
sity of states g, the longitudinal electrical conduc-
tivity o„„, the transverse conductivity o„„, and the
Hall coefficient Rs as functions of band filling (or
the Fermi energy) for an equiconcentrated alloy.

The band-filling dependence of cr„„has already
been investigated by BV; using the result got in
the Appendix for $ =0, it is easy to understand qual-
itatively this behavior. Indeed, cr„ is proportion-
al to the alloy s density of states which presents a
minimum for energies corresponding to the cen-
ters of the d bands and to the inverse of the effec-
tive s damping I Z2, I which presents a maximum
for energies corresponding to the centers of the
d bands and which is vanishing outside the d bands.
The behavior of o„„presents more important vari-
ations and its change in sign determines that of R&
which is negative at the bottom of the s band and
positive at the top. This behavior is similar to
that observed by LVE in a one-band picture (i. e. ,
Rz negative at the bottom of the band and positive
at the top) where the electrons of that band are di-
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rectly affected by the disorder. Here, the disor-
der affects directly the d electrons and the s elec-
trons are indirectly affected through the s-d hy-
bridization. However the general behavior ob-
served in the one-band picture is reproduced for
the s band. Coming now to our second approxima-
tion we put $ = 0 and assume that e,(k) has a sim-
ple-cubic tight-binding form

e,(k) = - »»[), (cosakz+ cosak, + cosa', ) .

05'] ). Q l». 5.

~ ~
I ~
t

I ~~P ~ ~ ~
~ ~sr

'g

~ ~ & ss

h»~
es ~~e~e

p

l,
/i

v)Q '.
%r

~W IW& W~r~~

~e~
~+~ ~~cW

BANO FILUNG
556. 7. 8. 85 9. 95 10. 10.5 11.

~ ~

~ ~
~ ~

t ~
I ~

I

In the case )=0, the two s-d band model of BV re-
duces to that of Levin and Ehrenreich where the
d bands are approximated by d levels. Such a
model provides a good description for noble-metal
alloys as well as transition-noble-metal alloys
when the Fermi level is not lying inside the d
bands(Brouers etal. »). For $ =0, the s-d and d-d
components of the conductivity vanish, and we
have

&„(ez)= &"(ez) &,„(ez)= &'„'(ez) ~

The expressions for o„", and o„", are the same as
in the one-band model of LVE except for the fact
that we have to replace the one-band CPA Green's
function by G„(e;ez}, where

G„(e;e~}=(e~- Z, —e} ',

-0.2 0.2
EF/W

I

0.4
I

0.6 0.8

FIG. 2. Longitudinal electrical conductivity (dashed
line), transverse electrical conductivity (dash-dot line)
with opposite sign, , Hall coefficient (dotted line) with op-
posite sign. , the quantity &~-ReZ~ (solid line), as func-
tions of the band filling (number of electrons) and of the
Fermi energy in units of the half s bandwidth so~. The
vertical scale is given in arbitrary units; the ahoy pa-
rameters are defined in the text. The arrows give the
position of the two d levels and the velocity function is
derived from a simple-cubic tight-binding band struc-
ture.

with

BAND FILLING
05 1. 2. 3. 4. 5. 5.5 6 7. 8. 9. 10.10.510.7 10.911

l ! I

)
': al I

l )

I

1

l.e ~

t~ ~
I

0. 0.2
6F/WS

04I
I

-0.2-0.4

FIG. 1. Alloy density of states (solid line), longi-
tudinal electrical conductivity (dashed line), transverse
electrical conductivity (dash-dot line) with opposite sign,
Hall coefficient (dotted line) with opposite sign, as func-
tions of the band filling (number of electrons) and of the
Fermi energy in units of the half s bandwidth so~. The
vertical scale is given in arbitrary units; the alloy pa-
rameters are defined in the text. Velicky's approxima-
tion. has been used for the velocity function.

Following LVE, one can then obtain the Fermi en-
ergy dependence of the two conductivities from the
following expressions:

„(c ) f tttees(c -tteZ, )t[Zc(t) ~ Zg(t)]Js(t),
0

s„(c ) —j Stsi (c, —ReZ )t[Js(t) J(.t)]Zc()M~ ,(t)
0

In Fig. 2, we plot o,„, o», R» and c&-ReZ, as a
function of band filling, giving the following values
to the alloy parameters: x= 0.5, 5 = 2. 8 eV, y = 2

eV, »(), = "t eV, g = 0.2 (to avoid any unphysical gap
in the alloy density of states), the position of the
s band being such that its bottom is 4.4 eV lower
than the zero of energies. Versus the band fill-
ing, the alloy s density of states and o have the
same behaviors. The Hall coefficient presents
the same qualitative behavior as previously (nega-
tive at the bottom of the s band and positive at the
top}; as pointed out by Fukuyamaa» in a one-band
picture, this shows that the Velicky-type approxi-
mation for the velocity function is consistent with
the assumption of a simple-cubic tight-binding
band structure. On the other hand, as pointed
out by LVE in the one-band picture, the sign of
R& is the same as that of the quantity e+ —ReZ
which is the only parameter appearing in the ex-
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FIG. 3. Contour used for residues calculations of
the Appendix.

pression of Rz, Z being the self-energy corre-
sponding to the band which is directly affected by
the disorder. In our model, the sign of R~ is the

same as that of e&-ReZ„where Z, is the effec-
tive s self-energy which contains the effect of the
d disorder and the s-d hybridization.

We do not investigate the concentration depen-
dence of R&, indeed in contrast with o„„for which
a simple relation can be found with the alloy den-
sity of states (Appendix), the physical parame-'

ters of the model, because of the approximations
made as we already pointed out in the Introduction,
do not seem to be still enough relevant to make in
the present state of the theory any convincing com-
parison with experiments.

In the future, we believe that efforts should be
made first in the calculation of transport proper-
ties of dilute alloys using a detailed band picture
for the density of states and the velocity function.
Then, when such a problem will be under control,
one couM go back to the concentrated alloy prob-
lem taking account of some formal results dis-
cussed in the present paper.
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APPENDIX

Combining (58) and (59}we have

gZ2 1

» (»,) = -' ' I « (( - »')'" l(» + ~ ((» - »» - »)'(' ll(» - »,)',
m1 ja1

where the v&'s are the four complex roots of the quartic equation

[(fy, lL c)(cy, —Zg —$e) —7 ] +Zg(ey, -»a- t) =0,
and we have put

Zq= Z1+ iZ2 .
For performing the integral in (Al} we use the contour shown in Fig. 3.

In terms of the residues at the double poles v&, we get

OZ
o,„(s,)=, ', ' 5~' +Res (s'-I)'"[y'+Msg(c, -n. -s)'j' D(s v,P-

y 1 g Vf~

more explicitly

(A1)

(A3)

OPZ2
2

o„,((.'~) = w

4

5( + Z (IPj ()"»[»' ~ vT ((» a —», )»]» 11 (», ——v, )')
ga1- ge1

X
3vg 4M((vg —'f p+»a)

z +~1 —v', y'+My(c~ —& —v,),.~ v, —v,
(A3)

where the prime indicates that i j.
Using a similar procedure we can express the s and d densities of states in terms of the v& s as follows:

2~ 4 4

g (ez) =—,Q(v', —1)'~' II'(v, —v,), (A4)

4

gg(es) = —~Q(vg —1)'~'(e„-& —v,)' ]] (v, —v, ) .
i 1

(A5)
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In general it is quite a formidable task to eliminate the v/'s by combining Eqs. (A3)-(A5). However for
t'=0 one can derive a very simple expression for o (er) solely in terms of the s density of states. Putting
Z, = Z.+iZ. , we have

1 (I e2)2/2
o~(esp 5=0}=2&oZ2. ««2. .2 ) (A8}

f E Jl' —Z&, + iZz, and tom = ez —Z&, —iZ2, are the two complex roots of the quadratic equation

(tr —Z1~ —t)+'Z2~ = 0 .2 2

Using the same contour as previously we have

2 (w1 —1) / 2(w1 —1) ((PAL
—1) / 2(W2 —1)pp„(p, (=O)=mpppp):*, . )~, ' „' —Spp, + ' „' —3

p)(Ky —$03) ZOg —Alp (W2 —Wl/ W2 —W1

The corresponding s density of states at the Fermi level is given by

4 (Q }1/2 ( 2 )1/2
+

20( —Alp &p —Ky

Eliminating w, and w2 from (A7) and (A8}, we get

Ip (\, (=0)=tpp —
p

—p)(p, (=0))
w' g'.(e„,&=0)

p(g W

(A7)

(A8)

(A9)

This expression is similar to the one derived for the one-band model by Chen et al. by using a some-
what more complicated procedure. Relation (A9) provides a direct qualitative understanding of the behav-
ior of o as function of the Fermi energy (see Fig. 1).
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