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Calculations of the Gibbs free energy of metallic hydrogen were made by the four most common methods and
shown to be in good agreement with each other. In addition it is shown that the free-electron correlation
energy commonly used in calculations on metallic hydrogen is approximately four times larger than the spread
over the Gibbs free energy as calculated by the four methods. Because the free-electron correlation energy
expression may be in error by a factor of 2 or 3,it represents the largest source of uncertainty currently facing

an ab initio treatment of the metallic hydrogen phase.

A crucial feature of the equation of state of
hydrogen in the 1-20-Mbar range is the correct
positioning of the molecular-to-metallic phase
transition, which is expected to involve a 25%
volume change.! While a proper calculation of the
phase transition requires accurate equations of
state for both molecular and metal phases, we
have restricted this study to the calculation of
the properties (energy, pressure, and Gibbs free
energy) of the metal phase.

There are four methods by which the equation of
state of hydrogen (and other metals) are commonly
computed: electron-band methods such as the aug-
mented plane wave (APW); free-electron pertur-
bation theory to third order (PERT); the linear
combination of atomic orbitals (LCAO); and the
Wigner-Seitz (WS) method.? At the outset we may
ask ourselves, “which is the best method for cal-
culating the equation of state” and “how much dif-
ference does it make which method is used ?”
Inasmuch as none of the theoretical methods is
exact, and each method is an approximation, a
certain amount of subjectivity automatically enters
into a discussion of the first question. However,
we can answer the second question quantitatively
(despite the fact that no experimental data exist)
by comparing calculations for all four methods.
This paper presents such a numerical comparison
for the case of fcc metallic hydrogen. The numbers
presented come from the published literature as
well as from our own calculations using the first
three methods.

To summarize, we found that the pressure dif-
ferences between the highest and lowest values,
as computed by the four methods, differed by an
average of 0.35 Mbar between 0 and 10 Mbar.

(We believe that this represents good agreement
between methods.) The average spread in Gibbs
free energy over this pressure range is 0.03 Ry;
however, the free-energy contribution resulting
from the inclusion of electronic correlation energy
amounts to 0.13 Ry, or over four times the un-
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certainty between the methods.

The calculations of energy, pressure, and Gibbs
free energy by the four methods cited above are
listed in Tables I-III under their corresponding
headings. To simplify the problem of comparing
the four methods, we felt the comparison should
be made at the level of the Hartree-Fock Hamil-
tonian (i.e., we neglected correlation effects).
Thus, the figures tabulated in columns 2-5 do not
include contributions from electron correlation
(or from zero point motion). Column 6 in each
table (labeled, respectively, AE,AP AG) is the
total spread of the calculated property over the
four models considered. It is the difference be-
tween the highest and lowest values in columns
2-5. Column 7 is an estimate of the zero-point
contributions by the expression for the zero-
point energy

E,=0.06750"1/2 Ry, (1)

where v is the atomic volume in a.u. This expres-
sion, cited by Trubitsyn,® is based on the work

of Kopyshev.? Results obtained with this model are
in very good agreement with the metallic hydro-
gen Debye temperatures calculated by Neece et al.,®
who used the well-known electrostatic model of
Fuchs. In spite of possible inaccuracies, the
model suffices to approximate the magnitude of

the zero-point properties. The contributions re-
sulting from electron correlation (column 8) are
based on the free-electron gas formula

E qope = —0.1303 +0.0495 Inv, @)

where £173=1/p, p is the electron density, and

7, is an electron sphere radius. This expression,
used by Neece et al., is an analytic fit at 0 K to
the detailed numerical work of Graboske and

De Witt,® who evaluated the generalized ring term
for arbitrary density and temperature. Near zero
temperature and high density, the quantum-me-
chanical ring term is the leading term after the
first-order exchange term, and thus is the major
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TABLE I. Model comparisons (energy is in Ry).

1% PERT

(cm®/mol H) APW  (3rd order) LCAO ws AE E, E.opr

1.855 —0.968 —0.943 —0.932 -0.970 —0.038 0.015 —0.104
—(0.029)2  —(0.950) °

1.0 —0.926 -0.915 —0.901 —0.933  —0.031 0.020 —0.114
—(0.024) —(0.902)

0.9 -0.910 ~0.901 —0.886 —0.918  —0.032 0.021 —0.116
—(0.0235)

0.8 —0.887 —0.881 -0.865 —0.898 —0.033 0.023 —0.118
—(0.023)

0.7 —0.856 —0.852 —0.836 —0.867 —0.031 0.024 —0.120
-(0.022)

0.6 —0.810 —0.809 —0.793 —0.823 —0.030 0.026 —0.123
-(0.021)

0.5 —0.742 —0.745 —0.729 —0.758  —0.029 0.029 —0.126
—(0.020)

2 Third-order contribution.
b Reference 11.

contribution to the correlation energy of the
free-electron gas. This expression differs by
less than 10% from the more common Noziéres-
Pines’ interpolation formula

E (6:r=-0.115+0.031 In7,.

Turning now to the four methods mentioned
earlier, we first calculated the properties of
metallic hydrogen using the self-consistent APW
method, with the Xa exchange approximation,
where o is equal to 2. As noted earlier, correla-
tion effects were excluded from the results (col-
umns 2-5). Another set of self-consistent APW
calculations (not shown in the tables) was made
using Eq. (2) as a local correlation energy ex-
pression in which p=p(7). In this approximation

the total correlation energy is written

[ ecmtrlptn) a,

where €(7)=-0.1303 +0.0495 In7, [as in Eq. (2)],
2mr3=1/p(r), and p(r) is the local charge density
in the APW calculation. The variational principle
is then applied to solving the eigenvalue problem.
The computed properties differed by no more
than 1%, the same as if the free-electron correla-
tion had been added directly to the “uncorrelated”
APW calculations by using the free-electron ex-
pression [Eq. (2)], with p=1/v.

The results for the Wigner-Seitz method, also
done self-consistently, were taken from the work
of Neece et al. They used a =% in their calcula-

®)

TABLE II. Model comparisons (pressure is in Mbar).

v PERT

(cm?/mol H) APW  (3rd order) LCAO wSs AP P, Peonr

1.855 +0.067 —0.115 -0.068  +0.112  0.23  0.05 —0.12
(0.059)

1.0 1.85 1.58 1.63 171 0.27  0.13  —0.22
(0.094)

0.9 2.52 2.22 2.27 2.35 0.30 0.16 —0.24
(0.10)

0.8 3.49 3.16 3.21 3.28 0.33  0.19  -0.27
©.11)

0.7 4.93 4.56 4.61 4.65 0.37 0.23 031
0.12)

0.6 7.20 6.76 6.81 6.89 044  0.29  —0.36
(0.14)

0.5 11.02 10.49 10.54 10.56 0.53  0.38  -043
(0.16)

2 Third-order contribution.
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TABLE III. Model comparisons (Gibbs free energy is in Ry).

v PERT

(cm?/mol H) APW  (3rd order) LCAO ws aG G, Georr

1.855 —0.958 —0.959 —0.942  -0.953  0.017 0.022 —0.120
—(0.021) 2

1.0 —-0.785 —0.795 -0.777  -0.803  0.026 0.030 —0.131
—(0.017)

0.9 —0.737 —0.748 -0.730  -0.757  0.027 0.032  —0.132
—(0.017)

0.8 —0.675 —0.689 —0.670  —0.698  0.028 0.034 —0.134
—(0.016)

0.7 —0.593 —0.609 -0.595 —-0.619 0.026 0.036 —0.137
—(0.015)

0.6 —0.481 —0.499 -0.482  -0.508  0.027 0.039 —0.139
—(0.0146)

0.5 —0.322 —0.356 —-0.327 —-0.356  0.034 0.043 —0.142
—(0.014)

2 Third-order correction.

tions and also included correlation energy. The
correlation energy was subtracted out of their
calculations by using Eq. (2), with a constant p.

In so doing, we were guided by the insight acquired
from the “correlated” APW calculations. These
calculations, withthe correlation energy subtracted
out, are shown in the tables.

The calculations for the free-electron perturba-
tion theory also omit the electron correlation and
were done to third order using Hammerberg and
Ashcroft’s method.® They discuss perturbation
theory in some detail and show numerically that
the sum of the fourth-order terms in hydrogen
are negligible. The third-order terms shown in
the lower parentheses are not negligible although
they have been omitted by most of the previous
workers who used this model to compute the me-
tallic hydrogen phase transition.

The LCAO calculations were done with a com-
puter program coded at LLL, but they were based
on a method first proposed by Abrikosov® and
more recently employed by Harris and co-work-
ers.'® As first suggested by Abrikosov, the Bloch
wave function for the kth electron is written

b @ =e*TY o(F-R,), @)

where the sum is over all atoms in neighboring
lattice sites located at R,, ¢(r) is a single Slater-
type orbital of the form ¢™*”, and « is varied to
minimize the energy and satisfy the variational
principle. Note that the LCAO, WS, and APW
calculations are all self-consistent. The wave
function of Eq. (4) was used in all the calculations
shown in the LCAO column. This is an exact
minimal-basis-set Hartree-Fock calculation. It
treats the exchange energy exactly and does not

employ a local free-electron approximation as did
the previous three models. However, inspection
of the results does show that the computed ex-
change is very close to that which would be com-
puted by a free-electron local exchange potential
in which @ =%. The terms in parentheses in the
LCAO column in Table I are from (or interpolated
from) the work of Ramaker ef al.,'* who included
a sum over reciprocal-lattice vectors in their
wave function.

Ramaker ef al. wrote their wave function as

W@ = 3 CE R)e ™03 6(F-R), (5)
K n=1

where & is restricted to the first Brillouin zone,
Kisa reciprocal-lattice vector, and ¢(r) is a
single Slater-type orbital. The coefficients C(K, K)
are determined as functions of K. Elimination of
the sum over K reduces (5) to (4). Tables I and II
show that above 1 Mbar the inclusion of the sum
over K leads to no further lowering of the energy.
Unfortunately, Ramaker did not compute metallic
pressures. Correlation energy cannot presently
be included in the LCAO method in any tractable
fashion consistent with this method.

The results in the tables show clearly that the
correlation contributions to the energy and Gibbs
free energy are about four times larger than dif-
ferences in total energy between the four models.
They are of the same order as the differences
in the case of pressure. Thus, the accuracy of
this approximation will have considerable effect
on the calculation of the metallic transition. Local
free-electron correlation, potential-energy ex-
pressions [such as Eq. (3)] have been used in
atomic calculations in the same spirit as local
free-electron exchange; however, the results
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have not been as good. The correlation energy ap-
pears to be a much more sensitive function of the
total wave function than is exchange energy. Tong
and Sham'? used the free-electron prescription
and their computed correlation energies were
twice as large as those estimated by Clementi'3
from experimental energies. Similar results have
been obtained by Kim and Gordon'* who found that
the free-electron expression overestimated the
correlation energy by a factor of 3 in small mole-
cules (such as He, Li, and Li*) and by a factor of
2 for argon. Monkhorst and Oddershede'® have
used the random-phase approximation to calculate
the correlation energy in metallic hydrogen using
the Hartree-Fock Bloch functions of Harris and
co-workers. They arrived at a correlation energy
approximately three-fourths as large as that cal-
culated from free-electron theory.

To illustrate the effect of the uncertainty in
correlation energy on the molecular-to-metallic
transition pressure, we have made use of the
molecular-phase results of Etters et al.'® (ob-
tained with the spherically averaged potential).
Taking the APW result for the metal, including
the full free-electron correlation and zero-point
energies, we calculate a transition pressure of
1.9 Mbar. Inclusion of only half of the correlation
energy leads to an increase in the predicted pres-
sure to 3.5 Mbar. Calculations made with other

molecular-phase equations of state' lead to simi-
lar results. These findings allow us to conclude
that if the free-electron expression does overes-
timate the correlation energy by a factor of 2,
then previous estimates of the transition pressure
will be nearly a factor of 2 too small, These
estimates do not include the uncertainties in the
molecular-phase equation of state, which at the
present time are at least as great.

For the sake of completeness, a comment
should be made on the structural dependence of
the energy. The energy differences found by
Brovman et al.'” in their PERT calculations for
various lattice types, in particular the 0.018-Ry
difference between the most stable anisotropic
structure and the least stable cubic structure, is
not only considerably smaller than the correlation
energy, but also less than the spread between the
four models considered here.

In summary, free-electron formulas for the cor-
relation energy are approximately four times
larger than the spread in total Gibbs free energies
of the four most common models, and are also
considerably larger than structural energy differ-
ences. Because expressions commonly used for
this term may be in error by a factor of 2 or 3,
it represents the largest source of uncertainty
facing current ab initio treatments of the metallic
phase of hydrogen.

*Work performed under the auspices of the U. S. Energy
Research and Development Administration, under con-
tract No. W-7405-Eng-48.
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