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In the preceding paper, we derived n ) 4-component Landau-Ginzburg-Wilson Hamiltonians describing phase
transitions in certain physical systems. Here, we use Wilson s a expansion to study the phase transitions
associated with these Hamiltonians. Although the n = 4 systems TbAu„DyC„and NbO, have different
symmetries, they are predicted to have the same critical exponents. Similarly, although the n = 6 systems
TbD„Nd, and K,lrC1& have difFerent symmetries, their critical exponents are predicted to be equal, but
difFerent from those of an isotropic n = 6 model. We suggest these predictions be tested experimentally. Three
of the Hamiltonians we have considered possess no stable fixed points. Two of the materials UO2 (n = 6) and
MnO (n = 8) described by these Hamiltonians are known to have first-order transitions. We suggest that
experiments should be performed to test whether or not the transitions in the n = 8 systems ErSb, MnSe, NiO,
and in the n = 4 systems TbAs, Tbp, TbSb are first order.

I. INTRODUCTION

In the preceding paper, ' we derived n & 4-compon-
ent Landau-Ginzburg-Wilson Hamiltonians de-
scribing phase transitions in certain physical sys-
tems. As discussed by Landau and Lifshitz, ' the
symmetry-breaking order parameter associated
with a second-order phase transition transforms
according to an irreducible representation of the
symmetry group of the high-symmetry phase. The
number of independent components of the order
parameter is equal to the dimensionality n of the
representation according to which it transforms,
and the transition is described by an n-component
Hamiltonian. When there is no change of the unit
cell, the order parameter transforms according
to an irreducible representation of the P«nt ~o&P
of the high-symmetry phase, and the dimension-
ality of these representations always satisfies
n ~ 3. When the unit cell is doubled in one or more
directions, the order parameter transforms ac-
cording to an irreducible representation of the
space group of the high-symmetry phase, and the
dimensionality of these representations can satis-
fy"4n ~ 4.

In this paper, we use Wilson's e-expansion tech-
nique' to study the critical phenomena associated
with each of our n ~ 4-component Hamiltonians.
The derivation of exact renormalization-group
recursion relations in 4-& dimensions has been
described in detail by Wilson and Kogut, ' and we
will not reproduce their discussion. However, we
wish to emphasize that if the initial Hamiltonian
X is invariant under a space group, then the trans-
formed Hamiltonian X' is also invariant. Suppose
the initial Hamiltonian is taken to be of the form

—Q u Q pigi gQQjQi Qi,
p ifkl

where the sum over P spans the fourth-order in-
variants of the group. It follows that the trans-
formed Hamiltonian X' will be of the form

1mx' = ——~[~'p,'+ (v y, )']2

Q up Pi jul ki kj 4 k9 i
P c l

+ higher-order invariant terms.

The only second-order invariant that can be con-
structed from an irreducible representation of a
space group is Q, ,P,'. As a consequence, even
though the fourth-order terms are anisotropic,
the renormalization-group transformations will
not break the isotropy of the second-order term.
Hence, there is only one length scale in the prob-
lem. To O(e') it is not necessary to consider
sixth- and higher-order invariants, or the momen-
tum dependence of the coupling constants, so the
recursion relations for r' and u~ involve only r and
Qp ~

Brezin, Le Guillou, and Zinn- Justin' have shown
that for an n (3-component model, the isotropic
fixed point is always stable to leading order in ~.
This is a very interesting result, since it means
that whatever anisotropy one chooses consistent
with the space group, full rotational symmetry is
dynamically generated near the critical point. For
n) 4, they showed the isotropic fixed point is al-

5078



13 PHYSICAL REALIZATIONS OF n ~ 4-COMPONENT. . .II. . . 5079

ways unstable with respect to any anisotropy of
the fourth-order terms. The first model we con-
sider is a 2m-component Ramiltonian with 2m~ 4.
For each value of m, we find a unique stable fixed
point, which is nonisotropic. Hence, full rotation-
al symmetry is not dynamically generated in this
case. For the three other Hamiltonians we have
considered, we find that to lowest order in & all
the fixed points are unstable. This nonexistence
of a stable fixed point is a new feature that has
arisen in the study of n ~ 4-component models,
and its significance is not yet well established. In
Wilson's theory, ' a critical Hamiltonian is pre-
sumed to converge to a stable fixed point upon re-
peated application of the renormalization-group
transformations. The nonexistence of a stable
fixed point should therefore mean that there is no
critical point for the system (obtainable by vary-
ing only the temperature). Hence, one would
expect the transition to be discontinuous, i.e.,
first order. However, the possibility certainly
exists that there may be a stable fixed point whose
fourth-order coupling is of order unity or does not
vanish linearly as e - 0. Such a stable fixed point
would be missed by the e expansion.

When performing an e expansion, one is studying
phase transitions in 4 —e dimensions, where e is
infinitesimal. This means that predictions of e ex-
pansion must be considered as tentative for three-
dimensional systems. The c expansion can be used
as a phenomenological probe and can serve to
raise questions about physical systems which can
then be studied by experiment. Predictions of ex-
ponents are not precise because ~ =1 is not a
small parameter. The current "rule of thumb" is
to compute the exponents to O(e') and then set
& = 1. This procedure has worked quite well for
the three-dimensional Ising, XF, and Heisenberg
models, for which the answers were known in ad-
vance from work using high-temperature series,
and from experiment. However, for the n~ 4
physical systems which we are considering, the
answers are not known in advance, and experi-
mental study of these systems can serve as a test
for the "rule of thumb. "

A second difficulty resulting from e =1 not being
a small parameter is that the determination of the
stability of a fixed point is not unambiguous. Our
procedure for determining the stability of a fixed
point is consistent with the work of Brezin et al. '
We consider & to be infinitesimal and determine
stability from the term of lowest order in e which
does not vanish. Although ad hoc, this procedure
is systematic. Of course, it is certainly possible
that a fixed point which is stable for d =4-e
(e infinitesimal) will be unstable for d =2, and
vice versa. After we have determined the stable

fixed point as described above, in order to stim-
ulate experiment, we set e =1 in the expressions
for the critical exponents computed to O(e ). We
are certainly aware that phase transitions in
d =3 may be significantly different than in d =4-e,
but our goal is to create interest in studying the
unknown critical behavior of physical systems
with n~ 4.

Our paper is organized as follows: In Sec. II,
we use the c expansion to study the critical be-
havior of the 2m-component Hamiltonian denoted
3Cy in the previous paper. ' For 2m =4, this Ham-
iltonian is relevant to a discussion of the critical
behavior of TbAu„DyC„and NbO„while for
2m=6 it provides a description of the critical
phenomena in TbD„Nd, and K,IrC1, . In Sec. III,
we consider the Hamiltonian 8C, which describes'
the phase transition in the type-I antiferromagnet
(m&k) UO, . In Sec. IV, we study the Hamiltonian
I+3 corresponding' to type -II antiferromagnets
with m

~ ( k. In Sec. V, we consider the Hamiltoni-
an X, appropriate' for type-II antiferromagnets
with m&k. Finally, we summarize our results,
and our suggestions for experiments, in Sec. VI.

II. TbAu„DyC&, NbO„AND TbD„Nd, K, , IrC1~

We consider the 2m-component Hamiltonian'

g[r(y» + y») +-(v y»)'+ (v y»)']
2

mp Q» + Q» -v g (p» + &p,
')'

-w ZA»»t»»

For 2m =4, this Hamiltonian describes' critical
phenomena in TbAu„DyC, (with w =0), and
NbO, (withws0), while for 2m=6 it describes
the critical behavior of TbD„Nd (with w =0), and

K,IrC1, (with w»» 0). To perform a renormaliza-
tion-group analysis for this Hamiltonian, it is
convenient to rewrite the interaction term as

-u, Q(y' t»'+)»-»»u, Qy»»{»,'

u3 Z (4» 4» + A»k» + 4»4» +A»A»)

where u =
& u„v =u] p Q3 Q2 2Qg Assuming

a small momentum cutoff b ', we use Wilson's
exact renormalization-group technique' in dimen-
sion d =4 —c, and we keep only terms of order
lnb in the recursion relations for u'„u'„u3', and
terms of order b'lnb in the recursion relation for
r'. We obtain
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r' = b "(r+2[6u, + g + 2(m —1)g~]A(r) —[96u, + 8/+ 16(m —1}u~]B(r)]+ O(E ),

g,' = b' 2"[g, —~ [V2ua+ 2u22+ 4(m —1)us]K~ lnb + —,'2 [10368g~+ 288u,uz~+ 5V6(m —1}u,u2S

+ 96g32+ 192(m —1)g3]K ', inbj+ O(e ),

g' = b ' ~{u —2 [48u,u2+ 16u2+ 8 (m —1)g32]g lnb + ~~ [3456(u,g2+ u, uz) + 5V 6(m —1)glg + 480u23

+ 384(m —l}g]K,1nb j+ O(e ),

g' = b' 2"[g —~ (48u us+ 8u~us+ 8mus)K~ lnb+ ~~[3456(uu~+ u, u~)+ 5V6g u32+ 288u22u

+ (960m —1344)us~]g inb) + O(d),

where

q = —,'K~[96u', + 8u', + 16(m —1)g],
ddq 1

.,-i~),~. , (2w)' q'+r '

ddt ddt 1

ff Owl'(2 )'(el+~&(ql+~)f(a+q. )'+~1'
eilqg I & 1

M/2[ F( d)] 1

Let us first determine the fixed points to O(a). Defining x, = (K~/e)g;, the eqnations for the fixed points

become

x, =36x,'+x', + 2(m —1}x'„

x, = 24x,x, + 8x', + 4(m —1)x'„

x = 24x,x + 4x,x + 4mx'.

There are eight real solutions to these equations. We do not consider complex solutions, since if the

starting Hamiltonian is real, then it can only approach real fixed points under repeated application of the

renormalization-group transformations:

1
X1 40 &

1
X1 36&

1
X1 72 &

x, =1/8(m+4),

x, = (m —1)/8(5m —4),

x, =~~ (2 —1/m),

x, =~~ (1+ 1/m),

x, =0,

x2 2x1p

x2=0,
1

X2 12 1

2x1 p

2x1 p

x2 = 1/12m,

x, =—„', (1 —1/m),

x3=0;

x, =O;

x3=0;

x3=0;

x3 2x1 y

x, = 2x, /(m —1);

x~ =1/12m;

x~ = 1/12m.

(a)

(b)

(c)

(d)

(e)

(f)

}
(h}

Stability is determined by linearizing the recur-
sion relations about each fixed point. For 2m &4,
the isotropic fixed point (e) is stable, while for
2m &4, the fixed point (f) is stable. To determine
stability for the special case 2' =4, it is neces-
sary to consider the next order in e. This has
previously been done by Mukamel. '

For 2m &4, the stable fixed point to O(e') is
given by

(m —1)e (m —1)(30m2 —15m —2V}0
8(5m- 4}K~ 16(5m —4) K~

u~ =2u~1 P

(-VOm~+ 205m —139)t
4(5m —4)K, 8(5m —4)'K,

Note that sv*=u*2 —2u,*=O. When we set 2m=4, we
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obtain toe same stable fixed point as previously
obtained by Mukamel. '

The critical exponent v describing the diver-
gence of the correlation length at the critical point
is determined by

1/v = 2 —q —2[Su~+ u2++ 2(m —1)u~+]K~

+ 2[SSu~+ Su2~+ 16(m —1)u*']K4

To second order in q, we obtain

1 3(m —1)c
2 4(5m —4)

(m —1)(20m~+ 253m —334)8
16(5m —4)'

(m —1)(2m - 1)e
4(5m 4}'

Expansions for P and y can be obtained from those
for v and q by using the scaling laws.

The critical behavior of TbAu„oyC» and NbO,
are all described' by X, with 2m =4. Since we have
found there exists a unique stable fixed point, our
prediction is that these different phase transitions
should be described by the same critical expo-
nents. This can be tested experimentally. In ad-
dition, if we follow the usual "rule of thumb" and
set e= 1 in the expansion for the critical exponents
up to O(e'), we then obtain

P = 0.39, v = O.VO, y = 1.39.

These are the same values as for the isotropic
n=4 model.

The critical behavior of TbD„Nd, and K,lrC1,
are all described' by X, with 2m = 6. Since we
have found that there exists a unique stable fixed

point, our prediction is that the phase transition
in these different systems should have the same
critical exponents. It is of interest to test this
experimentally. Inserting z = 1 into the expansions
for the exponents calculated to O(a ) we obtain

P=0.38, v=0.69, y=1.38.

Let us note that these values are significantly dif-
ferent from those obtained by setting & = 1 in the
expansion to O(a') for the exponents of the isotro-
pic n=6 model,

P = 0.41, v = O.V3, y = 1.45.

This indicates that anisotropy is affecting the
critical exponents in a non-negligible manner.
The exponents for X, with 2m =4 and 2m = 6 are
very close to those for the isotropic n= 3 Heisen-
berg model,

P=0.38, v=0.68, y=1.35.

We should emphasize there was no more reason,
a priori, to have expected the exponents to have
n = 3 Heisenberg values than n = 1 Ising values.

Some of the physical systems which correspond
to the HMniltonian X, may lie outside the domain
of attraction of the stable fixed point, in which
case the transition is not expected to be second-
order. However, if the system exhibits a second-
order transition, the critical exponents are pre-
dicted to be those given above.

III. TYPE-I ANTIFERROMAGNETS, m Ik

Let us now consider the six-component Hamil-
tonian which is relevant' for discussion of the
phase transition in UO, :

3 3

X,= —g [y(y', + P)+ (Vy, )'+ (V%,)'] u, (y', + P) u, g 0',$', u, g (y', y', + $P', )
3~l

4(%1%2+4 243+ 4341) u5(414 2+ 4243+ 43@1)'

We will show that to first order in g, the recursion relations derived for this Hamiltonian possess no sta-
ble fixed point. The recursion relations for the u', are

u', = 5'[ u2(72u', + 2u', +4u,'+ 2u', + 2u', )K, lnb],

u,'= b'[u, ——,'(16u', +48u, u, + 8u,u, +8u,u, )K4 lnb],

u,'= b'[u, --, (20u', + 48u, u, + 4u,u, + 4u,u, + 4u,u, )K, 1nb],

u,' = b' [u, ——,'(16u,'+ 48u, u, + 8u,u, + Su,u, )K, lnb],

u', = 5' [u, —2 (16u', + 48u, u, + Su,u, + Su,u, )K~ 1nb] .

If in the Hamiltonian K4, we make the inter-
change Q, $„P, $„P, $„ then u, u, .
Similarly, under the interchange Q, $» @,

$„we see that u, u, . Finally, if we let

$„ then u, u, . This is reflected in the in-
variance of the recursion relations under any per-
mutation of u„u4, and u, . As a consequence, if
there exists a fixed point with u, wu„ then there
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also exists another fixed point with u, and u4 inter-
changed. We list below all fixed points not related
by a permutation of u„u„u,.

We again define x, = (K,/z)u, . There exist eight
fixed points with x3=x4=x, which correspond to
those of X, with 2' = 6. In addition, there exist
four new fixed points with x2=x4=x, . These are

n 1
~1 44 t 2 t +3 22 t

g= — x=0 x=—1 1
1 54 t 2 t 3 18 t

g=~ x=—' x=~
1 1$6t 2 68t 3 68t

7 1
1 S60 t 2 60 t 3 20

All the fixed points can be seen to be unstable by
noting

u6 -u~ = b (us —u~)~

where

x=1+4&,*-24m,* -8x,*-8x,*,
and that A. &o for all of the fixed points.

The phase transition in UO, is known to be first
order. ' This is consistent with the interpretation
that the nonexistence of a stable fixed point means
there is no critical point. We raise the question
as to whether the lack of a stable fixed point can
be used as a "rule of thumb" to predict that a
phase transition should be discontinuous.

To first order in a, we find the four unstable fixed
points

u=0,

u=0,

v=0, w-0

v = c/36K~, cv = 0;

u = e/48K~, v = -e/72K~, gv = +e/6K~ .
in addition to the isotropic fixed point,

u=e/48K~, v=0, w=0.

Linearizing about the isotropic fixed point, we
obtain two zero eigenvalues, so it is necessary
to go to second order in z to determine stability.
The isotropic fixed point is degenerate and will be
shown to split into four different fixed points,
all unstable, when the calculation is carried to
second order.

To proceed, we write

u= a/48K4+u, e',

V=V2C t
2

2W= W2C t

and we determine u„v„and w2 from the fixed
point equations. From terms of O(e') in the equa-
tion u'=u, we obtain

0 = -v, —2u, + 13/(24)(24)K~

-(K~ -K~)/24K~ .

IV. TYPE-II ANTIFERROMAGNETS, m I l &

The phase transitions in TbAs, TbP, and TbSb
are described' by the four-component Hamilton-
ian

The recursion relations are

u' = b' ~fu &(96u'+—48uv+ 2')K~ Inb

+~(16128u'+ 13824u'v+ 3456uv'

+ 180uso'+ 36vu)')K~ lnb],

v' = b' ~[v —~ (72v'+ 96uv to')K2~ ln—b

+ —,'~ (10368vs+ 27 648uv'+ 20 736u v

—144usv' —36vcu')K~2 lnb],

ur' = b' '"[u ——,'(96um)K~lnb+ —,', (20736u'u

+ 6912uvso+ 36su')K,' lnb],

where

,'K',(192u'+ 96v—'+192uv + cg').

Naively, one would expect to obtain two additional
constraints by considering terms of O(e') in the
equations v'=v and w'=w. However, no new con-
straints are obtained in this manner. Let us now

note that any diagram contributing to the recursion
relation for v' or w' possesses at least one v or
m vertex. Since v=0(a') and m=O(e'), a diagram
with four vertices contributing to v' or w' must be
at least of O(e'). lt follows that although we have
neglected diagrams with more than three vertices
in deriving the recursion relations, we are justi-
fied in using the O(d) terms in the equations v'
= v and w' = w to derive constraints. One can check
that the O(c') contributions to u, v, m cancel out.
From v'= v and w' = w, we obtain

17 K„-K
24K 2 K2

-36v2 —48u2v2+ 4w2 t

17 K~ -K40= „, w2-48u2W2 — ~
2

4 w2.
4 K4

There exist four solutions to these equations:

13&2

48K~ (24)(48)K~ '

with eigenvalues X„=-a+ —24&', X„=—,
' c', X = —,

' e';
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48K$ (24}(48)K$' V2K$
'

with eigenvalnes X, = -f + Qc, Q = —,$:,X$ = $f;

48K$ (24)(48)K, ' 144K, ' 12K, '

with eigenvalues A.,= -f+Qe', X$= ——,'c', X$ = $f'.
Therefore, we see that all of the fixed points are
unstable.

Careful measurements close to the transition
temperature of TbAs, TbP, and TbSb have not yet

I

been made. Previous work" was done well below
the transition temperature in order to determine
the nature of the ordered state. We suggest that
these substances be studied near their transition
temperature in order to test the "rule of thumb"
that absence of a stable fixed point means the
transition is discontinuous.

V. TYPE-II ANTIFERROMAGNETS, m j.k

Finally, we consider the eight-component Ham-
iltonian appropriate' to the study of the transitions
in MnO, MnSe, NiO, and ErSb.

3C.=-
2 g [r(4'+ P)+(&0 )'+(~4 )'] u, g-(4'+ P)' +g-(4', 4'+ PP+ O',P+ P4;)

juZ

u$(41 b$4$@4 41~$~$44 4 l@$4$~4 ~1~$4$~4 0 14 $4 $44 41 44$44 341%$4$44 3414$4$44)

(0', 0'+ %9') 2(e—%.eA+ &*&.&A'+ &A&g. + &A&A &.%—.eA &A—&.&.) I

u, [2—(4', 0$ PiP-)+2(0$0'. PP—) (4$—4$ —P$P$) —(0,'O', —PP) —(0'$4'.—PP) —(0'$4$ —SP$)
~~(~A eA-)(e.*P, ~: g) -~(~A eA-)(e', P, -e.'- P,)]

+ (~;~:+4M+ PP + PA)+»(4, %,4.%.+ ~Ad, %.)

+3(4',P.+ P,4'. + gP, + P.4'.)+2~&(4,4, 4.4.)—(4*. P. —4'. +—P.)
+ 2~ (4$4$ —4,4,)(4~j —Pi 4'$+ Ps—)]

The recursion relations for the u', are

u,' = b '[u, ——,'(80u,'+ 12u'+ 6u$+ 18u', + 108u$ + 12u,u, + 48u,u, + 36u,u, )E, lnb ],

u,' =b'[u, —$(32u', + 2 'u$4+u', + 24u, + 192u'$ + 64u,u, + 16u,u, + 64u,u, + 16u,u, + 64u,u, +24u$u$)E, lnb],

u,' =b'[u, —$(48u,u, + 56u$u, + 160u u,}E,lnb],

u,' =b'[u, ——',.(Su', + 24u', + 48u', + 32u, u, + 32u, u, + 112u,u, )E,lnb],

u,' =b'[u, —$(48u,u, + 24u$u$+24u$u$ —24u$u$)E$1nb],

u$ =b'[u$ —$(-12u$$+ 48u$$+ 32u, u$+ 32u$u$+ Su$u$)E$1nb].

x =~ x =—' x =+~ x =—'
1 160~ 2 80~ 3 so~ 4 40~ x =x =05 6 s

x, =x =0.
All of the fixed points are unstable, since

u5™b"'u

Defining x& = (E,ja)u„ the fixed points are

x = ~ "=x =01 6

x =— x = ~ ~ =x =01 40~ 2 6

x=— x=1 x=' ~ '=x=01 64~ 2 32~ 3 6

x =~ x=~ x= ~ ~ ~ =x=01 128& 2 641

with

X = 1 —24x1 —12x2~ —12x4,

and for all the fixed points x &0.
The transition in MnO has recently been shown"

to be first order. The nature of the transitions
in MnSe and NiO is less well established. " Mea-
surement" of the order parameter of ErSb indi-
cates the transition is second order (continuous),
but specific-heat measurements'4 indicate there is
a latent heat. We believe it is of interest to pur-
sue the study of the nature of the transition in
ErSb.
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VI. SUMMARY AND CONCLUSIONS

The relation between a system's symmetry
properties and its phase transitions has been long
studied using Landau's' phenomenological theory.
Recently, Wilson' showed how to extend the Landau
theory to include effects of critical fluctuations
by using an expansion in & =4- d. Within the
framework of the & expansion, Brezin et al.'
showed that for n-component systems with n —3,
the critical exponents are independent of aniso-
tropy, while for n~ 4 the exponents do depend on
the anisotropy. In this respect, universality is
predicted tobe weaker for g ~4 systems. With this in
mind, we have proposed" that it is of great interest
to study experimentally the critical behavior of sys-
temswith n~4. ItwasnotedbyMukamel'that
certain phase transitions involving an increase
in the unit cell are described by n-component
Landau-Ginzburg-Wilson Hamiltonians with n —4.
In the previous paper' we used the group-theoreti-
cal methods of Landau and Lifshitz' to construct
effective Hamiltonians appropriate for the discus-
sion of phase transitions in specific physical sys-
tems. In this paper, we used the & expansion to
study the critical phenomena associated with these
Hamiltonians.

We have noted that the phase transitions in
TbAu„DyC2, and NbO, are all described by four-
component order parameters. Each of these order
parameters corresponds to the breaking of dif-
ferent symmetries; in fact, the transition in NbO,
is structural, while those in TbAu, and DyC, are
antiferromagnetic. We have shown that the transi-
tions in each of these materials are described by
the same effective Hamiltonian. Using the & ex-
pansion, we have found that there exists a unique
stable fixed point, so we predict that the critical
exponents for these different transitions should be
the same. Similarly, we have found that the tran-
sitions in TbD„Nd, and K,IrC1, are described by
six-component order parameters. Again, each
order parameter corresponds to the breaking of
a different symmetry, but all the systems are
described by the same effective Hamiltonian.
Within the E expansion we have found a unique

stable fixed point corresponding to this Hamilton
ian, so we predict these different systems should
have the same critical exponents. We hope that
experimental work will be done to determine the
critical exponents of these four- and six-compon-
ent systems.

The type-I antiferromagnet (m &k) UO, has been
shown to be described by a six-component order
parameter. The appropriate effective Hamiltonian
has no stable fixed points within the e expansion.
This is consistent w'ith the known result that UO,
has a first-order (discontinuous) transition. The
type-li antiferromagnets (m II k) TbAs, Tbp, and
TbSb are described by four-component order para-
meters. The corresponding effective Hamiltonian
has no stable fixed points within the ~ expansion.
Previous measurements" on these systems have
been performed far below the transition tempera-
ture with the objective of determining the nature
of the ordered state. We suggest that it is worth-
while to go back and study these substances very
near the transition temperature in order to de-
termine whether or not the transitions are first
order. The type-II antiferromagnets (mi k) MnO,
MnSe, NiO, and ErSb are described by eight-com-
ponent order parameters. The corresponding ef-
fective Hamiltonian has been found to have no
stable fixed point within the & expansion. It has re-
cently been shown that MnO has a first-order
transition. " The nature of the transitions" in
MnSe and NiO are not yet well established. Mea-
surements" of the order parameter for ErSb in-
dicate the transition is second-order (continuous),
but the specific-heat measurements" indicate there
may exist a latent heat. We believe it is of inter-
est to determine whether or not the transitions in
MnSe, NiO, and ErSb are first order.
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