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Polarization effects in electron scattering from ion cores in solids
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In current theories of x-ray absorption fine structure (EXAFS) and of low~ergy electron diffraction, the
elastic scattering of the photoelectrons from the ion cores in a solid is treated as the scattering from a static
potential. We consider the effects of virtual excitation processes and discuss under which circumstances the

polarization of the ion cores by the scattered electron are important. A complex energy-dependent optical
potential is derived and a set of complex phase shifts are calculated with parameters appropriate for copper
metal. Implications for the theory of EXAFS are discussed.

I. INTRODUCTION

Recently considerable effort has gone into the
calculation of the properties of extended x-ray
absorption fine structure' ' (EXAFS) and low-ener-
gy electron diffraction (LEED) spectra. ' One of
the central features of both of these calculations
is an analysis of the single-electron atomic scat-
tering problem. This scattering is typically char-
acterized by a set of energy-dependent phase
shifts. Until now these phase shifts have been cal-
culated in one of two approximations: (i) By using
an atomic potential' based on some form of
Hartree- Fock-Slater approximation (e.g. , the
self- consistent potential used in band- structure
calculations). (ii) A self- consistent Hartree- Fock
scattering' theory using ground- state atomic wave
functions as input. 4

A feature of all of these calculations to date, is
the use of a constant (in space and energy) com-
plex potential to describe damping. ' Such an as-
sumption should be valid if the main source of
damping is plasmon excitation. However, in tran-
sition and noble metals the occupied 3d states can
constitute a major source of damping when the in-
cident electrons have energies above the excitation
threshold for d electrons. Since these d electrons
are relatively localized within the muffin-tin sphere
we might expect that the excitations of these elec-
trons would lead to a nonuniform damping mecha-
nism.

On quite general grounds we expect nonuniform
damping to lead to important effects in the elastic
scattering channel. This is easy to see of we re-
member that the scattering cross section of an
electron with momentum k, from any spherical
localized object i.s quite generally given by'

2

g (2l+1)(e" ' —1)P,(cos8) . (1)
2

When there is no absorption the 5, are real and the

maximum scattering cross section for any partial
wave occurs when 5, = 2v, i.e. ,

~

exp(2i5, ) —1 ~' = 4.
However it is quite clear from Eq. (1) that if 5,
has a large imaginary part (strong nonuniform ab-
sorption), then the elastic scattering in the 1 th
partial wave approaches & of the unitarity limit,
i.e. , ~exp(2i6, )-1~'=1. The physics of such
strong diffraction scattering in this case is simple.
The complete absorption of any partial wave im-
plies that we are missing this wave when we want
to reconstruct the incoming plane wave. This
must of necessity lead to a large elastic scattering.

In a recent experiment' involving electron scat-
tering by atomic copper in the 100-eV range, large
inelastic scattering has been observed, which in
turn greatly enhances the elastic scattering, par-
ticularly near the forward direction. While the
large magnitude of the effect remains a puzzle it
is clear that such effects are very important in
electron-atom scattering. Of course when we go
from an atom to a solid the valence levels broaden
out to form bands. However, one expects that ex-
citation of core levels or relatively localized
states like the d bands in noble metals will have
atomlike behavior. It is the purpose of this work
to examine in detail the extent to which excitation
of occupied electronic states in a solid lead to
nonuniform damping. Having ascertained this we
will then want to study the consequences of such
nonuniform absorption as it applies to the elastic
scattering of electrons in the several-100-eV
range. Explicit calculations of the phase shifts
for metallic copper will be carried out and the
implication for the EXAFS spectrum in this mate-
rial will be discussed. In particular we will re-
examine the problem of the so-called fourth-shell
anomaly. ' In addition we will briefly, by means of
numerical comparison, show how the differences
between the Hartree-Fock (HF) and Hartree-Fock-
Slater (HFS) calculations of electron phase shifts
may be reconciled with the ideas presented here.
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f"'(n) = [p(n) —Ilie',
where

(2)

p(q) = fe y', (r'")'d'r,

and g—= k&- k,. is the momentum transfer. The
second-order Born approximation is more com-
plex and the process corresponding to Fig. 1(b) is
of the form

I"'(~)
M„'(q- q)M„(q)

q'
~ q - )I

~

'[q'+ 2(e„-e,) + 2q k, —i{)]

(3)

The summation over n is a sum over the internal

k(+q
4O

q-q

II. POLARIZATION PROCESSES

Consider the scattering of an electron with ini-

tial momentum k, to a final state, characterized
by a momentum k&, by an atom. We will assume
that the energy of the incident electron is suffi-

ciently great so that we may neglect exchange ef-
fects. In this case the scattering amplitude may

be written down as an infinite set of Born approxi-
mation scatterings. Such scattering events are
shown schematically in Fig. 1. Here the single
lines represent the free-electron propagator while

the double solid lines labelled by the index n re-
present the atom with one-electron wave function

q)„(x). The dashed lines characterize the Coulomb

interactions between the high- energy electron and

the atomic electrons together with the nucleus. It
is this interaction which gives rise to the scatter-
ing.

The leading term Fig. 1(a) gives the usual

Hartree result (throughout this paper we use
atomic unit e = m = 5= 1)

states of the atom with energy &„, and

M„(t() = fd r(', tr)e'I ~y„(r). (4)

The term n =0 in Eq. (3) has been dropped since
it is simply the iteration of the lower Born approx-
imation, Eq. (2). The effect of this term is pro-
perly accounted for by solving the Schr5dinger
equation with the Hartree potential. Unlike the
contribution from the first Born approximation
this second-order amplitude may be complex.
Whenever an inelastic channel opens up, i.e. ,
when the energy denominator in Eq. (3) can be
zero we get an imaginary contribution.

At low incident energies k, these inelastic chan-

nels are closed. At high energies the contributions
from this second-order term and from all high-

order terms are small relative to the leading
term [Eq. (2)] due to the large size of the energy
denominators which occur and to the large values
of momentum transfer q which are required to
satisfy the energy 5 function. Thus, it is reason-
able to expect that the inelastic processes will be
most important in the intermediate energy range
where the energy of the incoming electron is
larger than but still comparable to the binding en-

ergy of the localized electrons. It turns out, as
we will discuss in more detail for Cu that about

one order of magnitude times the binding energy
is a good estimate for the energy range involved.

In general, one cannot evaluate Eq. (3) without

making some further approximations. However,
it is possible to understand qualitatively how such
a formal expression leads to a strongly enhanced

forward scattering amplitude. Massey and Mohr"
were the first to point out how the dynamic polar-
ization of the atom, i.e. , the excited internal in-
termediate state induced by the electron could re-
sult in greatly increased forward scattering.

Let us assume that the energy of the incident
electron (k,) is high enough so that we may neglect
the energy differences e„-&o in Eq. (3). In this
case we can immediately sum over intermediate
states in the matrix element and obtain an ex-
pression of the form

k;

4n, ",
q

h4o''

iik;+q

ki

(2) 2 d qf (n)=p
q fq- vyf

M(&(q) —Mo(q)M f (q
q'+2q k, —i5

(a) (b)

FIG. 1. Scattering of an electron by an atom. (a) The

atom remains in its ground state and the scattering is
the same as that of a static potential. (b) The atom is
virtually excited to an intermediate state Q„. The

dashed line denotes the Coulomb interaction.

For forward scattering, i.e. , g small, the ampli-
tude is divergent and the crucial region of the q
integration is for small q as well. To leading or-
der we may set g = 0 in the intergrand and use g
as a lower cutoff on the limits of integration. In

this case the scattering amplitude is well repre-
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sented by

In(rl),
2$d

(6)

(b)

FIG. 2. (a) Scattering of an electron by the static
potential of the atom. (b) The virtual excitation of a
core state, denoted by the double line, to the continu-
um.

where cP =(0~ (q r)'~0), is roughly the size of the
ground- state wave function.

The logarithmic divergence in Eq. (6), at small

g, is characteristic of a large small-angle scat-
tering. Such a logarithmic divergence could have
been obtained by simply Fourier transforming a
complex potential of the form gr)-i/r . In phys-
ical terms the electron excites the atomic system
giving rise to a virtual dipole moment which then
scatters the electron to its final state. On purely
classical grounds we might expect the induced po-
larization potential to fall of as I/r'. The quantum
effect discussed above shows that the leading term
is a purely imaginary I/r potential. It is impor-
tant to point out that this divergence is a direct
consequence of our neglect of &„-&, and is elim-
inated in a more accurate treatment of the problem.
However, it is clear that a large enhancementof the
forward scattering remains.

The second Born-approximation amplitude
gives us a qualitatively accurate characterization
of the inelastic processes. It is also true that an
expression like Eq. (3) with minor modifications
should qualitatively characterize the inelastic
processes in solids associated with localized elec-
trons. The corresponding perturbation diagrams
are shown in Fig. 2. Here the double line repre-
sents a localized hole. The contribution to the
scattering amplitude is aga, in given by Eq. (3).
There is actually an additional diagram which re-
presents the same order process as shown in Fig.

2(b). It corresponds to exchanging the incident
electron and the excited electrons. Such an ex-
change diagram involves large momentum transfer
and will be negligible near the forward direction.
We shall ignore these exchange diagrams in the
present work, and evaluate Eq. (3) in some detail
for copper metal taking into account the precise
nature of the localized electronic wave functions
and the screening of the Coulomb interaction by
the conduction electrons. Having evaluated the
amplitude we will then find the local complex en-
ergy-dependent potential V "'(r) which reproduces
this scattering in the lowest Born approximation,
l.e. ,

(7)

We will then utilize V "'(r) obtained by inverting
Eq. (7) in a Schrodinger equation of the form

[- —'V'+ V"'(r) + V"'(x) —V'"]P = Eg (8)

Here the sum over l, s is over occupied electronic
states. Solution of the Schrodinger equation is
then equivalent to iteration of the Hartree-Fock
scattering with the scattering depicted in Fig.
2 (b).

III. POLARIZATION PROCESSES IN COPPER

In order to evaluate Eq. (3) for copper metal we
need to specify the nature of the transitions in-
volved, evaluate the matrix elements in some ap-
proximate fashion, and take into account the
screening of the other conduction electrons.

Since we are primarily interested in the complex
character of the potential we need to determine
which absorptive processes are dominant. The
outer electrons, 4s in character, are rather uni-
form in space and lead to the usual uniform plas-
mon damping, i.e. , they do not contribute to dif-
fraction effects. The 3s, 3P, and 3d electrons are
localized and there virtual excitation may be im-
portant. Optical- absorption data" which can be
analyzed in terms of matrix elements similar to
those shown in Eq. (3) (dipole onLy) indicate that
absorption from these d electrons begins roughly
at 10 eV and that the entire oscillator strength is
used up by about 400 eV. The 3s and 3p electrons
begin to contribute to the optical absorption at

to calculate phase shifts, angular distributions,
etc. In Eq. (8) V'"' is the Hartree potential and
V'" is the conventional nonlocal exchange potential,
j e 11

1

l, s
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-=j ]M„(q)]* "'". (12)

In the first range we replace Iq —q I' by 7)' and

M„(q- rl) by M„(- ri). The angular average over
k„of M„(q) is slightly more difficult. We set

((M„(-q)M„*(q)» = (q/q)M„(q)M„(q) . (13)

about 100 eV and the absorptions extends to about
1000 eV. When electrons in the few-100-eV range
scatter from such atoms we expect that the ab-
sorptive processes associated with the promotion
of the d electrons is the dominant process. We
will consider in som detail the contribution these
processes make to the second-order Born ampli-
tude.

Since the 3d electrons are rather well localized
we choose the following spherical approximation
to the atomic wave function" to represent the
initial electronic state:

q)(r) = (4v) '~'(196e '""+21.5e ""+0.51e '"").

(10)

For the excited states we use a plane wave with
momentum k„which is orthogonalized with respect
to qo, i.e. ,

2„( )=e'"' -2,( ) fd' '1, ( ')e' '
. (11)

The orthogonalization is necessary to reproduce
the dipole matrix element M„(q) ()2 q in the small-q
limit. Indeed in that limit our matrix element re-
duces to that used by Beaglehole" who showed
that the wave function given by Eq. (10) is adequate
to describe the optical absorption in Cu. The ef-
fective number of electrons per atom n(~) avail-
able for optical absorption up to frequency + is
found to saturate at about 400 eV above threshold
indicating that the oscillator strength is spread
out over a large energy range because of the lo-
calized nature of the wave function.

To make further progress in evaluating Eq. (3)
we divide up the q integration replacing the inte-
grand with two different approximate forms in the
region q&g and g&q. In the second range we re-
place

I
q- rl I

' by q' and M(q- rl) by M(q).
angular average over k„can then be performed for
IM(q) I', i.eq. k,

((M*(q)M(q —]I)»-q', (14)

whereas M(q)M(rl)- qrl, hence the extra q/7).
We next discuss the question of screening. The

Coulomb interaction between the electron and the
polarization of the atom is screened by the metal-
lic electrons. However, we are dealing with inci-
dent electrons with kinetic energy much larger
than the Fermi energy so that the screening must
be considered dynamic with characteristic fre-
quency

2(k) =k',. —(k, —q)'=2k, q. (15)

If co is much greater than the plasma frequency,
the Coulomb interaction is unscreened. In the
present case the frequency is proportional to q.
The dielectric function for a fixed ratio
x=—(&u/Ee)/(q/kz), and q-0 is given by"

q (2, qe) = ( ~ k~' q '(1 ——1
2 1 —x (16)

We see that when x=0 we get the static screening
with the Thomas- Fermi screening length XTF. As
x increases the term in parentheses in Eq. (16)
becomes less than unity and we have effectively a
longer screening length. For x&1 the term in
parentheses becomes negative and we get into the
dynamic overscreening regime. For our present
problem + = k, q and depending on the angle be-
tween k,. and q the ratio x can be greater than or
less than unity. If we examine in detail how the
dielectric function e(q, k, q) screens a point
charge, '4 we conclude that the effective potential
can be approximated by a screened potential with
a screening length which is reduced from the
static Fermi- Thomas screening length X» by a
factor proportional to the electron velocity, i.e. ,
]( = XT„ke/k;. This is the approximation we shall
adopt here.

The expression for f (2)(q) then simplifies to

The q/rl factor comes into our approximate ex-
pression Eq. (13) because we want the matrix ele-
ment to be accurate for small q and q, i.e. , values
of q and g small compared to the momentum which
characterizes the localized d states. It is the
small-q, small-ri region, a.s we have seen [see
Eq. (5)), which leads to the large forward scatter-
ing amplitude. In this limit and for q «q it is
easy to show that

f"'(q)= k dk I-f(e ) dx dq
q(rl'+ X') (q'+ X')[q'+ 2 (e„-e,) + 2qk, x —i5]

q' M(q, e„)'
(q*+1')' [q' ~ 2(e„—e,) ~ 2qk; —'2]) '
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where we have inserted a factor of 10 to account
for the 10 occupied d electrons. The factor f (e„)
is the usual Fermi factor, and we have ignored the
process in which the intermediate state is a hole
state in the Fermi sea, as this process involves
large energy denominator for incident energies
large compared with the Fermi energy. The x
integral in Eq. (17) is easily done and the resulting
two-dimensional integral has been evaluated nu-
merically.

The results of this numerical procedure are
shown in Figs. 3-6. The complex potential Vi" (r)
is attractive with a magnitude of several atomic
units and a range of approximately 1 a.u. It is
also clear from these figures that the potential is
quite energy dependent over an energy range of
several hundred eV. It is of interest to compare
the real part of the potential to the usual Hartree
potential. At small distances x = 0.25 the Hartree
potential is about 50 a.u. (about one order of mag
nitude larger then Re[V"'(r)]). At r=0.5 and 1 it
has dropped to 12 and 1.4 a.u. , respectively, and

by ~ = 2 it is down to 0.3 a.u.
In Fig. 7 and Table I we show the appropriate

phase shifts obtained from a numerical solution of
the Schrodinger equation, and in Fig. 8 we have
plotted the angular distribution of electrons scat-
tered from a single Cu atom in the host metal. In
both cases the HF and HFS results are shown for
comparison purposes.

In Fig. 8 the angular distribution calculated by
including polarization effects shows the expected

X
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FIG. 4. Imaginary part of the second Born amplitude.

I~ I

peak in the forward direction and the reduction in
the back direction compared with the HF value.
It is interesting to note that for both Figs. 7 a~d 8
at low to moderate energy HFS is numerically
closer to the results of the present calculation.
On the surface at least this seems to indicate that
the Slater p' ' exchange is doing a good job of im-
itating the exchange plus correlation, i.e. , the
second-order polarization process as computed
here. However, the HFSphase shifts deviate sys-
tematically at higher energy from both the HF and
the present calculation. This is because an ener-
gy-independent exchange and correlation has been
used in HFS, whereas in HF the exchange part of
the potential is reducing with increasing energy.
In our present calculation, the correlation part is
also being reduced. In LEED calculations the
turning off of the exchange and correlation energy

0
0

I I

2 3 4 5

'g (ATOM I C UN I T )

FIG. 3. Real part of the second Born scattering am-
plitude vs momentum transfer q for several incident

momentums&. An energy-dependent screening of the
Coulomb interaction as discussed in the text has been
used in these calculations.

0
2

L

/5
ki= 2

4
0
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FIG. 5. Real part of the optical potential V (r).
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FIG. 6. T~~ginary part of the optical potential V (r).
p ~~I

is partially accounted for by introducing a phe-
nomenological inner potential which sets the zero
of energy in the crystal and is energy dependent. '
Our results here show that both the real and imag-
inary part of the correlation potentials vary both
in space and with energy and should not be approx-
imated by constant inner potentials.

In order to see if the size of the potential com-
puted here is generally consistent with known ex-
perimental data we have looked at its contribution
to the imaginary part of the self-energy of an elec-
tron. The imaginary part of the self-energy Z is
obtained from

ImZ = 2vNzImf "'(0) .

7T

z 2
M

LLI
V)

0 =

0

2 X=4

I l

Here Nl is the ion density. In Fig. 9 ImZ is plotted
as a function of the incident momentum for both
screened and unscreened cases. This provides us
with a good estimate of the over-all importance of
screening. The magnitudes of ImZ for the
screened case is roughly 6 eV and relatively in-
dependent of the electron energy beyond threshold.
The imaginary potential deduced for LEED exper-
iments is about 4 eV. However, these two numbers
may not be directly comparable as the LEED val-
ue is obtained by analyzing the data using a con-
stant complex inner potential. Our value of 6 eV
may be considered to be of the correct order of
magnitude.

While the Imf "'(0) is of the correct order of
magnitude our approximate evaluation of Eq. (17)
for f "'(q) is less accurate for large momentum
transfer. This in turn means that we are less con-
fident about the accuracy of V"'(r) for small r
Such inaccuracy might lead to errors in the imag-
inary part of the phase shifts and in f (8). The
imaginary part of 5 is rather large especially for
l =3 or 4 and may reflect this uncertainty.

IV. APPLICATION TO EXAFS

The potentials derived in Sec. III may be applied
to a variety of problems including LEED, band

2 3 5

k) (ATOMlC UNlT )

FIG. 7. Phase shifts for copper vs electron momen-
tum calculated in the Hartree-Fock and the Hartree-
Fock-Slater approxi~~tions and including polarization
effects in the present work. In all cases the atomic
wave functions are truncated at the muffin-tin radius
and norm~3ized wi~&~ the muffin tin sphere to preserve
charge neutrality. The zero of energy is taken at the
mnNFI-tin zero which is the vacuum level for HF and
for the present calculation but is several ev below the
vacuum level in HFS.

structure, and EXAFS. We will, for the purposes
of illustration, focus on the EXAFS problem in
copper and even more specifically analyze the role
such effects play in two problems: (i) the so-
called fourth-shell anomaly, and (ii) the k depen-
dence of the central-atom phase shift.

EXAFS refers to the modulation of the absorp-
tion coefficient X(k). For K-shell excitation this
modulation is describable by the following simple
expression:
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TABLE I. Complex phase shift for copper.

Reb)
Imb)

0.41
{0.086)
0.45
(0.13)
0.01
(0.02)
0.01
(0.003)
0.0004
(0.000 1)

-0.84
(0.28)
0.03
(0.34)
0.17
(0.34)
0.29
(0.44)
0.043
(0.038)
0.006
(0.006)

1,43
(0 35)

-0.63
(0.38)
0.073
(0.45)
0.92
(0.8 1)
0.21
(0, 18)
0.07
(0.06)
0.021
(0.02)

0.74
(0.30)

-1.18
(0.33)

-0.16
(0.41)
1.25

(0.54)
0.40
(0.25)
0.15
(0.09)
0.073

(0.05)
0.04
(0.03)
0.013
(0.0 14)

0.21
(0.26)
1.52

(0.29)
2.78
(0.36)
1.33

(0.40)
0.57
(0.24)
0.27
{0.13)
0.14
(0.07)
0.077
(0.047)
0.036
(0.033)
0.018
(0.022)

-0.22
(0.20)
1.18

(0.22)
-0.52
(0.27)
1.39

(0.28)
0.71
(0.21)
0.38
(0.14)
0.21
(0.08)
0.12
{0.06)
0.067
(0.04)
0.041
(0.03)

Here k = [2m(&u —0,„))'~' is the wave vector of the
free electron promoted above threshold 0,„ to the
continuum from the K shell by a photon of fre-
quency ~. Equation (19) describes the modification
of the final state as the photoelectron propagates
outwards and is backscattered by the ith atom lo-
cated a distance r, away and then propagates back
towards the origin. The spherical outgoing wave
has been approximated by a, plane wave and f, (w) is
the backscattering amplitude. The phase shift 5,'

describes the effect of the potential of the excited
atom. The damping factor y takes into account
inelastic scattering of the photoelectron.

Up to now inelastic losses have been approxi-
mated by adding an imaginary potential which is
assumed to be constant (-4 eV) throughout the
crystal. This implies, for y«k, that y=0. 14V/k
in atomic units. While such an approximation may
be adequate for inelastic scattering due to plas-
mon excitation, we have learned that the complex
potential is in fact nonuniform, when the excitation
of more localized states like the d states is in-

0.4

3
R

C3

X0
2

CQ

0.3
Z

o 0.2I-

EOI

m/2

0
I

I I I

3 4 5

ICI (ATOMIC UNIT )

8 (rad)

FIG. 8. Scattering amplitude for k& =3 a.u. calculated
in the Hartree-Fock and Hartree-Fock-Slater approxi-
mations and including polarization effects.

FIG. 9. T~&~inary part of the electron self-energy
due to d-band excitation in copper metal calculated by
using either an unscreened Coulomb interaction, or by
using an energy-dependent scree~&~~ length as dis-
cussed in the text.
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+e &2kr4+2 i& ~ e-2Tr4
) (20)

where N4 is the number of atoms in the fourth
shell. The second term describes the forward
scattering by the first-shell atom on either the
outward or the return trip of the photoelectron and
the third term describes forward scattering on
both trips. The factors of ~,' arise from the
strength of the various spherical waves. The first
term describes only a single backscattering and
we denote its contribution by X4".

Using the HF phase shifts and a constant imag-
inary potential, we obtain at k = 3

x"' =»e""x"'X4 — e X4 (21)

Experimentally it has been found that the fourth-
shell contribution is roughly n radians out of phase
with the other shells and its magnitude is three or
four times larger than given by y,

' '. (The precise
discrepancy in the magnitude is difficult to ascer-
tain as it depends on the assumed magnitude of y. )
Thus Eq. (21) while qualitatively correcting things
in the right direction, is still insufficient to ex-
plain the experiment.

Equation (21) is based on the assumption of a
uniform imaginary potential. We have seen that a
nonuniform imaginary potential has the effect of

eluded.
Let us first consider backscattering from a

nearest neighbor. In a more accurate treatment
which includes the nonuniform complex potential
one should use a smaller y to describe plasmon
losses only and one should calculate f (v) with com-
plex phase shifts. As we can see from Fig. 8 f (v)
calculated this way is reduced from the Hartree-
Fock or Hartree- Fock- Slater approximation. In
addition one should use a complex 5,' to describe
inelastic losses in the central atom. This kind of
treatment for neighbors that are further apart will
in general be quite difficult as one must consider
losses due to excitation of other atoms in between.

A particularly interesting application of some of
these ideas is to a calculation of the fourth-shell
contribution to EXAFS in fcc metals such as cop-
per. A fourth-shell atom is directly shadowed by
a first-shell atom and its shell radius r4 is 2x„
where r, is the first- shell radius. It has been
pointed out' that scattering by the first-shell atom
greatly inQuences the EXAFS contribution of the
fourth shell. Again, approximating spherical
waves with plane waves we can write down the fol-
lowing equation for the fourth- shell contribution to

l.e. ,

y, (k) =-—'Im f(v) ~+ ——+
N 1 2f(0) 1 1 f'(0)
k r, r, x, r4 r,

enhancing the forward scattering amplitude rather
than reducing it as has been done in Eq. (20) by
assuming that e '""4 multiplies the multiple as well

as single scattering amplitudes. To illustrate this
point let us make the following crude estimate.
We treat the inelastic loss in the central atom and

in the fourth-shell atom by a damping factor as
before which requires a factor of e '""&. For the
sake of illustration we assume that all the damping
is due to d-electron excitation. Then instead of a
factor e '""~ to account for damping while travers-
ing the first-shell atom, we should use f'(0) com-
puted using complex phase shifts. This results in

the equation

8f'(o) 18f"(o) .a„(o)
X4= 1+ + 2 e ""~X4 ) (22)

V. CONCLUSION

We have shown that polarization effects are im-
portant in electron-atom scattering even inside a
solid. By considering the example of the excitation
of d states in copper we explicitly construct a com-

where y= 0.147/k is the same damping coefficient
used in arriving at Eq. (21). If k = 3, we obtain

5 ]3efr/2X(o)

approximately twice as big as the value given in

Eq. (16) and with a phase shift of —,w. The assump-
tion of d- electron damping clearly leads to an
overestimation but Eq. (23) indicates that the
fourth-shell contribution to EXAFS can be greatly
enhanced, due to the increased forward scattering
amplitude which explicitly arises from the non-

uniform absorption computed here. Such effects
seem to be in the correct direction to explain the
observed discrepancy between theory and experi-
ment.

A second problem related to EXAFS is the k

dependence of the central-atom phase shift 8,'(k).
As we can see from Fig. 7, 5((k) is quite linear in

k. From Eq. (14) we see that the linear dependence
of 5,(k) gives rise to an effective shift in the radial
distances and thus it is important for absolute dis-
tance determination. It has been found ' that in

Cu the slope calculated using the HF potential is
too small by about 30% when compared with exper-
iment. As pointed out earlier the present calcula-
tion produces an l = 1 phase shift that has a steeper
slope than the HF approximation. This is a gener-
al feature of such calculations since the polariza-
tion part of the potential weakens as the energy
increases. Thus it is hopeful that the inclusion of
polarization effects will lead to an accurate cal-
culation of the central-atom phase shift. Further
work on this particular problem is in progress.
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plex optical potential which has spatial variation.
The usual approximation of a spatially uniform
complex inner potential is thus not valid. The lo-
calized nature of the optical potential has a partic-
ularly dramatic effect on the scattering amplitude
in the forward direction and has interesting im-

plications for the fourth-shell anomaly in
EXAFS. WMe we have not explicitly discussed
the implications for LEED calculation, it will
clearly be of interest to perform LEED calcula-
tions using such complex energy-dependent poten-
tials.
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