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A general three-dimensional many-body theory of tunneling across an abrupt junction was developed
independently of the transfer-Hamiltonian formalism. The theory is based on Keldysh's perturbation theory
for nonequilibrium processes. The extension of our previously published one-dimensional theory to three
dimensions produced significant new insight. It was demonstrated that a "transfer-Hamiltonian-like"
expression for the (energy density of the) tunneling current can be derived. However, this expression depends
on a "transrnissivity" weighted-average product of the spectral densities of the "uncoupled" subsystems
(electrodes) over the interface, rather than on the product of their local energy densities of state at the
interface. This qualitative agreement with Appelbaum and Brinkman's theory was shown to reflect the fact
that &ppelbaum and Brinkman's tunneling theory may be derived from our theory if it is linearized in the
(pseudo) transfer Hamiltonian X'(r) defined by us. Thus, several conjectures concerning the transfer-
Hamiltonian formalism were confirmed. Namely, it is a "thick-barrier approximation" involving a (pseudo)
perturbing potential which is correct to first order in this pseudo-operator. The general theory is
complemented by a brief examination of the translationally invariant and of the ordered planar junctions. The
important consequences of the convention used in defining the spectral densities, and Green's functions for the
uncoupled electrodes were further elucidated. An examination of the "surface Green's function" introduced by
Garcia-Moliner and Rubio indicates that our formalism explicitly accounts for the contribution of interfacial
states to the tunneling. Though cast into a many-body formalism, the present results were derived for a
noninteracting system. The effects of a nontrivial interaction are currently investigated and will be reported in
a subsequent publication.

I. INTRODUCTION

This is the fourth publication in a series of sev-
eral papers in which we develop a new many-body
theory of electron tunneling which does not involve
the formalism of the transfer Hamiltonian. ' The
theory is based on a perturbation theory for non-
equilibrium processes developed by Keldysh. 2 The
basic motivation for our work, and the general ap-
proach to be followed were discussed at length in
Paper I. In the present paper we concentrate on
the modifications of the simple one-dimensional
version of our theory, developed in Papers I-III,
when it is extended to a full three-dimensional the-
ory. Our experience in treating the finite junction
in II suggested that short of such obvious barrier
effects as resonant and inelastic tunneling, the
abrupt junctions include essentially all of the phys-
ics of tunneling. Hence, we decided to avoid some
of the cumbersome algebra by restricting our
analysis to the abrupt junction. %e also continue
to restrict ourselves to a noninteracting (many
electron) system. This last restriction will be
dropped in a future publication of this series.

Our purpose in developing a detailed three-di-
mensional theory is twofold" . First we wish to
demonstrate the versatility of the formalism which
was developed in I and II, and the relative ease

ith which it can be applied to more realistic prob-
lems. Second, and more significant in our opinion,

is the need to obtain a detailed check on the reli-
ability of the several current three-dimensional
tunneling theories based on the transfer-Hamilto-
nian formalism. Here we refer in particular to
the theory of Appelbaum and Brinkman, and to its
adaptation by Penn, Gomer, and Cohen. These
theories, like all tunneling theories based on the
transfer-Hamiltonian formalism, ' '0 do not seem
to depend on the dimensionality of the problem.
On the other hand, a strictly one-dimensional anal-
ysis in I, led to the "transfer-Hamiltonian-like"
expression for the tunneling current,

(Z& = —' —(2v)'[f, (~) -fs(~)]
2w

where, in contrast to the actual transfer-Hamilto-
nian formalism, IA'(&o) I is not a "matrix element"
but a simple expression involving appropriate
Green's functions of the uncoupled electrodes.
Furthermore, p~ ~ are long) energy densities of
states (evaluated at the interface) rather than the
bulk, i. e. , position-independent densities entering
the conventional formulation. Thus there was rea-
sonable doubt that even such a limited agreement
with the transfer-Hamiltonian theories as was
achieved in I could be established for a three-di-
mensional formulation of our theory. This suspi-
cion was indeed corroborated. Our results con-
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firm the expression quoted by Caroli et al. "for
the field emitted current fx om a planar electrode,
based on an alternative version of our formalism.
The tunneling current energy density (A(())) de-
pends on a weighted average of spectral densities
(rather than of the local energy densities of states),
over the interface of the abrupt junction. This re-
sult agrees qualitatively with one formulation of
the tunneling theory of Appelbaum and Brinkman. '"
In fact, we can demonstrate that the latter theory
represents an approximation of our theory formal-
ly valid to first order in the pseudo (transfer) Ham-
iltonian X (r). This is a most interesting result
since it provides a rather complete insight into the
significance of this formalism. We also briefly
discuss our representation of Garcia-Moliner
et al's. ""surface Green's function" and indicate
that our tunneling current explicitly includes the
contribution of interfacial states localized at the
interface of the abrupt junction. Readers who wish
to avoid the detailed algebra may find the notation
introduced in Secs. IIA and IIC adequate to under-
stand the main results stated in Sec. III C and their
discussion in Sec. IV.

The formal analysis, while somewhat lengthy, is
fairly transparent. This analysis, presented in
Secs. II and III is essentially self-contained. How-
ever, to avoid duplication of the extensive discus-
sion in I, verbal arguments are kept to a minimum.

In Sec. II, we determine the single-particle,
thermal-equilibrium Green's function for the abrupt
junction G in terms of the thermal-equilibrium "un-
coupled" Green's functions for the two uncoupled
subregions or electrodes g,. The pseudo Hamilto-
nian which "couples" the subregions and hence de-
termines G, in terms of the g, 's, is also derived.
We treat separately the interesting, special, case
of a planar ordered junction which allows a more
explicit solution than is possible for the general
junction.

In See. III, the tunneling current is expressed
in terms of the correlation function G' which has
to satisfy Keldysh's (matrix) Dyson equation relat-
ing it to the several uncoupled Green's and corre-
lation functions g,". The theory is developed in a
way to permit ready comparison with the corre-
sponding results for the one-dimensional junction,
obtained in I.

In Sec. IV, we present a reasonably extensive
discussion of our results and their relation to Ap-
pelbaum and Brinkman's theory.

II. EQUILIBRIUM GREEN'S FUNCTION

cussed first, and then more explicit results are
derived for the planar junction. All of these results
are directly applicable to the nonequilibrium
Green's functions G"", to be introduced in Sec. III.

A. Definitions

We consider

X= 92X2+ 6~K~, (2. I)

o.'(r)g, (r c &, r' c D, ; (0)+ p(r) ' (r c 8, r' c D„(o)= O,

(2. &)

o((r')g, (rc D„r'c 8; (d+ P(r) g', (rc D„r'c 8; (0) =O.

Here, a and P are real functions and 8 is the
boundary surface separating the full region of
(physical) interest into the two regions whose in-
teriors are denoted D,. ' At the other boundaries
of D, U D~ we impose appropriate (homogeneous)
boundary conditions. " These are identical to those
imposed on the full Green's function G and do not
have to be spelled out in further detail. ' The
Green's functions all display a characteristic sin-
gularity which is a consequence of Eq. (2. 2). It
can be conveniently written in the following form,
adapted from the standard, one-dimensional the-
ory:

(2. 4)

Here, the subscript s denotes a vector whose tip
lies on the surface S. 8/Sn is the derivative along
the positive normal to S. 4, denotes the difference
in the function evaluated with r tending to the posi-
tive (negative) side of S. f)(~) is a two-dimensional
Dirac 5 function. '7

On combining Eq. (2. 4) with the homogeneous
boundary conditions imposed on the uncoupled
Green's functions, Eqs. (2. 3), we obtain the fol-
lowing discontinuity conditions imposed on g at
the boundary B: Vfhen P40,
ff' . n(r) a

lim + —g6(r, r'; (d)
2)n p-a, ( )(p(r) an ' ' '

p

where 9, is the characteristic function of the 5th
region", 5= 1, 2 corresponds either to the left, right
half-spaces z &&0, or to the inside, outside regions.
The uncoupled Green's functions are required to
satisfy the following equations:

[(o-X,(r)]g, (r, r'; (o)=5(r-r'), (2. 2)

and the general homogenous boundary conditions"

In this section we compute the Green's function
for an abrupt three-dimensional junction, in the
absence of an external potential, in terms of the
(uncoupled) Green's functions of the uncoupled
electrodes. The general (abrupt) junction is dis-

= —(- I)' f) "'(ra —ra)

~ r'- &()((n) p$r 'n vga

(2. 5)

(2. 5')
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and if Q. WO,

I p(r) s e
lim 1 + — ,g, (r, r'; (d)2m;, , („) a(r) Sn Sn' ' ' ' )~s

J 5"'(r —r», «,&)f(r) d'r = f(r) ds
De B

or, alternatively,

(2. 12)

= (- I)'5"'(rs —r&&), (2. 8)

I p(r')
lim 1+, , —g5(r, r'; (0)2m;..s, ((.) a(r') Sn n ' ' '

res

(2. 8')
Here, we denote with the subscript B any position
vector r whose tip lies on the boundary (interface)
surface B. B,(in) denotes the side of B facing the
interior of D, . Finally, 5=1(2) denotes either the
left (right) or the inside (outside) electrode. "'"

The full Green's function G satisfies the equation

[(»& —X(r)] G[r, r'; (d] = 5(r —r'), (2. 7)

and at infinity it satisfies the same (homogenous)
boundary conditions as imposed on the uncoupled
Green's functions g, .

B. Determination of full (equilibrium) Green's function G

Applying Green's theorem, we can deduce the
three-dimensional version'0 of Eqs. (I2. 12) and
(I2. 15):

e,(r)G(r, r'; &o) =g6(r, r'; ur)96(r')

8
+ [V„(g6(r, r); (d))G(r„r'; (d)

2m 1

—g5(r, r&» (d)V„G(r&, r'; (d)] ds, .
(2. 8)

Here it should be noted that Eq. (2. 8) explicitly in-
cludes the fact that over the remainder of the
boundary, B„ofD„g, and G satisfy the same
boundary conditions. These equations can be re-
cast in the form of a three-dimensional integral
equation,

t 5(r —r')ds = 5("(r—rs «,&) .
B

B6(ia) (2. iS)

It should be noted that Eqs. (2. 5) and (2. 5') assure
the consistency of Eqs. (2. 8) (and of their trans-
pose) in the limits r-rs, („)tr -rs, („&). It is
easily verified that besides Eq. (2. 8) also the fol-
lowing (transposed) equation applies:

e,(r') G(r, r', ur) =g, (r, r', &o)e,(r)

W)
G(rs, rs; &u), —G(r, r'; (d) () s «,&,r' B1(ia)

, » G(r, r'; ~);.» «
r '»B

1 (ia)

8 2

(r» r» ~) r B2(&n) (2. i4)

These functions are determined by a set of two-
dimensional integral equations which express the
consistency of Eqs. (2. 8) and (2. 8'). Thus, the
characteristic singularity of g, enables us to de-
duce from Eqs. (2. 8) and (2. 8') several relations
of the form

+ [G(r, r, ; (())V„g()(r„r;(d)

—V„G(r, r, ; (d)g6(r&, r'; (»&)] ds, .
(2. 8')

Using Eq. (2. 8') to express G(r„r'; (d) and
V„&G(r„r', u) in Eq. (2. 8), we recognize that the
latter equation determines the Green's function G
in terms of its "boundary values" at B

G(, '; )=»r(r, r', ) J»r(, r, ; )
all syace

xsO'(r, )G(r), r'; &o) d~r, ,

where

g(r, r'; (d) =+9,(r)e, (r')g, (r, r'; (d) .
6

(2. 8)

(2. 1O)

lim 8
g s~ & (f»») s 8 [g2(r, r, ; (d)]G(r&, r'; ((&) ds)

r'6D1 nl

lim g2 r, r„cu
8

G r»r'; co dsl 2. 15
r B2(in) B +1

r'ED1

Here we defined, in analogy to Eq. (I2. 21), the
pseudo Hamiltonian or perturbing pseudopoten-
tial

lim
8 glr rl Grl r';co ds

r B2(in) B +1
r'ED2

IX'(r) = — Q 5(&)(r- rs, („)), =- [X'(r)]',
2m 6 +

(2. 11)
with e/(&n5 equal to the derivative along the out-
ward normal to the boundary of D6 (i. e» ( B6). The
one-dimensional 5 function 5"' is defined by the
relation

lim gl r, rl) m
8

G r»r', (d dsl ~

r B1(in) B +1
8'ED 2 (2. 18)

The analogy of these equations to the one-dimen-
sional algebraic equations leading to Eqs. (I2. 18)
and (I2. 18') is evident, and suggests that they
might yield a corresponding set of algebraic equa-
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tions which could be solved by an obvious general-
ization of the one-dimensional procedures followed
in I. This is indeed the case for a planar configu-
ration, provided the two semi-infinite electrodes
are crystalline and have commensurate unit meshes
in the planes parallel to the interface B.2' In the

following we shall restrict ourselves to this par-
ticular class of junctions. However, before we
proceed, we shall indicate the particular form of
E(I. (2. 8) for a planar geometry when we impose
on the uncoupled Green's function's g~ Neumann
conditions at the plane boundary 8 [n=—0 in E(I.(2. 3)]:

2 2 W

C(r, r';(0)e, (z)= g, (r, r';(o)+ g, (r, r, ; (u) [C(r„r,; (o)]g,(r„r'; (o) ds, ds2 e,(z )

g, (r, ,;s) [a(r„r„. )]g, .(r„r'; ))as, as, [& —e,(s')],2' g ~Zy ~82
(2. iv)

where, egg 5'; the interface B is the plane z =0; the z component of r, and rz vanishes (since these position
vectors lie on 8).

Similarly when the uncoupled Green's functions g, satisfy Dirichlet conditions at the plane B, z =0 (i. e. ,
P—= 0), we have

S2 2

a(r, r';sr)e, (s)=(g, (r, r'; ) S, [g(r, ,; )[C( „r,;ts)s g(r„'; )as, as)(), (s')
PRE g sZa $ 882

[g,(r, r, ; ~)]C(r„r,; (o) g, .(r„r'; (d)ds, ds, [I —e,(z')] .
2

~

~

~

~

~
~

~
~

~It

~ ~

~
~ Ij

~

~
~ I

~
~ ~

~
I~

~I 1 2
~

~
I

I
PB g sZa t 882 ' (2. is)

In Eqs. (2. 18) or (2. 17) we have still to determine
the values of the full Green's function 6 or, re-
spectively, of its mixed second normal derivative
over the intexface. In general, these are difficult
to determine. 22 However, as we shall see, the
formal analysis does not require the explicit solu-
tion of this problem, and E(ls. (2. 19) and (2. 20),
respectively, suffice.

Using E[ls. (2. 1V) [or (2. 18)] to evaluate the left-
hand side of E(I. (2. 4), we deduce, upon applying
the appropriate form of E(ls. (2. 5) [or (2. 8)], for
o, =—0

@2 82

Vl jp 8 Z$

&& [g,(r„r'; u))+g, (r„r', (d)]ds, ,

(2. 10)

82

FPZ 3 Z g Z

[gt(ri r ' (d)+gz(ri r'; ~)]I, =0= .ds, .
(2. 2o)

In both equations the arguments (position vectors)
r and r' are on the interface B. These equations
are clearly the three-dimensional version of Eqs.
(12. 24) and (12. iS").

Combining E[ls. (2. 1V) and (2. 18), we can now
obtain an implicit expression for 6 on the inter-
face. Writing r = l,g+ p, we have for p W p'

C(z = 0, p; z = 0', p'; (d) = C(z = 0, p; z' = o, p' ~)

= C(z = O', p z' = O' p ~) = C(z = 0 p z = 0 p; ~) = C(z = 0, p; z' = 0, p', ~)

(d) [C(r„r,; (d)]g,(r„r'; ~)
1 2

(d) [C(r„r,; ~)]g,(r„r'; (d)
~8j 82

(2. 21)

Below we shall obtain an explicit solution of this
interesting equation for the case of an ordered
planar junction.

C. Full Green's function for crystalline junction

In the following we shall specialize our discus-
sion to an ordered planar junction. Here "order"

I

refers to the fact that the entire junction is as-
sumed to exhibit a periodicity in the plane of the
interface B.

Notation

We shall write the position vector

r = p+ l gz,
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where p is a two-dimensional vector in a plane
parallel to I3 which is now defined by z =0. The
junction is invariant under the two-dimensional
translation group

W)
P P =P+Q»

where the two-dimensional net {RQ is spanned by
the basis {a„az),

a;= a,n, + a2ne, n, are integers, i = 1, 2 .
The (two-dimensional) reciprocal net {K-Jis

spanned by the reciprocal basis {b„bg
~+aR- = 2w(b~m, + bzmz), m& are integers, I= 1, 2 .

(2. 22)
Where the reciprocal basis is specified by the con-
ditions

a)' b)=5]~, i,j=1,2.
Thus, in particular»

R- ' 0;=2v(m, n, + m,n, ) .
It is well known that for systems in variant un-

der a two-dimensional (discrete) translation group,
the Green's function can be expanded in a double
series of the form ' 4

G(r r&. ~) zlx u K'm-~ n' 'c de(2v)' e,

x e'"' " ' ' G(z, z'; k„m, m'; &u), (2. 23)

where k, is a two-dimensional (reduced) wave vec-
tor ranging over the first Brillouin zone of the net
reciprocal to the net spanned by (a„a,}denoted by
BZ. u, is the area of the unit mesh (i. e. , the
2-dimensional unit cell). The symbol m is de-
fined by Eq. {2.22), each individual sum in the
double summation indicated is thus a two-dimen-
sional sum (over all pairs of integers).

It is easily verified that the convolution theorem
for Fourier transforms can be extended to double
transforms such as Eq. (2. 23). In particular, we
can verify by direct substitution that (for periodic
systems) Eqs. (2. 8) reduce to the set of algebraic
equations

2

G(z, z', k„m, m'; &u)e, (z) =g, (z, z'; k„m, m', &o)e, (z') —(- 1)' g g, (z, z, ; k„m, m, ; ~)
202 ~ ~Zg

Sly

xa(z„z';v„m„m'; )-g(z, z,;i„,Pn, ) G(a„z';k, ;m„m';~)) .
Zg

Introducing a matrix notation, we shall denote the matrix, whose (m, m') element is equal to
G(z, z ', k„m, m'; &o) by G(z, z '; k, ; u) i. e. ,

LG(z, z*;k„.&o)Q-.-=G(z, z'; k, ,, m, m'; (o) ~

(2. 24)

(2. 28)

2. Ca1cuhation of Green's function

Using Eqs. (2. 23)-(2. 25), we can reduce Eqs. (2. 8) to a pair of matrix equations,

IG(z, z'; k, )e,(z) =g, (z, z'; k,)e,(z') —{-1)', g, (z, z„k,)G(z„z'; k,) —g, (z, z„.k,), G(z„z'; k, )

(2. 28)
Similarly, Eqs. (2. 8') reduce to '

G(z, z'; kp)86(z') =g~(z, z'; k~)e~(z) —(- 1) (G(z, zg', k ) g6(zq, z', kp) — G(z, zq', kp}g~(zq, z'; k )

(2. 28'}

Here, and in the following, we shall suppress the
argument ~ whenever this will not introduce ambi-
guities.

The characteristic singularity of the Green's
functions, Eq. (2. 4), can now be expressed by

lim —G(z) 0 ; kp) ——G(z, 0', k~) =
z I , (2. 2V)

where I is the unit matrix.
Finally, we note that in the present discussion

the function o.(r), P(r) entering the statement of
the homogenous boundary conditions have to be
periodic, with the unit mesh defined by {a&,azI.
Hence the boundary conditions, Eqs. (2. 3), now
reduce to

ag, (z, z'; k, ) +P —g, (z, z'; k, ) = 0,
when

z = 0 , (- 1)'z' 0 ,
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The matrix p is defined by a similar relation, and
furthermore the (m, m') element of (P) 'a is

(p) lo((m~ m&) e4 (Km-Km ~ ) Pdz', P(p)
(2. So)

It is now easily verified, either directly from Eqs.
(2. 26), (2. 26 ), and (2. 27), or by transforming
Eqs. (2. 15) and (2. 16), that

g, (z, z'; k, )o(+,g, (z, z'; k, ) P =0,
when,.'=O, (-1)'z-o. (2. 28)

In these equations the (m, m') element of the ma-
trix a

a(m — )= f n(p)e"" " "d«. (2. 29)

C(z, z, ; k,)8 81

g1 0, 0; kp + g2 0, 0; kp (2. s5)

Subst1tutlng Eq. (2. 35) 111'to Eq. (2. 34), we ot)'talll
the Fourier transform of Eq. (2. 21), specialized
for ordered junctions. Evidently, when the un-
coupled Green's functions satisfy Neumann condi-
tions at the interface (z = 0), then substitution of
Eqs. (2. 35) and (2. 26') into Eq. (2. 26) yields a
complete solution of that equation. A similar
solution is obtained for the case where the uncou-
pled Green's functions satisfy Dirichlet conditions,
when instead of Eq. (2. 35), Eq. (2. 36) is to be
used

G(z„ O-; k, )
81

= [g,(o', o; k, )]-',
a =0 ~1

1

xg, (0-, z, ; k, )c(O, O-; k, )
F1=0

(2. 31)

C(0, 0;k,)=- . . . [g,(z, z, ;k, )
Z1

-1
+g, (z, z, ;k,)] . (2. 36)

z=O=g1

III. TUNNELING CURRENT

A. Introduction

G(z„O', k, ) = [g,(O-, O; k,)]-',
', 81=0

xgl(0', z, ; kp)G (0, 0'; kp)
81=0

(2. 32)
These two equations can be combined with Eq.
(2. 27) to yield

h2
G(O, O; k, ) = [g,(O, O; k, )]-', g, (O-, z, ; k, )

1

- [g,(O, O;k, )] ', g,{0',z„k,) .
(2. 33)

Here we explicitly use the fact that the matrix
g(z, z'; k, ) is continuous at z =z'. Equation (2. 31)
can be further simplified. When the characteristic
singularity of the "uncoupled" Green's function
[Eq. (2. 27)] and the homogenous boundary condi-
tions [Eq. (2. 28)] are explicitly accounted for, we
obtain a result strikingly similar to Eq. (I2. 18),

G(o, o; k, ) =[[g,(0, o; k, )]-'+ [g,(o, o; k, )]-')-'

In this section we shall derive the general (for-
mal) expressions for the tunneling current (in an
abrupt junction) and deduce a more explicit result
for the ordered planar junction.

The formalism developed in Sec. III of I is
easily extended to the three-dimensional setting.
The ensemble-averaged current density can be
written

(Z(r)& ds=a(Z&=a 2, (Z(~)&

lim V'„- V„,

where

«(."(r, ', ) as), (3. 2)

(J(r)&= —
2

lim (V„-V„.)G'(r, t;r't') . (S. l)~ rt~r't '

Conservation of current implies that current across
the junction is given by

= g, (o, o; k, )[g,(0, o; k, )

+g, (o, o; k, )]-'g, (o, o; k, ) . (2. s4}

G'(r, t; r', t') = t((j)"(r', t') q(r, t))

B= ds is the area of the interface.

(s. 3)

The preceding analysis illustrated the technique
which yields the expressions for the several de-
rivatives of G(z, z', k,), evaluated at the interface,
required to solve Eqs. (2. 26). We shall not pur-
sue this point any further except to note that when
u —= 0 (for Neumann boundary conditions at B) '

Here it should be emphasized that when the junction
has planar geometry (subject to periodic boundary
conditions on the x and y dependence), (I)= B(Z&
is the constant (position independent) current
across any plane z = const, For any other geom-
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etry B is in fact a closed surface (separating the
inside from the outside electrode) and Eq. (3. 2) is
the familiar statement of current conservation.
We shall see that while relatively simple expres-
sions can be derived for (J((o)&, this is not the case
for (J(r)&.

B. Calculation of tunneling current and current density

Keldysh's formalism which is summarized in

Sec. IIB of I is, in fact, a three-dimensional the-
ory, and the transcription of the relevant equa-
tions in I is trivial. Thus we can write down di-
rectly the three-dimensional version of Eq. (I3.5):

G'(r, r'; (o) = g'(r, r'; (o) + d'r, [g'(r, r, ; (o)X'(r, )

x G'(r„r', (o)+g'(r, r, ; (o)3C'(r()G'(r„r', (o)],

(S.4)

In Eqs. (3.6)-(3.8), f is the Fermi function

f((o) = [1 —exp[(h(o —p)/ksT], (3. 9)

(3.11)

p, is the chemical-potential, P denotes the Cauchy
principal part of the integral, and p(r, r; (o) is the
spectral density function. 2~ To conclude this re-
view of pertinent relations we note that Eqs. (3. 5)
imply

G -G"=G'-G (S. 10)

Upon substituting Eq. (S.4) into Eq. (3. 3) and
using Eq. (3. 10), we can derive the three-dimen-
sional analogs to Eqs. (I3. 20) and (IS. 21), i. e. ,
when the general homogenous boundary conditions
Eq. (2. 3) are specialized by setting n—= 0, P—= 1,
we have

B(Z((o)& = — dsds, [g', (r, r(; (o)1' (r„r; (o)
eh

G""(r, r'; (o) = g""(r, r'; (o)
Bg((o)& = dsds, [g2(r, r(; (o)I' (r(, r; (o)

+ d3rlg""r, ri, N 'rl G""rl, rt;M

(3.4')
where K'(r, ) is defined by Eq. (2. 11). The Green's
functions entering Eq. (3.4) are the time Fourier
transforms of the functions

g '(r, t; r', t') = i(P'(r', (o')g(r, t)&0,

g (r, t; r't') = —i((t (r, t)g'(r', t')& ,o
(3. 5)

g'(r, r'; (o)

g (r, r'; (o)

g"(r, r'; (o)

= —2if((o)[- -', p(r, r'; (o)],
= 2i[1 —f((o)][- -', p(r, r'; (o)],

"p(r, r'; (o') d(o' i
(d —CO 27l' 2

(3. 6)

(3. 7)

g""(r, t; r', t') = v i([g(r, t), P'(r', t')].),e(+ t+ t),
g(r, t; r', t') = —i(T fP(r, t), P'(r', t')]), .
Here, the subscript 0 denotes that the averaging
of the products of field operators is to be taken
with respect to the unperturbed (equilibrium) den-
sity matrix. The full Green's functions G involve
instead of the equilibrium the full (nonequilibrium)
density matrix. The following relations between
the Fourier transforms of the several Green's
functions are useful:

—g, (r, r„(o)I"(r„r; (o)] .
Here, we defined the tensor

(3. i2)

0= gl rl r2& co +g2 rl r2, u F' r2, r'; a
B

+ [g ((r„r2, u) + g 2(r (, r2, (o)]P'(r 2, r '; (o)}dsa .
(3. 15)

Multiplying Eq. (3. 15) by P'(r, r(; (o) and integrat-
ing (with respect to the r((= B) over B, we find upon
substituting Eq. (2. 19) that when r and r'E B,

„r (...'; )=-Odd, ds, ~(, , ; )[di( „,; )
B

+g2(r„r2., (o)]P'(r2, r'; (o) . (3. 16)

I' "(r, r'; (o) = — V„V„G"(r,r, ; (o), v = a, r, a,
(3. ia)

and its (n, n, ) component

2 28

(3. i4)
where B/Bn is the derivative along the positive nor-
mal to the surface B.

Next, using the continuity of BG'(r: r', (o)/Bn'
when r, r' are on B, we find tha, t when r„r'(= B,

= [g'(r, r', (o)]'= [g'(r', r; (o)]* . (S. 8) Hence, substituting Eq. (3. 16) into Eq. (3. 12),

@2 2

B(Z((o)&=— ds ds, ds2 ds, [g', (r, r, ; (o) I' (r„r2, (o)g z(rs, rs: (o)P'(r~, r; (o)
e 2m B

-g, (r, r, ; (o)I' "(r„r,; (o)g,'(r„r, ; (o)I (r„r; (o)] (3. i 7)

A completely analogous derivation obtains when a—= 1, JB=—0; in this case, Eq. (2. 20) rather than Eq. (2. 19)
applies, and
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82 82—B(Z((u)) = [g', (r, r~; ur)]G'(r~, r2, &u) [g 2(r2, r, ; m)]G'(r3, r; &o)
e 2m n 8n28n3

82
]g,(, , ; )]G'( „,; ) ]g', ( „r,; )]G'( „; 9dsds, d ,ds, .. (3. 18)

We can now eliminate the uncoupled Green's functions ga in favor of the corresponding spectral densities
introduced in Eqs. (3.6)-(3.9). Thus Eq. (3. 17) reduces to

—B(A&a)) = [f,(to) -f2(&u)] ds ds, ds2ds3p, (r, r, ; &u)p2(r2, r~; ur) I'"(r~, r2, ur) I'"(r, r~; ~)
e

(3. 19)
while Eq. (3. 16) leads to the formally different, though numerically identical, result

8 2 8 2

ds ds~ ds2 ds~ [p, (r, r~; ~)] [p2(r» r» &u)]
n n] n2 n3

G" r» r» v G" r, r3 (3. 20)

Equations (3. 19) and (3. 20) represent the general extension into three dimensions of the one-dimensional
results stated in Eqs. (I3. 24) and (IS. 21). Before we proceed to discuss our results, we shall briefly
drive more explicit expressions for the ordered planar junction.

It should be emphasized that the relatively simple structure of Eqs. (S. 19) and (S. 20) arises from the
correspondingly simple structure of Eqs. (S. 11) and (3. 12). In either case the integration over all two di-
mensional (surface) variables, i. e. , of the normal component of (J(r; &o)) over the surface B, indicated in

Eq. (3. 2), is essential. The expression for (J(r; &u)), corresponding to Eq. (3. 11) is indicated a,s

—(J(r; (o))
e

(3. 21)

ds, ds2 V„g2 r rii ~ ~ rj r2' ~ ga r2, r; e -g2 r, ri' ~ 1 ri r2, co V~2 r2, r; +
g) m

+ V„g2(r, r, ; &u)I"(r~, r2, ar)gz(r2, r; ur)+ V,g2(r, r„&u)I"(r„r2., w)gz(r2, r; &u)

—g2(r, rs, ur)I'"(rs, r2; ur)V,g2(r2, r; ~) —gz(r, r„ar)I''(rs, r2; &u)V,g2(r2, r; ~)] .

The boundary conditions imposed on g,", the characteristic singularity of g",", and the continuity of g', as-
sure the consistency of Eq. (3.21) with Eqs. (3.4), (3. 11), and (3.16). In fact,

h2—(J„(y; ar)) = (- 1)~ ds, [ I'(r, r, ; &u)g,'(r„r; &o) —g', (r, r„ur)I (r„r; ur)
g g (i fi)

+ I"(r, r, ; &e)g', (r„r; &u) —g",(r, r, ; u) I"(r„r; ~)] . (3. 22)

Integrating Eq. (S. 22) with respect to r over the
interface B and using Eq. (3. 10) one obtains Eqs.
(3. 11) and (3. 12).

C. Current across ordered planar junction

(d((o)) = Q „' (J(k„m, m; (o))
m sz &c

GPj'8~' (Z(k„. (u)) .
Bz Q~

(3. 23)

We have already remarked several times that
Eqs. (3. 19) and (3. 20) are formal expressions of
the tunneling current. By this we meant that they
involved explicitly the full Green's function of the
junction, i. e. , the functions O'G'(r, r~; &u)/&n &n~

[or G"(r, r~; ur)] evaluated at the interface B. How-
ever, no explicit expression for these functions
was given for the general junction. In the following
we shall indicate how the notation developed in Sec.
II C 1, and the result stated by Eq. (2. 35), lead to
a more complete, explicit solution for the tunnel-
ing current across a planar ordered junction.

The position independent tunneling current can
be expanded in a (space) Fourier series

Here, a,*=(2v)'/a, is the area of the (first) Bril-
louin zone, Tr denotes the trace of the matrix to
the right. We have seen that in 4 space the inte-
grations over the interface B reduce to matrix
products. Thus, in particular, we obtain from
Eqs. (3. 11) and (3. 12)

(- 1)', B-(J(k„~))

= g,'(0, 0; k, ; &u) I' (0, 0; k„u)
—g„(0,0; k„&u)I"(0, 0; k„' u&) . (3. 24)

Here we defined, in analogy to Eq. (S. 14), the
matrices
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v=+, r, a.

hs 82

PPg Z 8 i
(S. 26)

The matrices g" and I" are continuous at z = z, .
We can now deduce, either directly from Eq. (S.4)
and its transpose, or by a Fourier transformation
of Eqs. (3. 16), that

(2m/a')r'=- I (g', +g', )I "(g', +g', )I", (S. 26)

where, from Eq. (2. 35) and the Dyson equations
Eq. (S.4'),

I ) 'a = (2 /k R)(g) '() +g) '()) & (3.27)

Thus, combining Eqs. (3. 24), (3.26), and (3.6)-
(3. 9), or by direct transformation of Eq. (3.19),
we find

If- (i(~)) = [f,(~) -f,(~)]
2m

x Tr ~ p, (0, 0; k, ; &0)I' "(0, 0; k, ; &o)pz1 ~ pv y a py

x(0, 0;k,;~}r'(0,0;k, ; ~) . (3.26)

In Eq. (3.28) we reinserted the variables that were
suppressed in Eqs. (3. 26) and (3. 27). It should be
emphasized that the matrix equation Eq. (S.2V) al-
lows an explicit representation of the tunneling
curx'ent strictly in terms of the uncoupled Green's
functions, i. e. , parameters of the semi-infinite
electrodes.

IV. DISCUSSION AND SUMMARY OF RESULTS

In the fourth publication of this series on tunnel-
ing we have extended the one-dimensional theory
developed in I to a full three-dimensional treat-
ment of the abrupt (tunneling) junction for a nonin-
teracting system. The versatility and soundness
of a tunneling theory based on Keldysh's (perturba-
tion) theory for nonequilibrium processes was
demonstrated by the relative ease with which the

one-dimensional results could be extended, while
new, significant insight into tunneling was achieved.

In Eq. (2. 11) we obtained a three-dimensional
expression for the pseudo Hamiltonian 3C'(r} (i.e. ,
the perturbing pseudopotential) whose matrix ele-
ments correspond to Bardeen'8 transition cux rent.

Two alternative, exact and general expressions of
the space average (over the interface of the abrupt
junction) of the (normal component) of the tunneling
current density in terms of the spectral densities
of the two electrodes were derived. The expres-
sion indicated in Eq. (S. 19) is the closest to that
commonly derived by means of the transfer Hamil-
tonian formalism. ' '0 Equations (3. 19) and (3.20)
were derived subject to the restriction that the un-
coupled Green's functions g, satisfy respectively
Neumann and Dirichlet boundary conditions at the
interface. However it can be shown that these ex-
pressions hold under the slightly more general
conditions that, respectively, PwO and Q. WO. The
proof is a simple extension of the one dimensional
argument px'esented in III, and establishes also the
equivalence of the many-body formalism for the
noninteracting system with the more elementary
kinetic treatment.

In spite of the apparent similarity between Eq.
(3.19}and the commonly used expression for the
tunneling current, the two differ in significant re-
spects. In the common expression for the current

()2 (»= J q, (2 )'[i( )-i(ro)]la'(ru)l 'p, ( ) p( ),

(4. 1)
the quantity p, (u&} is the position independ-ent bulk
energy density of states characteristic of the 5th
electrode; [A"(&0)I' is the square of the "matrix
element" of the transfer (pseudo) Hamiltonian. In
contrast, in the simplest model, i. e. , for the case
of a planar junction which is invariant under trans-
lation parallel to the plane of the junction, Eq.
(3. 19) reduces to

()—(i&= —(2m)'[f( )-y( )]Jjjjd d*, d, ds, [ ((( ,0o(p, —p); )((' (o, o;fp-p); )]
w &)0 8

x p, (O, O, (p —p, };~}p,(0, 0, (p, —p,};~),
where

(4. 2)

ha 2 82 dkA'(0, 0; p; &e)= I "(0,0; p; co)= — G"(z, z„p;up) i, , =
( „}',e'" '[g",(0, 0;k, ; ~)+g",(0, 0;k, ;&a)] '.

(4. 3)
In Eqs. (4. 1) and (4. 2), a factor of 2 was included to account for the sum over spina. The right-hand side
of Eq. (4. 2) can be simplified considerably by means of a Fourier transform with respect to the variables
Pg:

where



526 T. E. FEUCHTWANG 13

(n) dk
p(0, 0; (p& —p2); (())= e' )) ~

& 2' p(0, 0; k, ; (())
aoO

(4. 6)

(4. 6)

and the diagonal term of the spectral density p(z, z; 0; &u) is proportional to the local density of states, i.e. ,
the usual density of states is given by

1 " 1
p(z, z; 0; (d) dz = p(~) = — dz p p(z, z; k, ; (d) .

Similarly,

A"(0 0 Q —p ) &u)= ' e' (' "& '2'A'(0 0 k &o) .
(2v)' pt (4. 7)

We see that tunneling current energy density is not
simply proportional to the product of the energy
densities of states of the two electrodes; instead it
involves an integral over the two-dimensional k
space of the product of the two-dimensional Fourier
transforms of the spectral deagities evaluated at
the interface and weighted by an appropriate k-
(and energy) dependent matrix element. Here we
emphasize that the matrix element is in fact a defi-
nite, simple function of the uncoupled Green's
functions given by Eq. (4. 3).

The physical interpretation of Eq. (4. 4) is quite
obvious: If the junction is invariant under transla-
tions in the plane of the junction, the problem is
separable. The k integral is simply a sum over
the separation constant of the effective "one-di-
mensional" tunneling current densities given by
Eq. (I4. 4). The equivalence of Eqs. (4. 3) and
(4. 4) with the result obtained by an elementary
treatment of the noninteractiag system has been
demonstrated in ID. The relatively simple de-
pendence of the tunneling current energy density
on spectral densities indicated in Eqs. (4. 3)-(4.6)
applies only for strictly separaMe problems. Thus,
any attempt to account for the periodic potential in
an ordered planar junction invades the replace-
ment of Eqs. (4. 3) and (4. 4) by Eqs. (3. 27) and
(3. 28). These equations involve the spectral den-

sities in a much more complicated way than Eqs.
(4. 3)-(4. 6). In fact, except for the calculational
advantage presented by Eq. (3. 27) as compared to
Eq. (2. 19), one might just as well consider the
generally valid coordinate representation, given
by Eqs. (2. 19) and (S. 19). Thus, for the general
junction as well as for the ordered planar junc-
tion, the tunneling current energy density in-
volves an average of the spectral densities over the
interface with respect to "generalized matrix ele-
ments" which in fact couple the two densities. This
suggests that the determination of (local) densities
of states, or rather spectral densities averaged
over the interface, from experimental data on tun-
neling junction may require considerably more ef-
fort than has been hitherto assumed. This point is
implicit in a calculation of the field emitted current
from a planar electrode by Caroli et al. In this
paper the authors outline an extension of their one-
dimensional tunneling formalism to three dimen-
sions and they quote, without derivation, an ex-
pression which is essentially equivalent to Eq.
(3. 20)."

In conclusion, we wish to note that Eq. (4. 4)
bears a considerable formal similarity to Appel-
baum and Brinkman's expression for the tunneling
current within their version of the transfer Hamil-
tonian formalism which we rewrite"

B (J)=f {k (k )If( )—-f, ( )]f k
', E]T(k„),;k, ; )]' (k„kk, ; )P,((„k,; )) (4. 8)

Evidently Appelbaum and Brinkman assume each
electrode to be invariant under translation in the
direction normal to the interface, i.e. , their
spectral density function depend only on the co-
ordinate difference z —z~. If furthermore the ma-
trix elements of the (pseudo) tunneling Hamiltonian
T are independent of k, aad l„or else replaced by
their average over k, and l„ i. e. , if we can write

T(h„ l, ; k„. (0) = T(k„.~), (4. 9)

then the sums over k„/, reduce to the single term

F(k, ; (o)p, (z —z„k„(o)
i .. p, (z —z„k,; (0)i, ,

(4. 10)
Equations (4. 8)-(4. 10) are clearly identical to Eq.
(4. 4) in the case where the electrodes are invari-
ant under translation along the direction normal to
the interface. Admittedly the assumption of trans-
lational invariance along the z direction is incon-
sistent with existence of an interface and the semi-
infinite nature of the electrodes. Furthermore, it
is difficult to rationalize the imposition of Eq. (4.9)
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on the transfer Hamiltonian defined by Appelbaum
and Brn&man. However, our analysis which iden-
tified the effective tunneling matrix element with
the right-hand side of Eq. (4. 3) clearly demon-
strates A" to be a transfer matrix which for the
abrupt junction is to be evaluated at the interface.
That is, formally we could indeed replace J]"by
its average Fourier transform with respect to z
and z,. Whereas the preceding discussion sheds

some light on the relation between our results and
those based on one of the current versions of the
transfer Hamiltonian formalism, a considerably
more satisfying understanding of the relation be-
tween our theory and the transfer Hamiltonian
formalism is obtained by comparing an alternative
version of Appelbaum and Brinkman's theory to
ours. Rewriting Appelbaum and Brinkman's ex-
pression in our notation we have'"

OC) 82
B{J) = '——[f1((o)-f2((o)] ds ds1 P1(r, r1, (o)

&
'P2(r1, r; (o) + [P1(r, r1; (o)]P2(r1, r; (o)28 ~ 2'K 8 8~18~ 8Z882

IP (—;)I, [P (;)I,- [P (," )[—[P,(, ; ))) . (4. 11)

This expression agrees with our theory when it is linearized in the pseudo Hamiltonian 3C . That is, sub-
stituting into Eq. (S.2) the Iinearized approximation of Eq. (3.4} and of its transpose, we obtain for the
planar junction

h 5' "d(o ( s
B{Z)—= — —

~

lim —G'(r, r'; (o) — lim, G'{r, r'; (o) ds
OPP

j
I

1 tI

a

~

~

«I

~
1 t

~
~I

8
2

~
~

~
I It

~
~

~
I i

~
It

8 ~ 8 ~ 8——[g",(r, r, ; (o)] [g', (r„r; (o)]+ [g,(r, r, ; (o)]g',(r„r; (o)

8 8 82
+ +

82
[g2(r, r1; (o)] [g1(r„r; (o)]+ [g2(r, r„(o)]g',(r„r; (o) —g1(r, r„(o) g2(r„r; (o)

8 ~ 8 r 8 ++, [g1(r 1 }]—, I:g2{r1,r; (o}]-gl(r, r1, (o), , gs(r„r; (o)88' 88 8 Zg

~
P [Pl(, „. )]P[Pi( „; )[)PPPP, .
8gy 88 (4. 12)

Using Eqs. (S.6)-(3.10) the right-hand side of Eq.
(4. 12) reduces to Eq. (4. 11). It should be noted
that the difference between Eqs. (3. 2) and the first
equation of Eq. (4. 12} is only apparent: If the cor-
rect correlation function G' is used, then the limits

~«)pg

are in any case simply r-r, however, the par-
ticular limit chosen simplifies the algebra of re-
ducing Eq. (4. 12) to Eq. (4. 11). The other point
'to Ilote ls that 111 Eqs. {4.11) aIld (4. 12) 110 11se was
made of any particular boundary conditions im-
posed on the uncoupled Green's functions at the in-
terface. Appelbaum and Brinkman chose their
functions to satisfy a pair of left and right prob-
lems, which are each defined over all space.
Hence they imposed on their Green's functions
"outgoing wave" boundary conditions at infinity. 32

Evidently these functions cannot satisfy any homo-
genous boundary conditions at the interface. In
fact, Eq. (4. 11) is not valid when the "uncoupled"
Green's functions are subject to homogenous bound-
ary conditions at the interface, for then the right
side vanishes identically. In order to understand
this conclusion one has to recall that the boundary

conditions imposed on the uncoupled Green's func-
tions enter our theory explicitly only when Eq.
(S.2) is transformed into Eq. (3. 11), or an equiv-
alent expression when Dirichlet conditions are im-
posed at the interface. That is, Eqs. (3.2)-(3.10)
are valid regardless of the detailed choice of the
uncoupled Green's functions. ' This choice is
however crucial in determining the final expres-
sion of the tunneling current in terms of the spec-
tral densities. It is clear, upon further examina-
tion of the equations, that unless homogenous
boundary conditions are imposed on the uncoupled
Green's functions at the interface, the algebra be-
comes completely unmanageable.

Our somewhat lengthy discussion clearly con-
firms the original conjecture that the transfer
Hamiltonian formalism is only valid to first order
in the matrix elements of the transfer (pseudo)
Hamiltonian. Equation (4. 11) is evidently a sat-
isfactory approximation if and only if the correc-
tion represented by the surface integral on the
right-hand side of Eq. (2. 8) is small. This in
turn will be the case when both gn(r, r„.(o} and
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g„g6(r, r~; &o) are negligible for r, (= B .One case
where this occurs is when the "interface" is lo-
cated inside a thick barrier such that each "elec-
trode" includes a thick region in which the single-
particle eigenfunctions of the uncoupled Hamilto-
nian 3C, exhibit a roughly exponential decay in the
coordinate normal to the interface. It is in this
sense that the transfer Hamiltonian formalism
represents (like the classical WKB approximation)
a "thick-barrier approximation. " This observation
has already been made by Duke in his explicit com-
parison of the formalism with the kinetic theory
for a thick barrier. ' The same conclusion was
also reached by Griffin and Demers from their
calculation of quasiparticle tunneling in a normal
metal- insulator-superconducting junction. ' Since
the barrier width is inherently dependent on the
applied external bias potential V we may conclude
that the transfer Hamiltonian formalism is also a
"small (bias) potential approximation. " The thick
barrier is certainly a sufficient, while a small po-
tential is a necessary condition for the applicability
of the transfer Harniltonian. However, the precise
conditions under which Eq. (4. 11) is a satisfactory
approximation are difficult to assess, primarily
since K' does not involve a small parameter; on
the contrary, it is a singular operator.

A final point that should be made concerns Eq.
(2. 34). This equation represents the plane-wave
expansion of the surface Green's function intro-
duced by Garcia-Moliner and Rubio. ' Isolated
values of co for which

v,'~, ( -v((I)v(, '; (= ", ~( — '). (~((

Applying the divergence theorem over a volume D
bounded by a surface S we find tha, t

V„gr, l;(d ds+ 2 co- Vl
S D

xg(r, r'; ur) d'r=, en(r') . (A2)

Consider now D= D, to contain the point r', on the
surface S, and bounded by two (finite) surfaces
S', S separated by an infinitesimal distance &

along their normal. If, as we shall show, the
volume integral on the left-hand side of Eq. (A2)
is 0(e), then

lim V„g r, r'co ' ds
S ~S S+-S

APPENDIX: DISCONTINUITY OF UNCOUPLED
GREEN'S FUNCTIONS gq AT BOUNDARY (INTERFACE) B

In this appendix we shall examine the character-
istic singularity of the Green's function for the
(single-particle) Schrodinger equation and the con-
sequent discontinuity imposed on this function
across a boundary surface on which it has to sat-
isfy homogenous boundary conditions. These are
obvious generalizations of the corresponding one-
dimensional results quoted in I. The defining
equation for the Green's function can be written

det[g, (0, 0; k, ; ~) + g, (0, 0; k, ; ~)j = 0, (4. 13)

g=g +6
= lim V„g r, r'~ ds =

6 0 $ g=t ~6
(A3)

and which do not fall into one of the several branch-
cuts (in the (d-plane) for either of the uncoupled
Green's functions, g, (0, 0;k, ; ar), identify the "in-
terfacial" states. That is, eigenstates of the junc-
tion which are localized at the interface, since
they do not fall into one of the allowed bands of the
electrodes. Thus we may conclude from Eqs.
(3. 27) and (3.28) that, at least for the ordered
junction, our theory explicitly accounts for the
contribution of interfacial states to the tunneling
current. This conclusion is in agreement with the
one-dimensional result, and thus, while gratify-
ing, is not really surprising.

However, an important consequence of the above
is that, in general, one may not assume the trans-
fer matrix I'"(0, 0; k, ; u) to have any particular,
simple k, dependence. In particular, one cannot
assert it to be sharply peaked at k, =0, as is corn-
monly suggested for the matrix element or trans-
mission coefficient of the transfer Hamiltonian
formalism on the basis of the WKB approximation
applied to effective, one-dimensional models of
tunneling junctions.

where z is the coordinate along the positive nor-
mal to S.

We can therefore conclude that the normal de-
rivative of g is discontinuous across S by the
amount

'en (A4)

Thus we have established the validity of Eq. (2. 4).
To finish our proof we note that for bounded po-
tentials

(d- Vx gr, r';~ d'r
D8

, ( v.„)) (v(r, '; ((d'r.
D8

(A5)

The only possibly significant contribution to the
integral on the right-hand side arises from the
neighborhood of r' where we can bound g by
) r —r'I, and the integral is thus O(e).

Turning to the discontinuity of g, at the boundary,
we recall Green's theorem: for r c D
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[v, gz(» rt' (d)f(11}(d) gs(r rlt td)
2m

&& v„~f(r„ td)] ds, = a(r; td)

is a solution of

[&d —X(r),]h(r; td) = 0,
which satisfies on B, the boundary conditions

t'8 8
lt(r; td) =f(r' td)

~

—f(r td) = —f(r' ~)
&~n

' en

(A6)

(A6)

n ('r) e
xg, (r, r„td), , + f(r, ; &d) ds, .

P(J'J

Thus we conclude that if p(r) s 0 on fls, then

n(r) slim, , + —g, (r, r„ td)
r 86 (in) &+~ n z

@2 B 8

(A10)

(All)

n(r, )+P(r, ) g, (r, r, ; &d)=0, ra D, , (A9)

then we can eliminate V„,g from the integral in
Eq. (A6) and obtain

provided that f satisfies Eq. (AV). If, in particular,
gz and f satisfy the same boundary conditions except
at the interface B on which g~ is supposed to satisfy
the homogenous boundary conditions

This proves Eq. (2. 6). The proof of the remaining
discontinuity conditions, Eqs. (2. 6 ), (2. 6), and
(2. 6'), is similar, and will be omitted. We note
that Eq. (All) could be deduced directly from Eqs.
(A4) and (A9), for

lim g, (r, r'; &d) - lim g, (r, r'; &d)~;.,s = 0 .
r 3g (in ) r~8 g (ou t &

(Al2)
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Note that we imposed on g" the boundary conditions

ggF' rf +) ppg 0 gg(r r &) z'

Hence, the characteristic singularity of the Green's
function. s implies that

—gp" (r, r~', .)) pgp = (-1) & (rp —r~&)
P~ -8p(out)

8
gp' (1 r( q (d) g (&p ~

p Bg(out)
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