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Role of multi-ion interactions in the stacking-fault energies of transition metals
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The theory of multi-ion interactions is applied to calculations of the stacking-fault energies of transition
metals. It is found that observed trends in the stabilities of close-packed transition metals can be explained on
the basis of a simple model in which resonant scattering, three-ion interactions dominate.

I. INTRODUCTION

The results of recent calculations of stacking-
fault energies and comparisons with experimental
data indicate that a pseudopotential expansion
carried to second order in the energy is adequate
for the treatment of nontransition metals. ' As
Heine and Weaire had noted earlier, it was to be
expected that a second-order theory would be suc-
cessful in this particular application because the
pseudopotential matrix elements involved in the
perturbation expansion are small.

For transition metals, on the other hand, it is
unlikely that such a simple theory will suffice be-
cause the resonant scattering of d electrons by
transition-metal ions leads to large matrix ele-
ments and, hence, to slower convergence of the
perturbation expansion. Indeed, even for the
noble metals, where one might hope that the ef-
fects of resonant scattering are not too pronounced,
calculated stacking-fault energies based on a sec-
ond-order approximation are in poor agreement
with experimental results. '~ It seems clear,
therefore, that a successful theory of stacking-
fault energies in transition metals, and perhaps
the noble metals as well, must include the effects
of higher-order terms in the perturbation expan-
sion. The purpose of the work reported here
was to see if an extension to third order will ade-
quately account for observed trends in the stack-
ing-fault energies and relative stabil. ities of close-
packed transition metals.

In analogy with Harrison's formulation of the
second-order theory' of stacking-fault energies,
one might attempt a third-order calculation by
making use of the formal expression~ for the third-
order energy in terms of the plane-wave matrix
elements of the pseudopotential and the structure
factors for the perfect and faulted crystal. It is
well known, however, that calculations of third-
order energies by this method are extremely
complex, even for perfect nontransition-metal
crystals. ' Since the prospect of extending such
a calculation to stacking faults with the additional
complication of resonant scattering is indeed for-
midable, for the investigation reported here we

choose an alternative, approximate approach
based on the theory of multi-ion interactions. '

In short, our approach is based on Harrison's
observation that the third-order term in the per-
turbation expansion of the total energy can be
written as a sum of three-ion interaction energies.
The third-order term in the expression for the
stacking-fault energy is therefore the difference
between the three-ion sum for the faulted crystal
and the corresponding sum for the perfect crystal.
By truncating these sums, i. e. , by keeping only
those three-ion interactions judged to be dominant
in the determination of the stacking-fault energy,
we obtain an approximation to the third-order en-
ergy.

In the text of this paper we will first describe
in more detail the method for calculating the
third-order energy. An approximate method for
estimating the second-order energy will then be
derived, followed by a discussion of the electron-
ion scattering model used in numerical computa-
tions. The results of our study, which are pre-
sented in the concluding section, show that for most
transition metals it is the three-ion terms, not
pairwise interactions, that comprise the dominant
contribution to the stacking-f ault energy. Al-
though quantitative agreement with experimental
data on stacking-fault energies is only fair, the
calculations do adequately explain observed trends
in the relative stabilities of close-packed struc-
tures for the first three transition-metal series.

II. CALCULATION OF THE THREE ION ENERGY

Our starting point is the fol.lowing general ex-
pression for the three-ion contribution to the
stacking-f ault energy:

—u, (XKf, iP, , P, )],

where R, and R, are ion positions in the faulted
(F) and perfect (P) crystals, A is the fault area,
and &3 is the three-ion interaction energy defined
in Ref. 10. Since U, already includes a sum over
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cyclic permutations of ionpositions (i.e. , a sum of
identical three-ion diagrams) only distinct diagrams
are to be included in the sums on i, j, and k. Also,
terms in which all three ion positions lie on the
same side of the fault plane do not contribute be-
cause in such cases the three-ion energies are the
same in the faulted and perfect crystals. Thus the
only diagrams that need be considered are those
distinct diagrams where two of the position vectors
terminate on opposite sides of the fault plane. We
therefore choose R; to be the position of an ion on
one side of the fault plane and R, a position on the
opposite side, with 8~ on either side.

Figure 1 is an example of a pair of three ion con-
figurations that give a nonvanishing contribution in
the calculation of the intrinsic fault energy in an fcc
crystal. Here R& and R& are the same in the per-
fect and faulted structures while R~ terminates at
the positions indicated by R~ and R~ in the perfect
and faulted crystals, respectively.

For this particular geometrical arrangement, it
is easily seen that for each ion position Rz below
the fault plane there are three equivalent diagrams
corresponding to the three nearest-neighbor posi-
tions of R,. Also, there are three more equivalent
diagrams in the mirror-image configuration in
which R~ and R& terminate above the plane while R,
lies below. Thus, assuming that the energy dif-
ference in Eg. (1) is the same for all R~ below the
fault plane, we obtain, for that part of the stacking
fault energy due to the interactions illustrated in
Fig. 1,

~r =(1/2 )(«"'"-«""),
where &u is the area per ion and l.'" "and a" are
the energies corresponding to the particular dia-
grams considered here. Similar arguments can,

oult plane

FIG. 1. Typical pair of three-ion interactions that con-
tribute to the intrinsic stacking-fault energy for face-

~P ~J"centered-cubic crystals. Here R~ and R~ are ion posi-
tions in the perfect (P) and faulted (~) crystals, while R& and
R& are the same in both cases.

fault plane

FIG. 2. Schematic illustration of three-ion interac-
tions. Terms included in the truncated stacking-fault
energy sum were those for which either a & 30 or R
&20 a.u.

of course, be applied to other three-ion configura-
tions thus leading to the formula

where N, is the number of equivalent diagrams of
the ith geometry in the faulted crystal. '0,"(i) is
the corresponding energy, the N, and 'U f (i) are the
diagram weights and energies for the perfect fcc
structure, and the sum is over all nonequivalent
three-ion diagrams.

In the applications discussed in Sec. V, the only
diagrams considered were those for which at least
two of the three ions were nearest neighbors and
for which the third ion was in either the adjacent
or next-nearest plane, as illustrated in Fig. 2.
In addition, the sums over diagrams were limited
to terms for which either @ &30' or R& 20 a.u.
(see Fig. 2}. While the truncation of the sums at
these particular values of n and R is somewhat
arbitrary, it can be seen from the expression for
p, given in Ref. 10 that the three-ion energy is in-
versely proportional to the product of the three in-
terior path lengths times the roundtrip distance,
thus causing z, to fall off rather rapidly with in-
creasing R. Also, because the resonant scattering
terms in z, contain products of the I egendre poly-
nomials Pz(cos6, }, where 9; is the scattering an-
gle at the ith ion site, the energy tends to be larg-
er for diagrams with n= 0 than for diagrams with
larger n. Actual computations of 'U3 confirmed
these expected trends, in that they showed that en-
ergies corresponding to the larger values of n and
8 are small, usually about 10% of the dominant
terms. Still, it should be noted that in some cases
the larger terms tend to cancel and, when this hap-
pens, the truncation error can be significant. We
will return to this point when discussing the results
of our computations in Sec. V.

III. CALCULATION OF THE PAIRWISE INTERACTION
ENERGY

To calculate that part of the stacking fault en-
ergy due to pairwise interactions we used the for-
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malism of Blandin et gl. " They showed that the
pairwise contribution to y can be written

nearest-neighbor plane interactions (n = 2) was re-
tained in the stacking fault energy sum.

IV. CALCULATION OF PHASE SHIFTS

where h is the distance between close-packed
planes, N(n) is an integral weight corresponding
to a particular fault configuration, and &q)(nh) is
an interplanar potential difference. ' Blandin
et gl. , also showed that the potential difference
is related to the energy-wave number character-
istic C(q) as follows:

a((ss)= f s—((q,
' s)')'s]s '+ ss, ,

mCO

(3)

where g is the magnitude of the smallest nonvan-
ishing reciprocal-lattice vector.

From the Fourier transform relationship3 be-
tween 4)(q) and the pairwise interaction energy za,
we find, using the asymptotic approximation,

'U (R)- —— 1me '"" ' dE2 R

that for q& 2gF, where xF is the Fermi wave num-
ber,

s(s)=- „f (f(z )(' l sosss)s
q~o o

—2K

jr
+ —sin 2g dE

2
(4)

The condition q& 2&F is satisfied here because,
from Eq. (3), q~ g and g&2wz for all transition
metals. Substitution of Eq. (4) in Eq. (3) gives, to
first order in 1/nh and neglecting terms of order
exp(- gnh)

18 EF en'
&(t)(nh) = „a ~f(E, w)

~
cos2g ~ dE,

nh(o o

where

X, = I(-,
' g)' E]"'—

In applying this result in the computations described
below the final integration was numerically evalu-
ated, and only the term corresponding to next-

where Qo is the volume per ion, f(E, v) is the scat-
tering amplitude at energy E and scattering angle
v, and z =ME. The angle ))) is defined in terms of
the scattering phase shifts 5, by tanr) = o./p, where

o( = P (- 1)' (2l+ 1)cos5, sin5, ,
l

P =g (- 1)' (2l+ 1) sin 5, .

Our choice of a model for the calculation of.scat-
tering phase shifts for transition metal ions is
based largely on the work of Pettifor. '3 He showed
that one can reproduce, with reasonable accuracy,
the results of more detailed calculations of the den-
sities of states of transition metals, by basing a
simpler calculation on the assumption that the d-
electron resonance energy E„and width & are con-
stants for the first three transition-metal series.
In the calculation reported here we made the ad-
ditional approximations that the nonresonant scat-
tering phase shifts can be derived from a pseudo-
potential which, again, is the same for all ele-
ments, and that the nearest-neighbor distance is
the same (5.0 a.u. ) for all elements. This leaves
us with a rather simple calculational model in
which the only parameter that distinguishes one
element from the next is the Fermi energy. How-
ever, except for the approximation concerning
phase shifts for nonresonant scattering, this is the
same model used by Pettifor in his calculations of
the relative energies of the hcp, fcc, and bcc
structures. The fact that Pettifor's results are in
accord with the observed structures of transition
metals suggests that the model, through obviously an
idealization, forms a reasonable basis for the study
of stacking fault energies as well.

For the resonance parameters we used Moriar-
ty's values for copper" (E„=0.33Ry and
& = 0.014 Ry). Fermi energies as a function of
valence Z were determined by adding an average
of Pettifor's calculated values of EF —E„ for the
fcc and hcp structures to the value chosen for E„.
The value of the resonant part of the d electron
phase shift was determined from the formula

tan(5, —5,) = a/(E„- E),
where 5z and 6, are the resonant and nonresonant
parts of the l=2 phase shift.

To calculate the nonresonant scattering phase
shifts we used the empty core potential, the core
radius being that given by Ashcroft and Langreth~4
for copper. The phase shifts were calculated in
the first Born approximation and were based on the
uniform screening charge assumption. '~ Because
there is considerable uncertainty as to the validity
of such a simple model, we performed two sets of
calculations using effective valences (Z,) of one and
two in the nonresonant scattering pseudopotential.

V. RESULTS AND DISCUSSION

The results of our calculations are shown in Fig.
3. These plots show the stacking fault energy for
intrinsic faults in fcc crystals as a function of Z,
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FIG. 3. Calculated intrinsic stacking-fault energies for
face-centeredmubic crystals. The parameter &~ is the
valence assumed in the calculation of nonresonant scat-
tering phase shifts. The dashed parts of the curves
correspond to values of the total valence {including d
electrons) where neither close-packed structure is sta-
ble. Experimental data, shown here by the symbol x,
are taken from Ref. 16 for copper g = 11)and nickel-co-
balt alloys (9 & Z & 10), and from Ref. 17 for cobalt
(Z = 9).

the total valence, for both values of Z, . The
dashed part of the curve corresponds to those val-
ues of Z where neither close-packed structure is
stable and where, therefore, no comparisons with
observed stable structures or stacking fault ener-
gies are possible. Also shown are experimental
data for cobalt (Z=9), nickel (Z=10), copper
(Z= ll), and cobalt-nickel alloys. The stacking
fault energy for hcp cobalt is shown as a negative
number because the theoretical expression for the
energy of an intrinsic fault in an hcp crystal is ap-
proximately equal to minus the expression d'or the
intrinsic fcc energy. As can be seen from the
stacking sequences for the perfect and faulted crys-
tals, this relationship is exact if one ignores all
interactions involving third and more distant neigh-
bors planes.

The first point to be noted here is that the two
calculated curves are in reasonably good agree-
ment for most values of Z. Since these two curves
are based on nonresonant scattering phase shifts
that differ by about a factor of 2, this must mean
that the details of nonresonant scattering are rela-
tively unimportant, and that the general trend of
stacking fault energy versus valence is determined
largely by resonant scattering properties. It
should be noted, however, that the resonance width

&, which we have taken from Moriarty's calcula-

tion, is related to nonresonant scattering proper-
ties through hybridization. One would therefore
expect that a first-principles calculation would
show a stronger dependence on nonresonant scat-
tering properties than is indicated here.

Another point to be noted regarding Fig. 3 is that
the stability of the fcc phase against faulting is cor-
rectly predicted for most values of Z. Thus, for
Z& 9 we obtain positive values, which indicates
stability against faulting in fcc crystals, while for
6&Z&9 and Z&4, where the stable close-packed
structure is hcp, we obtain negative fault energies.
The only notable exception is the Z, = 2 curve at
Z=4 (titanium, zirconium, and hafnium), where
the calculation indicates that the fcc structure is
stable. This failure may well be due to the approx-
imate treatment of nonresonant scattering, since
the energy for Z, = 1 has the correct sign. On the
other hand, the fact that the absolute value stacking
fault energy is much smaller at Z= 4 than at other
values of Z indicates that there is considerable can-
cellation in the sum of two- and three-ion interac-
tion energies, and that the truncation error men-
tioned above may therefore be significant. It
should also be noted that a similar situation exists
at Z= 9 (cobalt, rhodium, and iridium). Here,
however, one of the elements (cobalt) is in fact
stable in the hcp phase, while the other two form
stable fcc crystals.

It is of interest to compare these results with
Pettifor's calculations of the relative energies of
close-packed phases. '3 As was noted previously,
our assumptions of constant resonance parameters
and nearest-neighbor distance are consistent with
Pettifor's model although he used different numer-
ical values for the resonance parameters. How-
ever, the principal difference between his model
and ours lies in the treatment of nonresonant scat-
tering. In spite of these differences our results
for the relative stabilities of the fcc and hcp struc-
tures as a function of Z are in reasonably good
agreement with Pettifor's. Thus he finds that there
is a region of hcp stability near Z = 4 followed by an
fcc stable region near Z= 5, an fcc to hcp transi-
tion near Z= 7 and finally, an hcp to fcc transition
near Z=Q. We take this, and the fact that the re-
sults agree with observed trends in crystal struc-
ture, as indications that our simple scattering
model is adequate as a first approximation, and
that we have included the most significant terms in
our approximate summation of the multi-ion ex-
pansion.

Regarding the calculated values of the stacking-
fault energies, as can be seen in Fig. 3, agree-
ment with experimental data is satisfactory for
copper and cobalt, but poor for nickel and cobalt-
nickel alloys. In view of the very simple model
that was used in calculating electron-ion scattering



13 ROLE OF MULTI-ION INTERACTIONS IN THE. . . 5135

IOO

o 0

-Ioo—

-200—

I
I

I
I
I

j/
l~I

//
I

I
1
I
1
l

I
/I

-400
3 4 5 6 7 8 9 IO I I

VALENCF

FIG. 4. Pairwise (p2) and three-ion (p3) contributions to
the stacking fault energy for Z, = l. At almost all values
of the valence the three-ion energy is much greater than
the pairwise contribution, which is multiplied by 10 in
this plot.

phase shifts, we do not consider these comparisons
particularly significant, except, perhaps, as an
indication that a more careful treatment is needed
for quantitative comparisons with experiment.

Finally, in Fig. 4 we show the two- and three-
ion contributions to the stacking fault energy for
Z, =l (the results for Z, =2 are similar). The
important point to be noted here is that three-ion
interactions dominate at almost all values of Z.
Although one might expect, on the basis of our ear-
lier calculation for the noble metals, ' that a more-
accurate nonasymptotic calculation would yield
larger values for the pairwise contribution, we

still believe that the dominance of three-ion terms
exhibited here is at least qualitatively correct.
One reason for this is that the pairwise energies
are so small compared to three-ion energies that
the errors introduced through the asymptotic ap-
proximation, being roughly of the same order of
magnitude as the pairwise predictions themselves,
are expected to be insignificant compared to the
three-ion energies.

Another reason is that from Pettifor's calcula-
tion, and from the observed stability of close-
packed phases as a function of Z, one would expect
three hcp-fcc transitions in a transition metal ser-
ies. The three-ion energy does, in fact, show
three such transitions while the pairwise energy
has only two. Thus assuming only that the shapes
of the two- and three-ion curves shown in Fig. 4
are correct, one would expect three-ion contribu-
tions to dominate.

In conclusion, therefore, we have demonstrated
that observed trends in the stabilities of close-
packed transition metals can be explained on the
basis of a third-order calculation involving a sim-
ple resonant scattering model of electron-ion in-
teractions. The calculations indicate that such
trends are governed largely by three-ion interac-
tions at most values of the valence. Comparisons
with experimentally measured stacking-fault ener-
gies show, as expected, that a more careful treat-
ment is needed for quantitative predictions of stack-
ing-fault energies. Still, the degree of success
realized in the prediction of structural trends and,
at least, the correct sign and order of magnitude
of stacking-fault energies, supports our principal
conclusions regarding the dominant roles of reso-
nant scattering and three-ion interactions.
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