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We use the symmetry arguments of Laudau and Lifshitz, described in the preceding papers, to derive the

Landau-Ginzburg-Wilson Hamiltonians corresponding to several antiferromagnetic systems. The phase

transitions associated with these models are then studied using the exact renormalization-group technique in

d = 4 —E dimensions. We find that the fcc type-III antiferromagnets Iml(100], k = (1/2, 0, 1)I and the spiral

magnets Eu and Cr are described by two n = 12 models. For both models, the renormalization-group recursion

relations have no stable fixed points. This might explain the existence of first-order transitions in Cr and Eu.
We also find that the antiferromagnet MnS2 is described by the n = 6 model derived by Mukamel and

Krinsky to represent TbD„Nd, and K,IrC1,. Since this model has one stable fixed point, it is predicted that

the four compounds belong to the same universality class. Similarly, the spiral magnets Tb, Dy, and Ho

correspond to the n = 4 model which was used to describe NbO„TbAu, , and DyC„and it is predicted that

they all have the same critical behavior, Existing experimental data are discussed and several experiments are

suggested.

I. INTRODUCTION

In the preceding papers, "the Landau theory of
phase transitions' and the renormalization-group
technique ' ' were used to discuss the phase tran-
sitions in several n ~ 4-component physcial sys-
tems. In this article, we use the symmetry argu-
ments of Landau and Lifshitz to derive the Landau-
Ginzburg-Wilson (LGW) Hamiltonians correspond-
ing to the following antiferromagnetic systems:
Cr, Eu, MnS„Ho, Dy, and Tb. The phase tran-
sitions associated with these Hamiltonians are
then studied by the exact renormalization-group
technique in d =4 —e dimensions.

Europium and chromium exhibit first-order
antiferromagnetic transitions. The transition in
Cr has puzzled theorists for years, and despite
numerous attempts to clarify the nature of the
transition using various microscopic models to-
gether with mean-field-like theories, no satis-
factory explanation has yet been reported. We
find that the transitions in Cr and Eu are described
by an z = 12-component LGW Hamiltonian. In
studying the model by the renormalization-group
technique we find that it possesses no stable fixed
points. This lack of stable fixed points might ex-
plain the first-order nature of the transition in
both metals. Similarly, we find that the type-III
antiferromagnets with paramagnetic space group
Fm 3m, propagation vector k in the [—,

' 01] direc-
tion and magnetic moments perpendicular to [100]
are described by an n =12 model which has no
stable fixed point.

MnS, is a cubic type-IG antiferromagnet.

The transition in this compound is described by
the n = 6 LGW Hamiltonian which has been used by
Mukamel and Krinsky'' to discuss the transitions
in K,IrCl„Nd, and TbD, . Since this Hamiltonian
has one stable fixed point, it is predicted that
MnS, belongs to the same universality class as
K,IrCl„Nd, and TbD, . Similarly, we find that
the transitions in the spiral magnets Tb, Dy, and
Ho are described by the n =4 LGW model which
has been used by Mukamel and Krinsky' '' to
discuss the transitions in NbO„DyC„and TbAu, .
It is therefore predicted that all these-six com-
pounds exhibit the same critical behavior. We
believe it would be of great interest to test these
predictions experimentally.

The paper is organized as follows: in Sec. IIA
we construct the n = 12 LGW Hamiltonian which
corresponds to the type-III antiferromagnets with
mL [100], and derive the appropriate recursion
relations to first order in e. In the Appendix we
show that these recursion relations have no stable
fixed point. In Sec. GB we derive the appropriate
~ = 12 LGW Hamiltonian for the spiral magnets
Eu and Cr, and show that the recursion relations
which correspond to this Hamiltonian have no
stable fixed point. In Sec. OC we show that the
g =6 type-III antiferromagnet MnS, belong~ to the
same universality class as K,IrCl„TbD„and
Nd. In Sec. IID we show that the n =4 spiral mag-
nets Tb, Dy, and Ho correspond to the same fixed
point as NbO„TbAu~, and DyC, . We also discuss
the existing experimental data on the critical be-
havior of Tb and Dy. The main results are sum-
marized and discussed in Sec. III.
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II. LANDAU-GINZBURG-WILSON HAMILTONIANS

AND CRICAL BEHAVIOR IN d = 4 —e DIMENSIONS

A. Fcc type-III antiferromagnets with ml[100) and k = ( 2,0,1)

ln the preceding papers ' Mukamel and Krin
sky studied the type-III antiferromagnet with
m)[ [100] and% = (—,',0,1).They found that the corres-
ponding n =6 LOW Hamiltonian has a unique stable
fixed point. In this section we shall show that the
phase transition in the fcc type-III antiferromagnet
with mi [100] and space group Fm 3m is described
by an n =12 Hamiltonian which has no stable fixed
point. This magnetic structure has not yet been
observed in a system with the cubic Em 3m sym-
metry. The type-Iilantiferromagnet P-MnS(Ref. 7)

l~
Q I

I

has a paramagnetic space group E.4 3m, and
the analysis descirbed below does not apply to it.
It turns out, however, that our proof of the non-
existence of stable fixed points is valid also for
the Hamiltonians describing phase transitions in
Eu and Cr (Sec. II B).

The magnetic structure of the type-III antifer-
romagnets is shown in Fig. 1. It belongs to a
reciprocal-lattice vector %, = (2, 1, 0)(2s/a), where
a is the lattice constant of the cubic unit cell. The
nonprimitive unit cell is doubled in the x direc-
tion and the sublattice magnetization is in the

y -z plane. 'Ihe star of the vector %, consists of
six vectors: +k, =(+-2', 1, 0)(2s/a), +k2=(1,+2, 0)
(2&/a), and+]t2=(0, I,+-2')(2s/a), and the group of
R, is C,„. There are two different order para-
meters associated with each vector%~, and they
correspond to the two possible directions of the sub-
lattice magnetization. Thus, the phase transition
is described by an z = 12-component order para-
meter. Let p,& P be the components of the order
parameter which belong to the reciprocal-lattice
vectors +k&, j = 1, 2, 3, with the sublattice mag-
netization in the P& direction, where P, =y, z,
P, =x,z, and P, =x,y. We define these components
in terms of the twelve real functions p& P and

p& ~, j = 1, 2, 3, which are related to g„2, through
the relations

(2) (2)

V

The functions p& P and (II

4'1,p2 g a,p2 g Sa,~&t
~fs}

0'2 Pl Q a,P2 a,P2 x Pl ytz
M(g}- 0(tE gr}-

42,&2 Sa,P2 Q Sa p
(I}

„,„,I,=z, z
cc(g}— ec g}-

432P3 ~ e,P3 ~ aeP3 s
8 —~~8

ag(~}

42,P2 Q a,P2 Q a,P2 s +2 +sy
~(~}; ~(~}-,

(2)

FIG. 1. The six magnetic lattices of tJJpe-III antiferro-
magnets. The lattices (j) and (j) represent the order
parameters Q& 2. and p, z& in the case S&k, and p& and

P& in the case f k& . Black dots indicate spina in the
+ Pz (or kg direction and white dots indicate spina in the
-I'& (or —k&) direction. The diagrams show half the
magnetic unit cell; the full unit cell is obtained by doub-
ling the structure in the j direction.

where the sums Q„,(s) and Q„,(s) are over the
sites of the black and white sublattices, respective-
ly, of the lattice j, and $ ~ is the P~ component ofa~~
the spin on site 0.. The lattices j and j are de-
fined in Fig. 1. The components of the order para-
meter form a. basis of a twelve-dimensional ir-
reducible representation of the paramagnetic group
Em 3m. The order parameter transforms under
the generators of this group as follows:
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where C, ([ "])is an l-fold rotation axis along the
[" ] direction, i is the inversion and t([—,",0]) is a
translation of (—,', —,', 0)a.

To set up a Landau-Ginzburg-Wilson Hamiltonian
in order to carry out the e expansion, one must
know all the invariants of order l ~ 4 which can be
formed by the components of the order parameter.
For magnetic transitions the order / must be even,
due to time-reversal symmetry, and one has to
find all the second- and fourth-order invariants.
Each irreducible representation I' has only one
second-order invariant, the sum of the squares
of the components of the order parameter. The
number of fourth-order invariants is given by the
number of times the symmetric part of the rep-
resentation l" (denoted by [I']) includes the unit
representation. The character of the represent-
ation [l'] is given by:

x" '(g) = 2 x(g') + 3 x(g')x(g) + 'x(g-')x'(g)

+ 3 x'(g') +.'.x'(s—), ' (4)

where g is a symmetry element of the paramag-
netic space group and X(g) is the corresponding
character of the representation F. Using this
character table and the orthogonality relations
one can find the number of fourth-order invari-
ants which can be formed by the components of
the order parameter.

We find that the twelve-dimensional order pa-
rameter associated with the phase transition has
nine invariants. The LGW Hamiltonian which de-
scribes the system is, therefore,

Xs = —
2 Q[r(1tll yi y& yi)+(vol 11) +(vltl y}) ]

j p~

2x 2g t 2x 2g t

43x 432 I 432 tsx I

42 4$

ug 0],

where the invariants 0& are

o =(el. +el.)(4' +4" )+(el. +el.)(4l, +el,)+(4',,+0'„)(4'..+el, ),
2 Plx tlx+ tly tly+ tsx Asx+ tsx 422+ 4$x tsx+ tsy tsy I

03 ~Is + 4'1 @19 ~19 4x ~2x 42+ ~2 0 3x ~3x ~39 ~31 t

0, = (g, + y,'.)(y,', + p,)+(y'„+4',,)(y'„+4' )+ (y',„+y*,„)(y'„+y,'„),
3 tlx tly + Ply 413+ tsx t2$+ tsx C + tsx i 3y + 43$ tsx I

41g 41@ 4I.C 41y 42x A2a

Ping
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o =(el. + el.)(4' + el.)+(4l.+ el.)(el, + 4l,)+ (4l. + P.)(el, + 0'„)
+ (el, + el.)(e' + 0' )+ (0.*.+4.',)(4'„+0,',)+(0' + 4', )(0,', +el, ),

02 (41$ Sly 4 ly 41$) + (42x tsx tsx 0 2x) + ( tsy tsx tsx 4 3y)

09 (41$ Ply 41$ 41$)(tsx tsx 42$ 42x) (42x tsx tsx tsx)(ksy 43$ ~sx 4$$).(y., y ee„)(e,.e„-e„e,.). -
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Applying the e-expansion technique developed by ilson' and retaining only terms of order lnb, where
b is the momentum cutoff, we get the following recursion relations for the coupling constants r and u, :

r' =b'[r+(4Q

ut =ut + [zut—

+2u, +12u, +4u, +2u, +2Q, +Su, +2Q, )A(r)],
(Sug +4u, u, + 24u, u, +Sugut +4ugut +4ugut +4ugut + 0.5ugg)K ] lnb,

ug = Qg + [eug —(4ug +Su,'+ 24ugu, +4ugg +4ugug +Sugt + 4ugug +2ugg)Kg] lnb,

u,' =u, +[zug —(2ug +u', +36ugg+2ug +ug +ugg+4ugt+ugg+2ugug)Kg] lnb,

ug = ug + [aug —(Su,u, + 4ugug + Sugg+ 4ugut +4ugu, +24u gut +4ugut + 0.5ugg)Kg ]lnb,

u,' =u, +[au, —(Su,u, +4u, u, +Su,u, +Su', +24u, u, +2u,'+Su,u, —8u,u, —Su,u, +24u, u, )K,]lnb,

Qg = Qg + [zug —(SQtttt + 4ttgug

ut = ut + [Cut —(4utug + 2utttg

u,' =u, +[zug —(8u,u, +Su,u,

ttg = ttg + [eug —(4utttg + 4ugug

+24u, u, +8u,u, +Sug+2u', +4u,u, )K,] lnb,

+2u, u, +4u,u, +24u,u, +2u,u, +2u,u, +12u', +0.5u,'+2u, tt, +2u, u, }K,] lnb,

+Su,u, +8u', +2u', )K,]lnb,

+ SQ ug +Sutug +12ugttg +2ug)Kt] lnb ~

Here

and

e =4 —d.
At a fixed point, u, = u,'-u, . The fixed point cou-
pling constants are determined by nine coupled
second-order equations. To find all the fixed
points and test the stability is an intractable task;
however, it is possible to show without actually
solving the equations, that any fixed point of this
particular system is unstable with respect to
small deviations of at least one linear combination
of the coupling constants. A proof is given in the
Appendix. The nonexistence of a stable fixed point
might indicate that the transition is first order.
Cubic P-MnS with the zinc-blende structure has
the fcc type-III structure, ' and the magnetic order-
ing may be described by the twelve-component
order parameter defined in Etl. (2). These com-
ponents form an irreducible representation of the
space group Fm3m, but one can show that they
form a reducible representation of the space group
E43m corresponding to the zinc-blende structure.
This representation decomposes into two n =6 rep-
resentations and the phase transition is therefore
expected to be first order due to a Landau sym-
metry argument. '

B. n = 12 vector model corresponding to the spiral

magnet Eu and sinusoidal magnet Cr

Europium and chromium are bcc crystals whose
paramagnetic space group is Em3m. Eu undergoes

an antiferromagnetic transition at T„=91'K. Neu-
tron-diffraction experiments indicate a recipro-
cal-lattice vector k, = (k, 0, 0)(2w/a) and magnetic
moments in the y-z plane' (Fig. 2). Cr undergoes
an antiferromagnetic transition at T„=310'K. It
exhibits a transverse sinusoidal magnetic struc-
ture"' associated with a reciprocal-lattice vector
k, =(k, 0, 0)(2w/a). Since both transitions are de-
scribed by the same order parameter, they cor-
respond to the same LGVf Hamiltonian. The star
of k, consists of the six vectors Zct = (wk, 0, 0)(2w/
a}, &g =(0, +k, 0)(2w/a), and 4g =(0, 0, +k)(2w/a).
The group of k, is C4„. The order parameter be-
longs to a two-dimensional representation of this
group corresponding to the two equivalent per-
pendicular directions of the magnetic moments.
The order parameter has, therefore, twelve
linearly independent components:

g~t, t, =g S;,t, e'"t', (8)

where the sum is over the positions of the mag-
netic ions and S, ~, is the I', component of the spin
located at r (p, =y, z, p, =x, z, p, =x, y}. It turns
out to be convenient to introduce the real order
parameters Q and P defined by

hatt, r —g (4t, z, +0, ,a,),

4t ~,
= (&, .~ —& ' «-, )/» ~

The fourth-order invariants of the order param-
eter are constructed by noting that the only fourth-
order terms which are translationally invariant
are those which can be formed as products of two
terms of Se form g~ ~, P, ~ . The twelve func-
tions g& ~ g & ~. are translationally invariant and
transform to one another as a basis of a reducible
twelve-dimensional representation of the cubic
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O„and 0, defined in Eq. (6). The LOW Hamil-
tonian is therefore given by

&.=-—,Z [r(e'j,p +71,pj}+(~ej p, }'+(&0&.~,&l
. jape

9-g u, O„ (11}

FIG. 2. Helical magnetic structure of Eu. The arrows
indicate the ferromagnetic spin alignment in the planes
perpendicular to k.

point group. By finding the second-order invar-
iants of this representation, we obtain all the pos-
sible fourth-order invariants of the Qj ~. The
functions gj J, g j ~. transform under the genera-
tors of 0„ in tSe folfowing way:

c,([ool]): y„y,„-y„y,„, &l.&-l.- &2. &-2.

~ly ~-le ~2x II-2+ & ~1&~ ly ~2+ ~-2x &

42, 4-2g- 41.0-1.~

~2x ~-2s %Iles ~-1y &

43x 4-3x ~3y ~-3» &s. &-s~ '4m&-s ~

C,([111]):4,„4 „-4..4 ...

C,([110]}:

&2. &-~- &3y &-3y

~3y ~ 3y ~1+ ~ ljg &

&3y &-~- &1.&-ly '

42g 0-2. .
4l, y ~-l~ ~2x ~-2~ ~ ~1& ~-ly ~2& ~-2x ~

as 428 RED ljf

~2c ~ 2x ~1& ~ ly & ~2x ~ 2& ~ly ~-1+ &

&3y &-3y- &~ '4-~

&3y &-~- &3y &-W '

~jIpj ~ jspj ~jeJ j' ~- jr&j (10)

Using these transformations we found that there
are eight second-order invariants of this repre-
sentation. However, it turns out that when the
components gj „are inserted, two af these in-
variants are identical; hence, there are only seven
independent fourth-order invariants which can
be formed by P» or p», . %'e find, that these
seven invariants are 0„20,+O„O„O,+O„O„

where u2 =2u3 and u, =-u, . The recursion relations
for the coupling constants for &, are thus closely
related to the recursion relations for the Hamil-
tonian X, [Eq. (7}], and the proof in the Appendix
for the nonexistence of stable fixed points for &,
is also valid for the Hamiltonian &,.

More than a decade ago, a first-order transi-
tion was discovered in Cr." Despite. numerous
attempts to clarify the origin of this transition,
no satisfactory explanation has been reported yet.
This behavior is, however, consistent with the
interpretation that a lack of a stable fixed point
indicates a first-order transition. Similarly,
Mossbauer and specific-heat measurements show
that the phase transformation in Eu is first order."
Our theory may thus provide a better understand-
ing of the phase transitions on both these elements.
Another peculiar feature is that chromium with
very small amounts of various impurities exhibits
a second-order transition. " Furthermore, early
measurements of the magnetization in Cr and Eu
showed a clear tendency towards a second-order
behavior ' ' It would be very interesting to
study random n&4 models to see if impurities
might give rise to stable fixed points.

C. Type-III antiferromaNnets: MnS~

MnS, crystalizes in the pyrite structure which
is a NaCl-like arrangement of Mn and 82 groups,
with the axes of the 52 groups along the body diago-
nals. The paramagnetic space group is Pa3. The
magnetic structure below the transition tempera-
ture i.s type-III antiferromagnet. " The magnetic
lattice is shown in Fig. 1. The unit cell is doubled
in the x direction, and the sublattice magnetiza-
tion is along the x axis. The phase transition in

K,IrCl„which has the same magnetic structure,
has been discussed by Mukamel and Krinsky. "
They found that this transition is described by an
n =6 LGVf Hamiltonian with three fourth-order in-
variants. The paramagnetic .space group of MnS,
(Pa3} is a subgroup of the paramagnetic space
group of K,lrCl, (Em3m). This might give rise
to additional fourth-order invariants besides the
three found by Mukamel and Krinsky. However,
it turns out that if one applies the formula (4) for
the number of invariants using only the classes
of the space group Pa3, the number of invariants
is unchanged. This is in sharp contrast to the fcc
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type-III antiferromagnet P-MnS, where the lower-
ing of the symmetry gives rise to four new in-
variants. The corresponding Hamiltonian is

3 2 3 3

—u gP', +$2 —vg(P', . +&/) —wgQf P',.
i=i i=i

(12)

with a stable fixed point corresponding to )@*=0,
u*40, v*0. The exponents associated with this
fixed point are

FIG. 3. Spiral magnetic structure of Tb, Dy, and Ho.
The arrows indicate the spin alignment within the hexa-
gonal planes.

v =—', + 2'2e+(605/8xll')e', q = ~~a'. (13)

Using scaling relations the following exponents
are obtained for d =3 (e =1): v =0.69, P =0.38,
y =1.38, o. =-0.14.

MnS, thus belongs to a large class of magnetic
systems with n =6, which to second order in e are
predicted to exhibit the same critical behavior.
Besides MnS, and K,IrCl„ this class includes sys-
tems with fundamentally different symmetries such
as Tbo, and Nd. It would be of great interest to
test this universality by comparing experimental
data on the critical properties of these compounds.

D. n = 4 model of the spiral magnetic systems

Tb, Dy, and Ho

The rare-earth elements Tb, Dy, and Ho crys-
tallize in the hcp structure with space group
P6, /mme. Below T„ they exhibit a spiral mag-
netic structure with magnetic moments in the
basal pl.ane and the propagation vector k along
the c direction i6-is This magnetic structure is
indicated in Fig. 3. The star of the k vector con-
sists of the two vectors +k =*(0,0, k)(2v/a). For
each of these vectors, there are two equivalent
perpendicular directions of the spins in the basal
plane, so that the number of independent com-
ponents of the order parameter is four:

g,„~=/~xi Pp-—QS, v
"" ', P=x, y.

(14)

Here the sum is over the positions of the mag-
netic ions, and S; ~ is the P component of the
spin located at site r. Because of translational
invariance, the only possible fourth-order in-
variants in these components has to be of second
order in the functions g~ ~g». , which clearly
are translationally invariant and transform to
one another as a basis of a representation of the
hexagonal point group D,~. We find that there
are three second-order invariants which can be
formed from this basis. These invariants are

(15)

[(44ayk ax) +(-kax4-ay) ].
However, the invariants 0, and 0, are clearly
identical. , so that the number of fourth-order
invariants in the components of the order param-
eters is two. Using the real order parameters
y& and Q~ these invariants may be written

(16)

and the corresponding LGW Hamiltonian is

X,' = —~ [r(Q„+Q„+4', + p, )

+ (V P, ) + (V(p, )' + (V P), ) + (V Q), ) ]
—u&(0 +@,+&9~+0, ) —ua(4 4', —4'~ 0*) .

(17)

Let us rewrite this Hamiltonian in terms of the
following variables:

(18)

These variables describe the "spiral" components
of the magnetization, i.e. ,

'gi, 2
~ S,„cosk' r + S„sink r,

g, ,2 ™ S, ~ cosk ' r +S,„sink r.
T

g, and g, correspond to right-handed spirals and
q, and q, correspond to left-handed spirals.
and g, are related to g, and g, through rotations
of 90 along the propagation vector. In this rep-
resentation, the Hamiltonian is
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n"n' (19)

where u =u, —m42 and v =
& u2. This Hamiltonian

was studied by Mukamel and Krinsky"' to de-
scribe the phase transition in NbO„TbAu2, and

DyC, . It was found to have one stable fixed point,
and we therefore predict, that the six compounds
Ho, Dy, Tb, NbO„TbAu„and DyC, all have
the same critical behavior, despite the fundamen-
tal differences in the symmetries and underlying
physical nature of the phase transitions. The
critical exponents are'

P =0.38, y =1.38, v =0.69, o. = —0.14. (21)

The effect of the anisotropy on the critical be-
havior of this model is easily seen by comparing
these exponents to those corresponding to the
isotropic n =6 model

their symmetries are different. We therefore
suggest a systematic experimental study of the
critical behavior of these systems. Even if the
& expansion may not give reliable numerical esti-
mates of the critical exponents at d=3, such ex-
periments may provide a crucial test of the uni-
versality, predicted by the renormalization-group
calculations. The critical exponents, to second
order in &, for d=3 were found to be

v = 0.70, g = 0.02, P = 0.39, y = 1.39, a = —0.17 P =0.41, y =1.45, v=0.73, u = —0.27. (22)

(20)

As pointed out by Mukamel, ' these exponents are
identical to those of the n=4 isotropic model.

We now proceed to compare these exponents
with experimental results. For Tb, the exponent

P has been measured by Dietrich and Als-Niel-
sen. " They found J3-0.25 within the interval
0.001&1—T/T„&0.025. However, this value may
not be reliable due to imperfections of the crystal
and extinction. " For Dy, Chien et al. obtained
P-0.335 within the temperature range 0.01&1
—T/T„&0 3 using th.e M. ossbauer effect." It
would be interesting to measure this critical ex-
ponent by neutron diffraction. The specific heat
exponents n and a' above and below T„, respect-
ively, were measured by Lederman and Salamon. "
Using a "conventional" fitting method they found
a =~'=0.13, and a two region fit gave Q. =a =0.18
close to T„. This result is in disagreement with
the predictions of the E expansion, and it would

be interesting to study the critical behavior of
the other compounds in this universality group
to see whether or not they agree with the experi-
ments on Dy.

III. SUMMARY AND CONCLUSIONS

We derived the Landau-Ginzburg-Wilson Hara-
iltonian corresponding to several n ~4 physical
systems, and studied the phase transitions of
these models by the exact renormalization group
in d=4 —& dimensions. We found that the type-III
antiferromagnet MnS, is described by the n =6
LGW Hamiltonian which has previously been
studied by Mukamel and Krinsky to discuss the
critical behavior of K,lrCL„Nd, and TbD, . Since
this Hamiltonian has one stable fixed point, it is
predicted that these four compounds belong to the
same universality class, despite the fact that

We also found that the spiral magnetic systems
Tb, Dy, and Ho are described by the n = 4 LGW
Hamiltonian, which was studied by Mukamel and
Krinsky to discuss the critical behavior of NbO„
TbAu„and DyC, . It is thus predicted that these
six systems have the same critical behavior. The
critical exponents to second order in & and d=3
are

P=0.39, y=1.39, v=0.70, u = —0.17. (23)

We suggest experiments be performed to test
these exponents. The type-III antiferromagnets
with m& [100],k = (-,', 0, 1) and the spiral mag-
nets Eu and Cr are described by two n =12 LGW
Hamiltonians. These models were found to have
no stable fixed points. This is consistent with
the experimental. result that the transitions in
Eu and Cr are first order. We suggest further
experimental studies of these systems in order
to throw light on the nature of the first-order
transitions.

APPENDIX

In this appendix, we shall prove that there is
no stable fixed point of the recursion relations,
Eq. (I).

We introduce

x, =K4u f/e (A1)

and get the following equations, which must be
satisfied at the fixed point:
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, = 8, + 4x, 2+ 24, 3 + 8x~x7+ 4x5x~ 6 7+ 4x8x7

x2 = 4xi + 8x2 + 24x2x3 + 4x~+ 8xv + 4xsx6 + 4xsxs + 2xs~

x, = 2x', + x', + 36x', + 2x', + 4x', + x,'+ (x, + x,)',

x~ 8x,x7+ 4x2x4+ 8x~+ 4x,x, + 4, ~+ 24x3x4+ 4x8xv+ 0.5x9,

5
= 8xix7 + 4x,x6 + 8x4x7 + Bx5+ 24x3x5+ 2x8+ 8x5xs 8x6x8 —8xs&2 + 24x8xs,

x6 ——8xix7 + 4x2xs + 24x3x, + 8x4x, + 8x,'+ 2x', + 4

x7 xix~ + 2xix5 + 2xix6 + 4x2x7 + 24x,~, + 2x,x, + 2x4x, + 12x', + 0.5x', + 2x8x, + 2x8 i&

x = 8(x, + x,')x, + 2x',

x~ = (4x, + 4x, + 8x, + 8x, + 12xa + 2x9)x9,

where x,' = x, + x, +x, .
From (A2) and (A5) we derive the equation

x, —x, = (x, —x,)[ 8x, + 8x, + 4x, —8x, + 24x, ] .

(A2)

(AS)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A 10)

(A 11)

Now, either x, —x4 is different from zero, and the quantity in the square brackets is one, or x, - x~ is
zero. In the latter case, any solution of the fixed point equations must be stable with respect to small
perturbations of x, —x„ i.e., the quantity in the brackets must be greater than one. Hence, we get the
condition

8xi+ 8x~+ 4x2 —8x7+ 24x3 = 1+C, C 0.

From Eq. (A10) we get a similar condition

4x, + 4x4+ 8x, + 8x, + 12x8+ 2x9 -1.
It turns out to be convenient to introduce the linear combinations

(A12)

(A 18)

(A3) + 2(A4): (72x3 + 10x, + 24x2x, —2x~ —xm) + Sx, + 8x24+ 16x2 + 2x8~ + 2x~ = 0,

(A3) + 2(A4) + (A6)+ (A7)+ (A9): (72x3+ 10xa+ 24x,x, —2x, —x2) +x8(24x3+ 4x, —1)

(A14)

+ 16x', + Sx, + Sx', + 16(x, + x,)x, + 2xs" + 6x', + Sx26+ 8(x, + x,)'+ 2x, = 0, (A15)

(A6) + (A7) + (A 9): x', (24x, + 4x, —1)+ 8x, (2x, + 2x,) + 8x, + 8(x, + x )'+ 4x', + 2x', = 0,

(A12) is inserted in (A16a):

2x', (x, +x,) =2x x,'+x, (4x, +4x,)+2x', +2(x, +x,)'+x', +-,'x', + Cx,',
(A2)+ (A5): (x, +x,)(24x, + 4x, —1+Sx,)+ Sxx,'+Sx', +Sx, +x', = 0.

This equation togehter with (A12) gives

4x,x, = 2x,x', + x, (4x, + 4x, ) + —,'x', + —,'C(x, + x,)

(A12) and (A17b) are inserted in (A8),

12x, —x~(4x, + 4x4 —8x, —2x8}+2x8(x, + x~) + ~ (x, + x4+ 4x, )C + ~x~ = 0

and (A16b) is inserted in (A18),

20x', —x, (4x,'+C)+2x,'+2(x, +x,}'+x',+ —,'x', +-,'C(x, +x, +x,') =0.

(A16a)

(A16b)

(A17a)

(A17b)

(A18)

(A19)

24x +4x2&1,

24x3+ 4x2 —8x~& 1,

(A20)

(A21a)

It is possible to show that (A14) implies the fol-
lowing inequalities

24x +4x, —)Ef,(x, x ), (A22)

T his is most easily shown using the Lagrange
multiplier formalism. For instance, to prove
(A20) we form the expression

or [with (A12)]

x, +x &0. (A2lb)

where f, is the left-hand side of Eq. (A14), mini-
mize it with respect to all the parameters
x, x,', and determine & from the condition fi 0.
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f2
= 4xi+ 4x~ —8x7 - 2x8 & 0.

In this case we form the expression

(A23)

We find that the extremum value of 24x, +4x, is
3+ —3(2)~' which is less than 1.

W'e also prove, that for C = 0,

immediately that x, &Q. If C =0, then Eq. (A18)
implies x, &0 if we consider the inequality (A23).
But now all the terms on the left-hand side of
(A19) are positive; hence we have a contradiction,
and we have proved that x,' can not be positive.

Now consider Eq. (A15). It is easy to show that

f~(x„x~,x„xs}—A, (Sx, + Sx~ —Sx, + 24xs+ 4x2) 72x3+ 10x2+ 24x2x~ —2xs —x2 - —3, (A25)

—A, f,(x„.. . , x,), (A24)

and again we minimize with respect to x, x,'

and determine &, and A from the conditions (A12)
and (A14). We find that f,&0;

As the next step we shall prove that x,'&0. It
is convenient to write Eq. (A8} in the form

12x, —x, (1 —24x~ —4xm) + 2(x, + x4)xs

+ 4x,x, + 0.5x, = 0. (A8')

Let us assume that x', &0. If C &0, then x, = x,.
Using the conditions (A12b) and (A20}, we see

and we have shown that x,'(24x, + 4x, —1) &0, so

16x, + Sx, + Sx~+ 16(x, + x~)x, + 2x',3+ Sxe

+2x9+6x8+8(x, +xe) ~ ~~. (A26)

But the condition (A13) implies that the quantity
on the left-hand side of (A26) is greater than

5o 3Q The proof is eas i ly carried out us ing the
Lagrange formalism. Hence our system of equa-
tions have no solutions subject to the constraints
(A12} and (A13), and the corresponding Hamiito-
nian has no stable fixed point.
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