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Certain phase transitions which involve an increase of the unit cell in one or more directions, are described by

n ) 4-component vector models. According to universality, the critical behavior of a system should depend

only upon a small number of parameters such as the dimensionality of space, the number of components of
the order parameter, and the symmetry of the Hamiltonian. We suggest that it would be of great interest to
study these n & 4 systems experimentally, and examine the effect of the dimensionality of the order parameter

and the anisotropy of the system on the critical behavior. We use the group-theoretical method of Landau and

Lifshitz to derive the Landau-Ginzburg-Wilson Hamiltonians corresponding to the following n ) 4 systems:

type-II antiferromagnets TbAs, TbP, TbSb (n = 4), and MnO, MnSe, NiO, and ErSb (n = 8); type-I
antiferromagnet UO2 (n = 6); type-III antiferromagnet K,irC1~ (n = 6); sinusoidal magnetic systems DyC, and

TbAu2 (n = 4), and TbD2 and Nd (n = 6); and an n = 4 system, NbO„which exhibits a structural transition. In
the following paper (II) we use the exact renormalization-group technique in d = 4 —e dimensions to study the

critical behavior of these Hamiltonians.

I. INTRODUCTION

In recent years, there has been considerable in-
terest in the study of the critical behavior of n-
component vector models. ' ' These models have
been used to discuss the critical behavior of phys-
ical systems which are Ising like'(n=1), XY
like" (n=2), and Heisenberg like" (n=S). Amor-
phous Ising systems can be described as an n -0
limit of the n-vector model. "'" In the limit n
the critical behaviorof the isotropic n-vector model
becomes exactly that of the spherical model. "Re-
cently, ""it has been emphasized that there exist
phase transitions in certain physical systems, in-
volving an increase of the unit cell, which are de-
scribed by n «4-component models. The critical
behavior of these n «4-component systems is not
yet known, and we suggest that it is of great in-
terest to study these systems experimentally. Ac-
cording to the principle of universality, the criti-
cal exponents of a system should depend on only a
small number of the system's properties, such as
spatial dimensionality, the number of components
of the order parameter, and the symmetry of the
Hamiltonian. Brezin et al. ' have used the & ex-
pansion to study the effect of anisotropy on the
critical behavior of a system. They found that for
n «3-component order parameters, the anisotropy
did not affect the critical behavior, while for n «4
anisotropy does affect the critical behavior. In
this sense, universality is predicted to be weaker
for n «4-component systems than for n «3 sys-
tems. It is important to test this prediction ex-

perimentallyy.

As discussed by Landau, "the symmetry-break-
ing order parameter associated with a second-or-

der phase transition transforms as an irreducible
representation of the symmetry group of the dis-
ordered phase. The number of independent com-
ponents of the order-parameter is, therefore,
equal to the dimensionality n of the representation
according to which it transforms, and the trans-
ition is described by an n-component model.
Transitions which do not involve a change of the
unit cell are associated with an irreducible repre-
sentation of the Point grouP of the high-symmetry
phase, and the dimensionality of these representa-
tions satisfies" n «3. When the unit cell is
doubled in one or more directions, the order pa-
rameter transforms as an irreducible representa-
tion of the sPace group of the high-symmetry
phase, and the dimensionality of these representa-
tions can satisfy n «4,

In this paper, we construct Landau-Ginzburg-
Wilson (LGW) Hamiltonians for several physical
systems which are described by n «4-component
order parameters. The critical behavior of these
models is studied in the following paper, using the
exact renormalization-group technique in d = 4 —&

dimensions. ' A study of the critical behavior of
these systems may provide an experimental test
for the regions of validity of the & expansion.

We construct the LGW Hamiltonian correspond-
ing to a given physical system by using the group-
theoretical techniques developed by Landau and
Lifshitz. " A different method of constructing LGW
Hamiltonians has been used by Nelson and Fisher"
in their recent work on the metamagnet. For the
applications we shall consider, the method of Lan-
dau and Lifshitz has the advantage of insuring that
the Hamiltonian possesses all the fourth-order in-
variants allowed by symmetry. We have con-

13 5065



5066 D. MUKAME L AND S. KR INSKY

structed LGW Hamiltonians corresponding to the
following n ~4 physical systems: type-II anti-
ferromagnets TbAs, TbP, TbSb (n =4), and MnO,
MnSe, NtO, and ErSb (n=8); type-I antiferro-
magnet UO, (n=6); type-III antiferromagnet K,IrC1,
(n =6); sinusoidal magnetic systems DyC, and
TbAu2 (n = 4), and TbD, and Nd (n = 6). We also con-
sider an n =4 system, NbO„which exhibits a
structural transition.

Our paper is organized as follows: In Sec. II we
briefly review the Landau-Lifshitz symmetry ar-
guments which are used in constructing the Hamil-
tonians. In Sec. III we discuss the dimensionality
of the irreducible representations of space groups,
and outline the way in which the n ~ 4-component
vector models are derived. In Sec. IV we con-
struct the Hamiltonians for the physical systems.
The main results are summarized in Sec. V.

d4xX y„
Xk

(2.1)

where X is invariant under the symmetry group
Gp The partition function is obtained by perform-
ing the functional integral

(2.2)

The Hamiltonian density & can be written as a sum
of two terms:

(2.3)

where 5e' is a function of the order-parameter (and
not its derivatives), while K' is a function of the
Q's and their derivatives, and it vanishes when all
the derivatives vanish. It is assumed that X is an
analytic function of the order parameter and its
derivatives, and that it can be expanded in terms
of these variables. We also assume, for reasons
which mill be discussed later, that the n compo-
nents of the order parameter transform into one
another according to one irreducible representa-
tion R of the group Gp. Under this assumption, the

II. SYMMETRY ARGUMENTS OF LANDAU AND LIFSHITZ

Consider a phase transition in which the sym-
metry group of the system is reduced from G, in
the disordered phase to G in the ordered phase,
with G a subgroup of G,. Let the transition be de-
scribed by an n-component order-parameter

Such a transition can be studied by the
appropriate Landau- Ginzburg-Wilson Hamiltonian,
which is a function of the order-parameter and its
derivatives:

expansion of ' will take the form:
II n

3c'= —,'r g—p',—gv~ g a,

(2.4)
where the sum P& is over the third-order invari-
ants of the group G,. The reason that the expan-
sion does not include a linear term is that the rep-
resentation R according to which the order param-
eter transforms is different from the unit repre-
sentation E (otherwise, the symmetry group G of
the ordered phase will be the same as the group
Gp of the disordered phase, and no symmetry
breaking will occur). The linear term transforms
according to the representation R, and, therefore,
it cannot be invariant under G,. The expansion
includes one second-order term, P", , P'„which
is the only second-order invariant, but it may in-
clude several third- and higher-order terms.
Their number and actual form depend on the spe-
cific group Gp and the representation B. If the or-
der parameter transforms according to more than
one irreducible representation, say two, the sec-
ond-order term will decompose into a sum of two
terms:

(2.5)

where 4„.. . , 4'„are linear combinations of
Here 4„.. . , 4 transform according

to an irreducible representation R,
and 0,„.. . , C„ transform according to an irre-
ducible representation R,. These two order pa-
rameters have, in general, two different tran-
sition temperatures t, and t, determined by r, and

We are interested in the transition from the
disordered phase, and, therefore, we consider
only the order parameter which has a higher
transition temperature, say 4„.. . , 4' . This
transition can be discussed in terms of an m-com-
ponent order parameter. Clearly, it may happen
that the two coefficients r, and r, are accidentally
equal, and that one has to consider all the n com-
ponents C „.. . , 4„. A point where such an acci-
dental degeneracy occurs is, in fact, a higher-or-
der critical point (bicritical, tetracritical, or
higher order). In this work we are interested in
ordinary critical points, and therefore, we con-
sider order-parameters which belong to only one
irreducible representation. Let us discuss now
the Hamiltonian X'. The expansion of
K'(p„teals, /sx„, . . .) takes the form:

X'= Q Q A(~qg(
k

(2.6)
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with the restriction that each term is invariant
under the group G,. The expansion does not in-
clude terms linear in the derivatives,

of the Fourier components of the order parameter.
To second order in the order parameter, the
Hamiltonian (2.1) is of the form

c„,' '

5=1 k=1 k
q 5

(2.Sa)

and it can be neglected.
In the Landau theory, one replaces the functional

integral (2.2} by its saddle point value and de-
scribes the thermodynamic behavior of the syst m

by the approximate partition function. Using this
approximation, Landau and Lifshitz obtained the
following results:

(a) For a second-order transition to occur, the
third-order term in the expansion (2.4) should van-
ish at the transition temperature 7,. One can dis-
tinguish between two cases: (i) The third-order
term does not appear in the expansion, due to
symmetry, so the transition temperature is de-
termined by one equation, r= 0. (ii) The expan-
sion does include a third-order term, but it van-
ishes at the transition. The transition temperature
is now determined by several equations, r = 0 and

v~ =0. In order to satisfy these equations one

needs, in general, several thermodynamic vari-
ables. In this work we are interested in phase
transitions which occur when only one thermo-
dynamic variable, the temperature, is changed.
We therefore demand that no third-order terms
appear in the model Hamiltonians which describe
our physical systems. This is equivalent to the
restriction that the irreducible representation R
associated with the transition is such that the sym-
metric part of R', denoted by [R'], does not con-
tain the unit representation E:

[R'] $ E. (2.7)

All the transitions discussed in this work satisfy
this condition.

(b) The first term in the expansion (2.6), name-

ly,

should vanish at the transition temperature. " The
physical interpretation of this condition is best
seen by rewriting the Hamiltonian (2.1) in terms

as these are surface terms and they can be ne-
glected in the thermodynamic limit. For the same
reason, one should consider only tensors A.,»
which are antisymmetric with respect to the first
two indices. The symmetric part of this tensor
gives rise to a surface term,

(4,~ )
s(4i4~)

where

F&g) =r+X'tl+B„'8q~q&. (2.6b)

The linear term in Q comes from the first term in

(2.6) and the bilinear term in q (n, P = 1, . .. , d)
comes from the second term in (2.6}. Since the
order parameter which becomes critical at the
transition (r=0) is p, , (the |1=0Fourier compon-
ent of g, ), the coefficients F, (@ should satisfy

F,.(0)=0 (2.9a)

F, ((1})0 for Jet} (2.9b}

F(q) F (q)

c

T2 & Tc

C

c

z'Tc

qo(T)
(o) (b)

FIG. 1. Schematic form of the function F (q) when (a)
the condition (2.10) is satisfied, and (b) the condition
(2.10) is not satisfied. The vector qo at which the min-
imum of F (q) is obtained is temperature independent in
the first case, but varies with temperature in the sec-
ond case.

at the transition. This may happen only if the lin-
ear term in (2.6b) vanishes at T,. One can dis-
tinguish between two cases: (1) The expansion
(2.6) does not include a term

ay,

ff lk I k

due to symmetry. This is the case when the rep-
resentation R according to which the transition
occurs is such that the direct product of the anti-
symmetric part of R', denoted by {R'), with the
vector representation V, does not include the unit
representation

(R)xVJE (2.10)

This implies that the minimum of F,gf) is obtained
at |1= 0 in a temperature interval which includes
T„as shown schematically in Fig. 1(a). (2) The



5068 D. MUKAME L AND S. KHINSKY 13

expansion (2.6) does include a term of k . The dimensionality n of the representation
(R,P) is, therefore, given by

n = Slp. (3.2)

but the coefficients A, » vanish at T,. For Tw T,
the coefficients A, ,, do not vanish, and therefore,
the minimum of F, (q) is expected to be at qadi 0,
as shown schematically in Fig. 1(b). The order
parameter which appears below the transition is
the Q, Fourier component p, ~, , where fi,(T) is
expected to vary continuously with temperature,
and Q(T,) =0. Some of the physical systems dis-
cussed in this work (TbAu„DyC» NbO„and Nd),
do not satisfy condition (2.10), and the wave vec-
tor Q, of their order parameter is expected to vary
with temperature. This prediction of the Landau
theory was confirmed experimentally in TbAu„
DyC„and Nd. No temperature dependence of q,
was found" for NbQ, . This implies that either the
vector |I,varies very slowly with temperature, or
that the transition is slightly first order. No evi-
dence for discontinuity of the order parameter was
found in this case.

III. n ~~4-COMPONENT VECTOR MODELS

We discuss now the dimensionality of the order
para, meters which may describe transitions (mag-
netic or nonmagnetic) which occur in crystals
The symmetry groups of the three-dimensional
crystals are the 230 space groups, and they are
listed in Ref. 24. The irreducible representations
of a space group Go, are classified in the following
way. ' Let k be a vector in the first BrQ]oujn
zone. The group of k, Gg, is defined as the group
of a,ll the rotational elements (including screw axes
and glide planes) of the group G, which leave the
vector k invariant. The star of k is a set of vec-
tors ky k k2 . , k„which are obtained by apply-
ing the symmetry elements of the group G, on the
vector k. The irreducible representations of the
group G, are classified according to the param-
eters (k,p), where R is a vector in the first Bril-
louin zone and p is a discrete parameter which
classifies the irreducible representations of the
group of %. Let the dimensionality of the repre-
sentation p (also called the small representation)
be l~. The functions which transform into one
another as a basis of the representation (k,p) have
the form

(m = 1, . . . , s;j= 1, . . . , l~), (3 1)

where Ug &(r) are invariant under the translation
operators of the group G,. The functions
Ug, (r), ... , Ug, (r) transform to one another as
a basis of the small representation p of the group

Phase transitions which do not involve a change of
the unit cell (i.e. , the primitive unit cell above the
transition is the same as the one below T,), are
associated with a representation which belongs to
k=0. In this case the star of the vector K contains
only one vector, s = 1, and the group Gg is isomor-
phic to the point group of the crystal. The small
representation p is, therefore, a representation of
the point group and it satisfies L~

~ 3. The order
parameter which describes such a transition has
n ~ 3-independent components. If the transition
does involve a change of the unit cell, the star of
the vector k may include more than one vector and
the dimensionality of the representation can be
n~ 4. Note, however, that not every transition
which involves a change of the unit cell is de-
scribed by an n& 4-component order parameter.
As an example, consider a tetragonal crystal
whose space group is P4/mmm, which has one
magnetic ion per unit cell. We assume that the
crystal undergoes an antiferromagnetic transition
which doubles the unit cell in the z direction, and
with the sublattice magnetization along the z axis
(Fig. 2). The order parameter in this case is the
sublattice magnetization

Q =So, Sa (3.3)

where A and J3 are the two sublattices. qb trans-
forms to ~ Q under the operations of the group G„
and the order parameter is one dimensional, even
though the unit cell is doubled.

The maximal dimensionality of the order param-
eter which can be achieved in crystals is 48, cor-
responding to a transition which is associated with
a reciprocal-lattice vector k in some general direc-
tion, in a crystal whose point group is m3m (0„). In
this case the star of k consists of 48 vectors which
are obtained by applying the 48 operators of the
group O„on the vector k. The group of k is the
trivial group, and it has only one one-dimensional
representation (the unit representation). For tran-
sitions in fluids the dimensionality of the order
parameter is not limited. For example, the tran-
sitions from liquids to crystals' "or to cholesteric
and smectic liquid crystals" are described by or-
der parameters of infinite dimensionality. How-
ever, the LOW Hamiltonians which describe these
transitions contain third-order invariants [they do
not satisfy Eq. (2.7)], and the transitions are ex-
pected to be first order.

In the present work we construct n& 4-compon-
ent vector models for several physical systems.
We consider model Hamiltonians of the form
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tonian (3.4) transform under the operators of G,
as the symmetric part of the representationI' ([I']}. The number of fourth-order invariants
l is equal to the number of times the representation
[I'] contains the unit representation. The charac-
ter table X,(g) of the representation [I"'] is given
b 31

X4(g) = ~X(g )+ kX(~+)X(g)+ 4X(g )X (g)

+ t X'(g')+ AX'(g}, (3.5)

where g E G„and X(g) is the character table of the
representation I . One can use this character table
and the orthogonality relations to find the number
of fourth-order invariants which can be formed by
the order-parameter ft}„... , p„. Our method for
determining the invariants was not systematic.
We made educated guesses and then explicitly
checked that our forms were invariant under the
operations of the group. Since we knew the number
of independent invariants from the character table,
we knew when we had constructed a complete set.

0 IV. CONSTRUCTING THE HAMILTONIANS

A. Type-II antiferromagnets

FIG. 2. Magnetic structure and the magnetic unit
cell of an antiferromagnetic tetragonal. crystal. The
chemical unit cell is shown in heavy outl. ine. The tran-
sition from the paramagnetic phase to the magnetically
ordered phase is described by an n = 1-component order
parameter, even though the unit cell is doubled.

n m

=-2 g [ry,' +(Vy, )']- g.u'P P', ,„,y,
j =1 P=1 i jul

(3 4)

where the sum+~, is over all the possible fourth-
order invariants of the group G,. All the transi-
tions we shall discuss satisfy Eq. (2.7), and,
therefore, the Hamiltonian (3.4) does not include
third-order terms. The gradient term in the Ham-
iltonian (3.4} is assumed to be rotationally invar-
iant in the coordinate space. The anisotropic
terms do not affect the critical behavior of the sys-
tem to first order in e, therefore, they are not
considered here. " By applying a symmetry-break-
ing field, such as a stress, magnetic field, etc. ,
the paramagnetic space group is lowered and the
dimensionality of the order parameter is reduced.
Therefore, to experimentally observe the effect of
the n components of the order parameter, care
must be taken that no symmetry breaking field is
present. Let I' be the irreducible representation
according to which the order parameter ft}„... , p„
transforms. The fourth-order terms in the Hamil-

We consider the transition from the paramag-
netic to the magnetically ordered phase in type-
II antiferromagnets. " The paramagnetic space
group of these fcc crystals in Em3m. The mag-
netic structure below the transition consists of
ferromagnetic (111)planes which are coupled
antiferromagnetically. This structure belongs
to a reciprocal-lattice vector k, = (-„-,', —,}(2n/a),
where a is the lattice constant of the nonprimitive
~nit cell. The star of k, consists of four vectors:
k, = (-,', —,', —,')(2 v/a), k, = (- r, —,', —,')(2 v/a), k, = (- 2,
—2, 2)(2m/a), and k, =(-,', ——,', 2)(2n/a). The four
magnetic lattices which correspond to these four
vectors are given in Fig. 3. The group of k, is
D3~, and, therefore, any order parameter which
belongs to k„should transform as a basis of an
irreducible representation of D,„. This restricts
the direction of the magnetic moments to be either
parallel to k„where it belongs to a one-dimen-
sional representation of D„, or to lie in a plane
perpendicular to k„where it has two independent
components. In the first case (which occurs in"
TbAs, Tbp, and TbSb), the system is described
by an n = 4-component order parameter, while
in the second case (which occurs in" MnO, "
MnSe, NiO, "and"" ErSb) the system is de-
scribed by an n = 8-component order parameter.
We note, however, that there exist some type-II
antiferromagnets (as33 DySb and HoSb) where the
magnetic moment lies along the [001] direction
with nonvanishing components both parallel and



50VO D. MUKAMEL AND S. K RINSKY
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transforms under the generators of the group
Ernsm as follows:

I

I

I

I r-
d

E I

I

4

9
I

I
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~ +

I

where C, ([ ]) is an I-fold rotation axis along
the direction [ ' ], i is the inversion, and

t([~~0]) is a translation of (&, -,', 0)a. Using these
transformations we found that the order param-
eter has three fourth-order invariants. The LG%
Hamiltonian which describes the system is

(3) (4) K~

FIG. 3. Four magnetic lattices of type-II antiferro-
magnets. Black dots indicate "up" spins and white dots
indicate "down" spins. The lattices 1, . . . , 4 belong to
the wave vectors %1= (~, 2, 2)(2&/~), ~&= (- ~, 2, 2)(2&k),
%&= (-2,—2, ~)(2m/a), and %4= (-,', —2, 2)(2&/+), respec-
tively.

perpendicular to k, . The order parameter which
describes these systems belongs to two irreduci-
bl.e representations, and it has 12 independent
components. According to Landau theory the
transition in these systems is either first order,
or second order with the critical. point being a
bicritical or tetracritical point (where two dif-
ferent representations become critical. simul-
taneously). In the present work we consider only

ordinary critical. points. Let us discuss now the
transitions described by the n =4 and n =8 models.

/. m //k

Vfhen the magnetic moment m is parallel to the
reciprocal-lattice vector k, the order parameter
has four independent components g, (i =1, . . . , 4).
These components are defined in the fol. lowing way:

—V Q) -u @1@~$3
x=1

(4.3)

In this case there are two components Q, and

P, associated with each vector k, , i = 1, . . . , 4,
and the representation according to which the
transition occurs is eight dimensional. For each
vector k, we define two unit vectors v,. and p,
perpendicular to it:

Sn'v~— S v, , i=1, . . . , 4
ay B) ~

v, =(I/v 2)(1, -1, 0), p, , =(1/W6)(l, 1, —2),

v2 = (I/v 2)(l, 1, 0), y, 2
= (I/v 6)(- 1, 1, —2),

v3 = (I/W2)(- 1, 1, 0), g, = (I/v 6)(- 1, —1, —2),

v, = (I /v 2)(- 1, —1, 0), g, = (I/&6)(l, —1, —2).

(4.4)

Using these unit vectors, the eight components
of the order parameter are defined by

S~ k, — S„k,, i=1, . . . , 4

(4.1)
where the sums g, (s), and Q «(v), are over
sites e of the black and white sublattices, re-
spectively, of the structure which belongs to k,.
(see Fig. 3). The vectors lt,. are unit vectors in

the k, directions. The order parameter (4.1)

S„~lT, — Q S~ P, , i =1, . . . , 4
F. B/& fx g (W'}

(4 6)

where the sums Q«(s) and+«(v) are de-
fined as before. The order parameter (4.5) trans-
forms under the generators of the group Email
in the following way:
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C,([001]):

i: P, —@f Pf- —Pf, i=1, . . . , 4

C3([11o]): 0,"—413 43- —43, 4)3- —41 454 -—44 4, -43, 43 e-3, e3-ei 414 4-4

C3([ill]): Q, - —3Q, —3V 3 @„(t)3-34)3+3W3$3,(t)3 3(-t)4 —31t3 Q4) Q4- —3(t)3+3&3/3) (t), -3&3/, —3Q„

2~~ Q3 2$3y43 2~~ @4 2f4y f4 2223 f2 2f2y

t([330]):
This order parameter has six fourth-order invariants, and the LGW Hamiltonian is given by

&=- —Q( (4l+4l) ~ ( 4 )'+( 4i)') — " (4;.4;)2 3=1 =1

where

(4.8)

(4.7)

P1= (4), + 4)(),
=1

p g (4342+4342+y3@2+4342)

and

3 ~1~2~3~4 ~1~2~3~4 ~1~2~3~4 ~1@2@3~4 414 243~4 1~2~3~4 ~1~2~3~4 ~1~2~3~4&

4
= Q (Q( QJ + Q( Q~ ) —2($1/1/ $3+3Q3Q3Q3Q3 + @1/14 444+ 4 4/44 4

—$1$1$343 —Q3Q3Q444))
f&j

5 (4143 4143) (4344 4344) ( 9143 4143) (4144 4144) (4343 4343)

(e'.~'.-PP—).~&(e,e, 4.V.—)(V'. e'. 4.' —4.') -~~(e.4. e,~.)—(e,"e', 4*. e—l), —

(4.8)

+1 (4A 8 343 434 34444) '(4143 4344 4143' P344) (4143 4143 4394 4344)

+ 2~&(4 141 —4343) (414 4)' - 4—)3+ 4)3) +2~3(434 3 4444)—(1(11—(t)'1 —4'3+ (I)3).

B. Type-I antiferromainets, m j.k

Consider the transition from the paramagnetic
to the magnetically ordered phase in type-I anti-
ferromagnets. These are fcc crystals whose para-
magnetic space group is Em'. The magnetic
structure consists of ferromagnetic (100) planes
coupled antiferromagnetically. This structure
belongs to a reciprocal-lattice vector k, =(1,0, 0)
(2v/a), where a is the lattice constant of the non-
yrimitive unit cell. The star of k, consists of three
vectors: k, =(1,0, 0)(2v/a), %3 =(0, 1, 0)(2v/a), and

k, = (0, 0, 1)(25t/a). The three magnetic lattices which
correspond to these three vectors are given in Fig. 4.
The fact that the order parameter which belongs
to k1 should transfo rm according to one irreducible
representation of the group of k, (D, 3), imposes
restrictions on the possible direction of the sub-
lattice magnetization: it can be either parallel or
perpendicular to k, . In the first case, the repre-
sentation of the group of k, is one dimensional,
and the order parameter has only three compo-
ents. We shall not consider this case. In the sec-

(I) K, 7 iI (2) KZ

I

I
I pIg

O-
I

I

(5) Kg

FIG. 4. Three magnetic lattices of type-I antiferro-
magnets. The lattices 1, 2, 3 belong to the wave vectors
%&= (1,0, 0)(2x/a), %2= (0, 1,0)(2m/a), and %3= (0, 0, 1)
(2~/a), respectively.
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p, =Z s. , g s„„
n E(a)1 n 6(W}1

s. .— g s-,.
n G (B~2 n +(W ~2

n e{B$
2

4's= Z
n ~(B)

~= Z
a c(a)3

s. , — g s. ..
ne{W}

2

Sa, —Q S ), ,
ne{w}

s„,— P s„„,
n c(wj3

(4.9)

where Sn &, I[L=x, y, z, is the p, component of the

spin on site a. This order parameter transforms
under the generators of the group Em3m as follows:

c,([oo1]): 0,

i: Qt Q], 'It'; Q;, i =1 2 3

c,([1111): y, —y„4,

c,([llol): y,- —y„y,—y„y, -y„
9 1 42& 42 Pl) 43 431

f ([22 ]) Pg 41& 42 42& 43 43&

(t). - —41 02- —42 43- 43

(4.10)

The order-parameter has five fourth-order invari-
ants, and the LGW Hamiltonian which describes
the system is:

~ 4i+4i + &0 '+ ~4. '
2 3=1

—u, (Ir)~+ 4

$=1 1= 1

—us +(4 4~+4i4j) —
(uA4A&z 4+As20+:0',)

—u5($~4 z+ Q2Q~ + 4'~4'~). (4.11)

C. Type-III antiferromagnets

ond case (which occurs in UO, }, the representa-
tion of the group of k, is two dimensional, and the
order parameter has six independent components,
&j&&, Q, , i =1, 2, 3. The order parameter is defined
by:

s„, Ps„

gs„,— gs
ne(B}2 nc(W} 2

y, = g s. , — ps. „,
nE(B}'2 n&(W}'2

~.= Z S-..— Z,
ne{a} nc(W}

(4.13}

Sa, z Q Sa. z&

n C(a}3 ne(W)3

where the magnetic lattices j,j, j= 1, 2, 3 are de-
fined in Fig. 5. The order parameters Q&, Q&

transform, under the generators of the group
Fm3m, in the foQowing way:

C,([001]):

qt 1 ~2& ~2 ~l& qw 3 431

i: y, --y, , y, Q, , &=1 2 3

C,([111)):

(4.14)

c,([11o]): y, -y„y,-y„y,-
~l 42 )42 410 43 qt3t

below the transition belongs to a reciprocal-lattice
vector k, = (-,', 0, 1)(2n/a) with the nonprimitive unit
cell doubled in one direction (x in this case). The
star of the vector k, consists of six vectors: +k,
= (+ —,', 0, 1)(2s/a), ak, = (1,+ z, 0)(2w/a), and +k,
= (0, 1, a —,)(2w/a), and the group of k, is C,„. As in
the previous cases, for the order parameter to
belong to one irreducible representation of the
group of k„ the sublattice magnetization should
be either parallel to the x direction (with one in-
dependent component) or be in the y —z plane (with
two linearly independent components). Here we
consider only the first case (occurs" in K,lrC1, ),
which is described by a six-dimensional order
parameter. Let C, ], . be the components of the or-
der parameter which belong to the reciprocal-lat-
tice vectors +k;, j = 1, 2, 3. We define these com-
ponents in terms of six functions P~ and Q& (j =1,
2, 3}:

+.k,.
= (4, + 4-g) +~(4g 4g), — (4.12)

where P, and Q,. are defined by

y, = g s. , — g s„„
no{a}1 ne(W}

Sa. z g Sa
~ x ~

nc(a}- ne(w)-

These are fcc crystals whose paramagnetic
space group is Em3m. The magnetic structure
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J

I

I

I

I

I

J

FIG. 6. Transverse sinusoidal magnetic structure,
such as the one which exists in DyC2. The f vector is
along the y axis and the magnetization is along the z
axis. The x-z planes are ferromagnetic.

(2)

Ip star of k, consists of four vectors: +k, =(xk, 0, 0}
&&(2w/a) and +k = (0, +k, 0)(2w/a) (Fig. 7). The sub-
lattice magnetization is along the z axis and, there-
fore, the order parameter belongs to a one-dimen-
sional representation of the group of k, (C,„}. The
order parameter has four linearly independent
components:

O', -„, -=Q, a Qf, = P e""~'S;,, (4.16)

FIG. 5. Six magnetic lattices of type-III antiferro-
magnets.

We found that this order parameter has three
fourth-order invariants. The LOW Hamiltonian
which describes the system is

X= —
2 P [r(y',. + P) + (v4, )'+ (vy, )']1

2 3
—u~ Q Q(+P( —vQ (Q(+Q()

where the sum g-, is over the sites of the mag-
netic ions, and S-, , is the z component of the spin
located at r. The fourth-order invariants of this
order parameter are constructed by noting that
the only fourth-order terms which are transla-
tionally invariant are those which can be written
as products of two terms of the form 4 k,C

The two functions of 4 k,% k, and 4 k,4 k, are in-
va, riants under the translation operators of the
group D,"„, and they transform to one another as
a basis of a two-dimensional representation of the
point group D4„. By finding the second-order in-
variants of this representation, one obtains all
the possible invariants fourth order in +&,. The
functions Cg,4' I, , and 4'&,4 k, transform under
the generators of D,„ in the following way:

(4.15)

K2

K2

D. DyC, and TbAu,

K)

K,
These are tetragonal crystals" whose paramag-

netic space group is I4/mmm (D,"„). Below the
Noel temperature, they exhibit a transverse sinu-
soidal magnetic structure with the sublattice mag-
netization being parallel to the z axis (Fig. 6).
We consider first the DyC, . The magnetic struc-
ture of this compound belongs to a reciprocal-
lattice vector k, = (k, 0, 0)(2w/a), where k -0.77
and a is the lattice constant of the x-y plane. The

(o) (b)

FIG. 7. Star of the wave vector K of the magnetic
structure of (a) DyC2, and {b) TbAu, .
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and

C,([100]): Cg,4 g, -4-„,4 l', , j= 1,2.

(4.17)

the group of k, is D4„. The sublattice magnetiza-
tion is parallel to R„and, therefore, the order
parameter which belongs to K, transforms as a
one-dimensional representation of the little group.
The order parameter has six independent compo-
nents, defined by

Using these transformations we found that there
are two invariants, fourth order in the order pa-
rameter. The LQW Hamiltonian which describes
the system is

=/~+i/~
~

~w
k& ~ rS, y j=1 2 31 jy (4.19)

where the sum Q, is over the sites of the mag-
netic ions and k~ is a unit vector parallel to R~.

We use the method described in Sec. IVD to find
the fourth-order invariants of this order parame-
ter The .functions 4'l 4' k (j=1,2, 3}transform
under the generators of the point group m3m (0„)
as

The magnetic structure of TbAu, is similar to that
of DyC„except that the propagation vector R, is
k, =(k, k, 0)(2w/a) with k-0.83. The star of R, con-
sists of the four vectors: ak, = (+k, +k, 0)(2w/a) and

+K, = (+k, vk, 0)(2v/a), so the order parameter is
four dimensional. One can define the order param-
eter as in Eq. (4.16) and find the LGW Hamiltonian
in the way discussed above. The result is that the
Hamiltonian (4.18) is also relevant for DyAu, .

E. TbD2

C,([001]): 4pP g, —4'-„,4

+ks+-k3 +k3+-k 3 y

~: +k,+-C, -+X +-k j=1,2, 3

-+k +-k, -+k,+-k, yk3 -k3

C,([110]): 4'p, 4' g, 4'g 4' k, ,

(4.20)

TbD, is an fcc crystal" whose paramagnetic
space group is Em3m. Below the Noel tempera-
ture, it exhibits a longitudinal sinusoidal magnetic
structure, associated with a reciprocal-lattice
vector f, =(k, 0, 0)(2w/a), where k-0.21 and a is
the lattice constant. The star of the vector k, con-
sists of six vectors: ak, =(ak, 0, 0)(2w/a), ak,
=(0,+k, 0}, and ek, =(0, 0, ek)(2s/a} (Fig. 8), and

+%,+-k,-+k,+-k, ~

The order parameter has two fourth-order in-
variants, and the LGW Hamiltonian which de-
scribes the system is

3 2 S

Q Q Qf+Qi
~

v Q (Qg+Ql)
)=y 5=1

(4.21)

F. Nd

2

K)

FIG. 8. Star of the wave vector K of the magnetic
structure of TbD2.

The crystallographic structure of Nd is double
hexagonal close packed, "with four-layer stacking
sequence of type A.J3AC, and whose space group
is P6, /mme. Each unit cell contains four ions
located on sites (2a) and (2d). The ions on site
(2d) (layers B, C) order magnetically at 19'K,
with an antiferromagnetic arrangement between
alternate hexagonal layers, and with sinusoidal
modulation within each layer. The magnetic struc-
ture is associated with a reciprocal-lattice vector
k, =(k, 0, 0, 0) (2v/a), where k ~ 0.31, a is the lat-



13 PHYSICAL REALIZATIONS OF n -4-COMPONENT. . . I. . . 5075

rcB
r r

CE-C

j=1,2, 3 (4.22)

where the sums g, , s and Q, , c are over the
sites of layers B and C, respectively, and kj is a
unit vector parallel to k&. The functions4q 4 g,
j =1, 2, 3, transform under the generators of the
rotational part of the group P6, /mme according to

tice constant in the basal plane, and the three
axes b, = (1, 0, 0, 0), b, = (0, 1, 0, 0), and b,
=(0, 0, 1, 0}are defined in Fig. 9. The sublattice
magnetization is parallel to the vector k1 The
star of k, consists of six vectors: +k, = (+k, 0, 0, 0)
(2w/a), sk, =(0, +k, 0, 0) (2w/a), and +k, =(0, 0,
+k, 0) (2w/a}, and the group of k, is C,„. The order
parameter which belongs to k, transforms as a
one-dimensional representation of the group of k,
and, therefore, it has six independent components:

G. Nb02

NbO, is a tetragonal crystal" "whose space
group isP4, /mnm (D,",). At -800'C it undergoes
a structural transition, in which its symmetry
is reduced to I4,/a (C',&). The structurebelowthe
transition is associated with a reciprocal-lattice
vector k, =(~, ~, w) (2w/a}, where a is the lattice
constant in the basal plane. The star of k, con-
sists of four vectors: +k, =(+~, +~, ~) (2w/a),
and ak, =(+4, +w', —,')(2w/a) and the group of k, is
C~. The order parameter which is associated
with k, transforms according to one irreducible
representation of the group of k„and neutron-
diffraction studies show that this representation
is either A, or A, ." Both cases give rise to the
same LGW Hamiltonian, and, therefore we as-
sume that the order parameter belongs to the
representation A, . The structure below the tran-
sition is discussed in detail by Pynn, Axe, and
Thomas. ' The order parameter has four com-
ponents:

j=1 2 3

C,([1000]): 4'p(, 4' g, -4%,%
(4.23)

C,g~
= 'II}'~ + &p~, j = 1, 2 (4.24)

where Q~, Q~, j=1,2, are real parameters.
Under the generators of the group D4& they trans-
form as:

The order parameter has two fourth-order in-
variants. The LGW Hamiltonian which describes
the Nd was found to be the same as the Hamil-
tonian which describes TbD„and it is given by
Eq. (4.21).

C~ .

~1 420 ~2 ~1&

(4.25)

Kp

Kp

b)

The order parameter has three fourth-order
invariants, and the LGW Hamiltonian which de-
scribes the system is"

l.w(4'+0 )+(&0 ) +(v4') )
1

2 2 2

Q 4~[ + 0 s
—~ Q (0& + 0 &)

&=1 &=1

(4.26}

Fig. 9. Star of the wave vector kof the magnetic
structure of Nd. Let us define a 2m-component vector model
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TABLE I. Physical systems which correspond to the model Hamiltonians Q-~. The notation of the space groups
is defined in Ref. 24. m and k are the magnetization and propagation vectors, respectively.

Substance

Di mens ionality
of the order
parameter

Model
Hamiltonian

Space group
T&T

Structure
T~ Tc References

TbAu» DyC2

Nb02

TbD2

K2Ir C16

MnO, MnSe, NiO,
ErSb

TbAs, TbP, TbSb

UO2

2m=4

2m=4

2m=6

2m=6

2m=6

+, w=p

~, , w=p

8C&, w=0

SC4

i4™mm

P42™~
Fm3m

P63/ypg mc

Fm3m

Fm3m

Fm3m

Fm3m

Sinusoidal, k][ [110](TbAu&)
k II [100](DyC&), m]] [0011

k=(Ti, $, pt)

Sinusoidal m)[k)) [100]

Sinusoidal m)] k)] [1000]

Type-III antiferromagnet k = (&', 0, 1)
m II [IOO]

Type-II antiferromagnet m ~k

Type-II antiferromagnet m)) k

Type-I antiferromagnet m ~k

41

44, 45

42

43

40

34—38

33

39

x, = —g [r(y',. + pi)+(vy, )'+(vf, ) ]
1

(4.27)

V. SUMMARY

We constructed four different n ~ 4-component
vector models, X, -X4, which describe the crit-

ys ys
&=1

As shown in Secs. IIC-IIG, this model is the ap-
propriate LGW Hamiltonian for the systems
K,lrCls (2m = 6), Nd and TbD, (2m =6, w =0),
NbO, (2m=4), and TbAu, and DyC, (2m=4, w =0).

ical behavior of several physical systems. The
physical systems which correspond to these Ham-
iltonians are listed in Table I. All the substances
in this table, except NbO„exhibit antiferromag-
netic transitions, while NbO, exhibits a structural
transition. In the following paper we study the
critical behavior of the Hamiltonians Xy +g using
the exact renormalization group in d=4 —E dimen-
sions. It would be interesting to test the predic-
tions of the e-expansion calculations by studying
these systems experimentally.
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