
PHYSICAL RE VIE%' B VOLUME 13, NUMBER 12 15 JUNE 1976

Special points for Brillonin-zone integrations*
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A method is given for generating sets of special points in the Brillouin zone which provides an efficient means
of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or
over specified portions thereof. This method also has applications in spectral and density-of-state calculations.
The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

I. INTRODUCTION

Many calculations in crystals involve integrating
periodic functions of a Bloch wave vector over
either the entire Brillouin zone (BZ) or over
specified portions. The latter case arises, for
example, in averages over states within the Fermi
surface, and the calculation of the dielectric con-
stant and generalized susceptibilities. To optimize
the calculations it is helpful only to compute these
functions at a carefully selected set of points in
the BZ. This becomes more urgent in sophisti-
cated calculations where the computational effort
for each BZ point is substantial.

Methods for finding such sets of "special" points
have been discussed by Chadi and Cohen' (here-
after referred to as CC). This paper presents an
alternate approach which yields sets of points
identical to those given by CC and additional sets
with the same properties. It will be shown that
the use of such points simply generates an expan-
sion of the periodic function in reciprocal-space
functions with the proper symmetries. This sug-
gests an obvious, and rather accurate, interpola-
tion of the function between the special points
which is intrinsically more satisfactory than linear
or quadratic methods. The relation to Gilat-
Raubenheimer methods will be pointed out.

k~„, =u~b, +u„5, +u, b, . (4)

This gives q' distinct points uniformly spaced in
the BZ. Let A (k} be given by

A (k) Iq-)h Q e(k R

I Rl = c
(5)

where the sum is taken over all R vectors related
by the operations of the lattice point group. This
set of vectors is usually called a star. The C
are in ascending order, starting with C, =0. N
is the number of members in the mth star of R
[or the number of terms in the sum in Eq. (5}].
Note that A (k) is totally symmetric under all
point-group operations.

Let us now consider the quantity S „(q) given by

v is the unit cell volume, and 5,-5, span the re-
ciprocal lattice with BZ volume 8v'/v.

Let us define the sequence of numbers

u, =(2r —q —1)/2q ( r1, 2, 3, . . . , q),
where q is an integer that determines the number
of special points in the set. With the above u„'s
we now define

II. DERIVATION S „(q) = —Q A (k „,)A„(k „,).
p.r.s=i

(6)

In this section we will prove the existence of a
set of periodic functions which are orthonormal
on a uniformly spaced set of special points in
the BZ.

Consider a lattice defined by the primitive trans-
lation vectors ti, t„ts. A general lattice point is
given by

R =R,t, +R272+R3t, ,

where R,-R, are integers.
The associated primitive reciprocal-lattice

vectors are given by

Substituting Eq. (5}for A „and A„we can reduce
S „(q) to

(7)

where

1~+('(q) — ~ e(&(/c)(2r-a-()( - s))s)
q ~ (8}

In Eq. (7) the a and b sums are over the members
in the stars m and n, respectively. It can now
easily be seen that the 8'&bean assume the follow-
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ing values:

gf"(q) = (-I)'" & IIIfn-&;l=q, 3q, 6q, (9}

0 otherwise.

It should be remembered that q, R&~, and R;. are
integers. If we now impose the restriction

We could obtain approximations to f by the fol-
lowing sum over the set of k~ points:

P(q)

f„=—,Q w, f (kf)A (k, )

for all functions A (k) corresponding to stars that
satisfy Eq. (10). We thus obtain an approximate
representation f(k) for f(k),

I&;l(q/2, I&', l&q/2 (i =1,2, 3),

then it follows that

,an(q) 6(fta ff n)

From Eq. (7}it can now be seen that

S „(q)=6 „

(10)

(12)

(16)

where the sum is over functions that satisfy Eq.
(10).

The BZ integrations like Eq. (16), using Eq.
(17), will now be in error by the amount enz given
by

& (e)
S „(q) = —,p w, A (k, )A„(k,), (13)

where p(q} is the symmetry-dependent number of
points kf from the set of points fkn„,} in the ir-
reducible wedge of the BZ. Equation (13) amounts
to grouping together those terms in Eq. (6) that
are identical because of point-group symmetry.
Here zo& is the weight associated with k& and is
simply the ratio of the order of the entire point
group to the order of the group of the wave vector
at k, For example, if k,. is a general point in the
(1, 1, 1) direction of the simple-cubic lattice, then

m& = ~' =8. A description of the groups of k for
various lattices is given by Koster. '

III. INTEGRATION, INTERPOLATIONS,

AND ACCURACIES

In other words, all those functions A (k) for which

Eq. (10) is satisfied are orthonormal on the dis-
crete set of BZ points k~„,.

The lattice point-group symmetry can signifi-
cantly reduce the number of distinct terms in the
sums of Eq. (6}. We can thus write

where

dk [f (k) —f (k)] =g f N'/'S, (q),
Bz m&g

(19)

( 1)(a+1)((n|+fnn (nn)/a

s., (q) = if R,—R, are multiples of g
0 otherwise. (20)

f dkf(k I(f I (21)

where the summation is over functions corre-
sponding to stars which satisfy Eq. (10) and

l = dkA. k . (22)

Here the error is given by

dk If(k}—f(k)]
(FS

Consider now the case where we integrate over
a portion of the BZ, such as the volume enclosed
by the Fermi surface (FS). Then the integral can
be represented by

(14)

where, because of the orthogonality of A„(k) on
the BZ,

f.=
n

.J ak&'. (&)f(k).

Therefore the integral of f (k) over the entire BZ
leads to

(15)

dkf k= f, . (16)

Suppose we wish to integrate a function f (k) that
is totally symmetric and periodic in k space.
f (k} can be formally expanded in A (k),

I + I
tlat

(23)

where the prime indicates stars which do not
satisfy Eq. (10). The quantities I are typically
of the order 1 and vary in sign. We found this
way of integrating over the volume within the FS
very efficient and accurate once the f (k) was
computed over the k,. throughout the irreducible
wedge of the BZ.'

A satisfactory analysis of the errors incurred
in the above two cases is hard to give. This ob-
viously depends critically on the function f (k).
In CC it is argued that fez decreases proportional
to C '. This is based on the observation that for
a smoothly varying f (k) a Taylor expansion
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around k =0 converges mell. However, in actual
calculations on some simple crystals the con-
vergence for both eBz and ~» is much more favor-
able. ' This is most likely due to the periodic be-
havior of f (k), which causes the Taylor expansion
to be slowly convergent for k close to the BZ
boundaries. Although f (k) will be largely para-
bolic near k =0, f(k) must level off towards the
BZ boundaries. Most of the contribution to the BZ
integral comes near the BZ boundary. Hence CC's
analysis becomes rather irrelevant for realistic
f (k) functions. In fact, it might be more appro-
priate to point to the relationship between the f
values and the tight-binding interpretation of the
Fourier expansion of Etl. (14). It is then clear
that f should converge more like overlap and/or
energy integrals over atomic-orbital basis func-
tions. Typically one would expect then to find

f~Ce C- (24)

the power P and exponent e being dependent on

f (k). It is clear that the behavior can lead to a
decrease in ~ faster than C '. In practice one
simply monitors the convergence of both the actual
value of f as q increases, and the rapidity with
which their magnitudes fall off for increasing m

values.
In some lattices it is preferable to restrict q to

even integers. This is especially true in the case
of the cubic lattices. Take, for example, the
simple-cubic lattice. The smallest star for which
S„„(q)46 is the one corresponding to It =(q, 0, 0).
Now f (k) is an approximation to f (k) consisting
of a linear combination of orthogonal functions. If
q =2, f(k} is a linear combination of four orthogo-
nal functions, whereas if q =1, f (k) consists of a
single term. Since the fit using four functions is
presumably better than a fit to a single term, and
in both cases only one k point is used, q =2 is
preferable to q =1. Similarly, for cubic lattices,
q =2l is preferable to q =2I, —1 since

P(2l —1)=P (2l) = l(l +1)(l +2)/6 . (26)

Incidently, the point given by q =2 is the mean-
value point described by Baldereschi. 4

In the general derivation the same value of q was
used in all three dimensions; homever, for less-
symmetric Bravais lattices this is not necessary.
In fact it might be advantageous to change q in one
direction to reduce the number of k points without
loss of overall accuracy.

The nonprimitive fcc and bcc lattices are dis-
cussed in the Appendix. In particular, it is pointed
out how the "special points" of CC form a subset
of those obtained by us. Also the equivalence of
our points and those used in the Gilat-Raubenhei-
mer scheme is discussed.

IV. APPLICATION TO SPECTRAL CALCULATIONS

Many solid-state calculations involve computing
certain spectral properties of solids. This usually
involves the evaluation of integrals similar to

I((u) = dk E(k)6((o —&u(k)).
Bz

(26)

Also of interest is the special case when E(k) =1,
where I(&u) becomes a density-of-states calcula-
tion.

Several methods have been devised to perform
such integrations. ' In cases where the calcula-
tion of F(k} and ru(k} is very expensive it is ad-
vantageous to calculate E(k) and &u(k) on a fine
mesh of points, denoted by ( k,}, based on their
values on a coarse grid, denoted by (k&}. The
"linear analytic" method of Gilat and Raubenhei-
mer' is then applied to each minicell about each of
the fine-mesh points. If these functions are rea-
sonably smooth then it seems quite natural to gen-
erate their values on the fine mesh by the method
described in this paper.

F(k() = Q E A (k(), (27)

~(k, ) = Q~.A.(k, ), (26)

where I and ~ are calculated from the coarse
gr ld:

P(q)
E = —,Q wqE(kq)A (k,.), (29)

(20)

Unlike the local interpolation and integration meth-
ods reviewed by Gilat, ' the above procedure is
based on a global BZ fit, but nevertheless it be-
longs to the class of "hybrid methods" which Gilat
shows to be highly successful.

APPENDIX: SPECIAL CONSIDERATION

FOR CUBIC LATTICES

A. Face-centered cubic (fcc)

Consider two cubic lattices: first, a simple-
cubic lattice with spacing parameter a =a„and
second, an fcc lattice with a =2ao. For a given q,
which mill be even for reasons discussed pre-
viously, there are q' uniformly spaced points {k,}
in the sc BZ, placed on a cubic grid. The BZ for
the fcc lattice has just half the volume of the sc
BZ and careful counting reveals there are exactly
half as many points associated with the fcc BZ.
In fact, for each fcc k point there is another out-
side the fcc BZ (but within the sc BZ) related by an
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fcc reciprocal-lattice vector. For the sc lattice
3

Am k] A„k] (Al)

where both m and n correspond to stars of R which
satisfy Eq. (10}. Now let us further restrict m

and n to correspond to stars the sum of whose
components is even (i.e., 000, 110,200, 211,220,
310,222, . . .}, which are the stars of fcc lattice
vectors.

Regrouping E(I. (Al) we find

a~/2

—,Q [A„*(kq)A„(k,)+A*(k, +G, )A„(k, +Gq)] =

(A2)

where the j sum is over points associated with the
fcc BZ, and (k, +G,) are the corresponding points
related by the fcc reciprocal-lattice vector G,.
Since A (k, +G, ) =A (k, ), we find

2 e3/2

—,QA (k )A„(k ) =6 „. (A3)

Eq. (10). Now we further restrict the components
of the m and n stars tobe either all even or all
odd (000, 111,200, 220, 311,.. . ), i.e. , the stars of
bcc lattice vectors.

Regrouping the terms of Eq. (Al} we see that

Q3

A"(k,)A„(k,) = 6.„.q3
(Al 0)

Owing to O~ symmetry we need consider only
those points associated with the irreducible wedge:

0&k, &k, &k„& 2g/a,

k, +k„& 2w/a.

(A11}

(A12)

e /C

A (kp)A„(kg)+ A (ky+G))A„(ki+G ))

=6, (A9)

where k,. are grid points associated with the bcc
BZ and (k~+G~) are the three points related to kj
by bcc reciprocal-lattice vectors. Analogous to
Eq. (A3) we find

0& k, & k„& k, & 2v/a,

k, +0„+k,& 3w/a.

(A4)

(A5)

The 48-fold symmetry of the O„point group al-
lows us to consider only points in the irreducible
wedge given by

E(luation (A9) reduces to
P(q &

A. k~ A.q,—,

where

(A13)

Equation (A3) reduces to
P(a)

—,Q s),A*(k,)A„(k,) =6 „, (A6)

P(q) =
(q/192)(q+4)(q+8) if q/2 is even

+, , (q+2)(q+4)(q+6) if q/2 is odd.
(A14)

(Al 5)

where

&(q) =
(q/96)(q+2)(q+4) if q/2 is even (AV)

—'(q+2)(qG+4q+12) if q/2 is odd. (A6)

B. Body-centered cubic (bcc)

Let us again compare with an sc structure.
Consider the sc lattice with a =a, and a bcc lattice
with a =2a, . The BZ for the bcc lattice has 4 the
volume of the sc BZ and by carefully counting we
find & as many points associated with the bcc BZ
as with the sc BZ. For each bcc k point there are
three others outside the bcc BZ (but within the sc
BZ) related by a bcc reciprocal-lattice vector.
Again for the sc lattice Eq. (Al) holds when both
m and n correspond to stars of R which satisfy

As mentioned earlier the k, points generated here
and those given by CC are identical except that
for cubic structures the latter yields only those
sets of points corresponding to q =2" (n =1, 2, 3,
4, . . . ).

It is obvious from Eqs. (25), (A7), (AS), (A14),
and (A15) that P(q) increases rapidly as q in-
creases. Of course the accuracy increases with

q, but for some applications the computation of a
function at many points may be very costly. If
the convergence is not quite adequate for q =2" and
the computation for q =2"" is prohibitive, hope-
fully the intermediate values of q may be useful.

For cubic lattices the reader will note the equiv-
alence of the sets of cubic grid points given here
and those given by Janak for constructing the off-
set Gilat-Raubenheimer mesh. '
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