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The low-frequency long-wavelength spin fluctuation modes make a major contribution to the free energy near
the ferromagnetic instability of an itinerant-electron model. These fluctuations renormalize the static spin
susceptibility and depress the transition temperature predicted by Stoner theory. Moriya and Kawabata
(MK) have suggested a simple way of computing the depression self-consistently, by making sure the spin
fluctuations go soft at the renormalized temperature T, rather than at the Stoner value. We extend the
discussion of MK to include both longitudinal and transverse spin fluctuations, and find a T, which is only
slightly smaller than TMX. We also discuss the relation between T, determined from the condition that the
paramagnons go soft and that obtained by considering the softening of the spin waves. We argue that our new
results give evidence that the basic MK procedure is internally consistent and somewhat less ad hoc than it

appeared in its original presentation.

1. INTRODUCTION

Much of our current understanding of the mag-
netic properties of transition metals and their al-
loys is based on the so-called Stoner model.! This
involves treating the exchange interaction between
the d-band electrons in the mean-field approxima-
tion (MFA). Over the years, there have been many
attempts?® to improve upon the Stoner model of itin-
erant ferromagnetism. In particular, several re-
cent theories®® have tried to go past the MFA by
including, in one way or another, the effect of spin
fluctuations around the mean field. These fluctu-
ation theories are attractive in thal they make a
definite improvement on the Stoner picture but still
share with it a simple physical interpretation. We
believe that of these self-consistent fluctuation
theories, the simplest is that of Moriya and Kawa-
bata (MK).%%

In the present paper, we use the MK approach to
determine the ferromagnetic transition tempera-
ture T,. However, our analysis is an improved
version since (a) it is based on a rotationally in-
variant form which involves both longitudinal and
transverse spin fluctuations; (b) we show that the
results are quite insensitive to the wave-vector
cutoff ¢, used as long as ¢q,=0.5g,; and (c) we de-
termine T, self-consistently from the ferromag-
netic phase side as well as from the paramagnetic
phase side. More generally, we try to give some
physical insight into the approximations involved in
the MK approach. We feel that the results we have
obtained show that the MK approach is internally
consistent and somewhat less arbitrary than one
might gather from a cursory examination of the
original formulation. We might add, in this re-
gard, that Kawabata® has recently shown how one
may obtain something quite similar to the renor-
malized random-phase-approximation (RPA) re-
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sults of MK using a graph-theoretic approach.

In Sec. II, we give a brief review of MK-I using
a rotational invariant form of the interaction be-
tween the spins. We determine T?, defined as the
temperature at which the paramagnon modes go
soft in Sec. III. In Sec. IV we discuss the renor-
malized spin-wave spectrum and determine 7, the
temperature at which the stiffness constant o van-
ishes. Section V is devoted to the relation between
the classical fluctuation theory of Murata and
Doniach®® and the MK theory, both above and be-
low T,. Finally, we summarize our principal find-
ings in Sec. VI and briefly comment on some re-
cent theoretical work®~® which is relevant to the
correctness of the MK method.

Throughout this paper we set 7Z=1.

II. SELF-CONSISTENT THEORY OF
THE SPIN-FLUCTUATION FREE ENERGY
(PARAMAGNETIC PHASE)

We shall assume that the magnetic properties of
the d-band electrons can be described by the rota-
tional invariant Hamiltonian

H=) e al,a,+ 1L, N

Ey0
AT LEA@A-D-F@) F-D). @D

Here (¥ ) is the number operator for electrons at
point ¥, 5(F) is the electronic spin-density opera-
tor, and ] is the intra-atomic exchange matrix
element. We refer to Appendix A for more details
on how one derives (2.1) starting with a system of
d electrons interacting via a screened Coulomb in-
teraction. As we discuss there, the interaction
part of (2.1) is completely equivalent to the Hub-
bard Hamiltonian
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9=1°Z:n,(a)n,(_a). (2.2)

MK base their discussion on this form. The inter-
action (2.2) can be written in several different (but
equivalent) ways involving spin-density operators.
In particular, one has the transverse spin repre-
sentation

V=3 LR -15 Y @ -9+ 5@ (-]
q

(2.3)
and the longitudinal reprentation

P DEA@ICD- @D

Moriya and Kawabata use (2.3) in their analysis,
while we shall use (2.1). We note that the interac-
tion term in (2.1) is equal to 3(V+V?).

Let us assume we know the free energy F(M) of
our system described by (2.1) for a given value of
the magnetization

M=, [ dF [y @) -n, @), (2.5)

where u, is the magnetic moment of the electrons.
Then the static spin susceptibility is given by the
exact formula

_¥FM)
X="5Mmz

-1

(2.6)

_e
M=M

Here, M is set equal to its equilibrium value M at
the end of the calculation. Following MK, it is
convenient to write the total free energy in the
form

F(M) = Fo(M) + F (M) + AF(M). 2.7

Here F,(M) is the free energy in the absence of in-
teractions and Fy(M) is the Hartree-Fock part.
These two give rise to the usual Stoner MFA re-
sults for x. AF(M) includes all terms explicitly of
order IZ and higher, and will be referred to as the
spin-fluctuation part. With this decomposition the
paramagnetic spin susceptibility (2.6) is given by

X =2u2N(T)/[1 - I,N(T)+A(I,T)], (2.8)
where
N(T)=- f:deN(e)ﬂd"s—i) (2.9)
and
92AF(M)

AL T) =22 N(T) =2 | . 2.10
(1, T) =23 N5 | (2.10)

N(g) is the density of states per spin and f,(e) is

the Fermi-Dirac distribution. By definition, the
ferromagnetic transition temperature T%, is the
solution of the equation

1-IN(T)+A({,T,)=0, (2.11)

since y diverges when the temperature is decreased
to this value. The Stoner MFA transition tempera-
ture, by way of contrast, is given by

1-I,N(T?%)=0. (2.12)

We note that in the absence of spin fluctuations, the
transition temperature is completely determined by
the thermal distribution of electrons, i.e., N(T).

By using a coupling constant integration' together
with (2.1), we find that

1
AF(M)=4k,T 3 1, f A (@, iw,; M)
0

2
Q4 Wy

1
—3kpT E Iof aryt, (@, iw,; M)
0

a, wn

1
‘%kBT Z Iof d)‘AXE-(a,iwn;M))
0

o,
(2.13)
where
AX- (g, twy; M) =x2 (g, 1w M) = X0 (g, iw,s M)«
(2.14)

Here y*_(M) and y1,(M) are the usual dynamic
transverse and longitudinal spin response functions
for a system with a given total magnetization M and
an exchange interaction of strength x/,. We have
subtracted x°_ from the transverse part to ensure
that AF(M) only contains terms of order I? and
higher. Since (2.3) was used, the expression for
AF(M) used in MK is simply twice the last term in
(2.13). In (2.13), we sum over the Bose Matsubara
frequencies w,=2nmkgT, n=0,+1,2,....

In order to evaluate AF(M) using (2.13), we
need to find the various response functions for a
a given value of the magnetization M. These are
well known in the RPA,*'1% ! namely,

x2. (@, w; M)

by . -
X2 @, w3 M) =3— O G w D) (2.15)
Xhe (@, w3 M) - 5%, (@, w; M)
AL X4 (@, w; M) xS (@, w3 M) 2.16)

TTNTHG@, 0 M) XS @, w3 1)
where

= oy = = S fol€igt) — foleiy
xo- (@, w; M) = ;g_‘kh_esﬁj) , @1
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Xq({l;w M)_ zfo(ehgo) fo(‘xu)

©— (50— €t " (2.18)

Here the quasiparticle energies are given by

€3,=€i— Ol H; 0=+1(4spin), - 1(¥spin).

(2.19)

The effective magnetic field H is a known function
of the net magnetization through the implicit rela-
tion

M=y, 3 Uileir) - folezy)). (2.20)
k

To lowest order in T/T,, we have
M = o {2N(O) o H = [F,N(0) /€3] (ko B + O (1 B,
(2.21)

where N(0) is the electronic density of states per
spin at the Fermi level and F, is defined in Ap-
pendix B. We shall have use for (2.21) later.

We note €;, in (2.17) and (2.18) are functions of
the given value of M but independent of the coupling
strength A. Using these RPA expressions in (2.13),
the coupling constant integration can be done to
give

BFpp a0 =220 37 {1 - 1383, i) @, i0,)]

Qb wp

0.(4,7w,)]

Z {In[1 -

& wy

+Ix%.(q, w,)} (2.22)

Essentially the same result has been obtained!!s!2
by summing up ring (longitudinal part) and ladder
(transverse part) free-energy diagrams. We
might note that (2.22) may be written in a more
physically transparent form. This makes use of

J

R, w )——X%I (1 llox 1+Itxo) [x D&

0 3G @) (

the fact that for any function A(w) which is analytic
off the real w axis (as well as nonsingular at w
=0), we have

kpT EA(w ) coth(w/ZkBT)A(w)

- Fy(w) 8“‘(“’) .

27” (2.23)

Here the contour ¢ encircles the positive and
negative frequency axes in a counterclockwise
sense but excludes the origin, while

Fy(w)=% w+kgTIn(l - ¢™/*s87) (2.24)

is the Helmholtz free energy of a boson excitation
of energy w. Using the second form in (2.23), we
easily verify that AFg,, in (2.22) may be reduced
to

AFppa(M) =) [Fo(w,) - Fy(w))], (2.25)

where w; (w}) are the poles of the longitudinal and
trasnverse spin susceptibilities of the interacting
(noninteracting) system. (See Thouless'® for de-
tails.) Thus we see that (2.22) is simply the total
free energy of a system of noninteracting boson
excitations corresponding to spin and density fluc-
tuations.

Inserting (2.22) into (2.10), and making use of
(2.21), we find by a straightforward calculation that

AL T)=kpT Y, R(§,iw,;1)

i:w,.

dw - —
37 [ZNO(w)+1]ZaImR(q,w—zO 1)

1
X 8H2 1-1Iy oH
In expressions such as (2.26), the part proportion-
al to the Bose factor N,(w) gives the contribution of
thermally excited fluctuations. The temperature-
independent part gives the zero-point contribution.
The temperature dependence of x°_ and x? is very
small compared to that introduced by Ny(w). As-
suming that T < T, these are evaluated at T=0 K.
Finally, let us note that in deriving (2.27), use has
been made of the relation

e oL S )

(2.26)
where
x‘}‘(ﬁ))z]
8 B=0
1
. 2.27
_IOXO]Z]FHO ( )
ax% _ S
31-} o=l | (2.28)

Béal-Monod, Ma, and Fredkin'? were the first to
use (2.26) and (2.27) in order to evaluate the low-
temperature spin susceptibility of an exchange-
enhanced Fermi liquid. The low-frequency modes
are expected to be the major contribution to A(Z,T)
for two reasons. First of all, the factor coth(w/
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2kpT) in (2.26) means that mode of energy w=kgT
will be heavily weighted. Secondly, the function
ImR(§, w) itself develops a peak at the so-called
paramagnon energy , given by

1- ono(?l, -‘B) =0.

Using the well-known paramagnon expansion of
x°(q, w) for w <€ and g <<qp [see Appendix B], the
dispersion relation (2.29) reduces to

(2.29)

w=—icpq, (2.30)
with
G !“_7_ (2.31)
Cp= = .
P24, T

where T =I,N(T). One finds that the closer the sys-
tem gets to the Stoner ferromagnetic instability,
the intensity of the paramagnon peak in Im R(§, w)
increases while its frequency decreases. As a re-
sult, the low-frequency spin fluctuations make the
increasingly dominant contribution to Im R(§, w) the
closer I is to unity.! In this regard, we might also
emphasize that the RPA result (2.22) for AF is
only expected to be a reasonable approximation for
the free energy of long-wavelength, low-frequency
modes. Fortunately, it is precisely the low-q/qp,
low- w/e ; region which is the important part when
one is working with a system with strong exchange
enhancement.

As MK point out, it is not consistent to evaluate
A(I,T) using (2.26) and then to use the result in
(2.10) to determine the renormalized ferromagnetic
transition temperature T'.. The reason is that the
dominant contribution to A(Z,T) should come from
spin fluctuations which go soft at .. When we use
the RPA expression (2.27), the paramagnons go
soft (i.e., cp—0) at the Stoner temperature T,
rather than at T.. Following MK, the simplest
self-consistent way of modifying (2.27) in order to
remedy this is to make the change

1 1
1- ono(q, w) 1- ono(q; w) + A(Iy T) '

This ensures that the important long-wavelength,
low-frequency paramagnon modes go soft at 7',
since the renormalized paramagnon velocity is now
given by

(2.32)

s vp 1 ~-I(T)+A(,T)
P24, I(T)
_Vr
3 5(,T), (2.33)

in place of (2.31). With this renormalized version
of R(§, w), we see that (2.26) now becomes a self-con-
sistent equation for A(I,, T). [We sometimes use a
tilde to represent the renormalized quantities

based on using (2.32).]

As we noted in (2.25), AF in (2.22) is the free
energy of the noninteracting spin-fluctuation modes.
It seems reasonable, therefore, to require that
these modes (which are the soft modes driving the
transition) be defined relative to the new phase
which they themselves help to produce. The ansatz
(2.32) is equivalent to the assumption that as far as
the important long-wavelength paramagnons go,
they have the same structure as in the RPA, but
go soft at the correct temperature. In this regard,
it is clear that our use of (2.32) in (2.27) only
makes sense because the paramagnon modes give
the dominant contribution to A(Z,T). This is cer-
tainly the case for temperatures close to T'_ but has
less validity elsewhere.

Since (2.27) (and hence the MK self-consistent
version of it) is at best only valid as a description
of the long-wavelength modes, a §-sum cutoff g,
must be introduced in (2.26). Numerical calcula-
tions we have performed show that as long as g,
<0.5¢, the results for A(I, T) using (3.1) are in-
sensitive to the value used for ¢g,. On the other
hand, if we take ¢,>¢z, as MK do, we find that not
only is A(I, T) quite cutoff-dependent, but a signif-
icant temperature-independent contribution to A
arises from fluctuations of high frequency (w=e€py).
In Table I, we show the values of the temperature-
independent part of A for different cutoffs. [In
these calculations, we evaluated R, as given by
(3.1) using a simple parabolic-band density of
states. ]

In summary, we feel it is only consistent to use
the MK theory for modes g <0.5g,. There seems
to be little basis in treating the shorter-wavelength
spin fluctuations by anything as simple as the
Moriya-Kawabata approach. Indeed, one might ex-
pect that for g >¢q_, the unrenormalized RPA theory
would be a better starting point. Of course, the
temperature-independent part of A can be expected
to be dominated by the short-wavelength spin fluc-
tuations, which in turn are probably very band-
structure dependent. In MK-II and succeeding pa-
pers by Moriya and coworkers, A(T =0) (this is
denoted by 2,) is neglected on the grounds that only
weak ferromagnets are being considered. Actually
there is some reason to hope that a good estimate

TABLE I, Temperature-independent part of A= A(O” T
+ A for different cutoffs.

’L/‘TF A(ol) ASOZ)
1202178 0.055 0.551
10 0.005 0.358
0.3 —0.012 0.094
0.1 —0.0005 0.004
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of A(T =0) is now possible even for strong ferro-
magnets like Ni and Fe. We refer to the fact that
in such systems, the short-wavelength spin-wave
energies as determined by neutron scattering at T
<« T, can be explained quantitatively'* using a stan-
dard RPA theory in conjunction with a realistic
band structure. It would seem possible to use the
same model to calculate A(T =0) quite realistically.
However, in the rest of this paper, we shall con-
centrate on the temperature-dependent part of A(7T)
and effectively set A(T=0)=0. The resulting theory
is still expected to be a considerable improvement
over the original Stoner theory for any ferromag-
net in which T < Tg.

III. CALCULATION OF THE TRANSITION TEMPERATURE
FROM THE PARAMAGNETIC SIDE
Using the self-consistent spin-fluctuation theory
discussed in Sec. II, we see that at T; as defined
by (2.11), (2.27) may be approximated by

- 1 I 1
R(ﬁ: w) == 2;1,3N(0) _‘_19 N(O) — xo [XOX%" - (XOl)Z] R-=0
1 1 xXx3T ey
~2u3N(0) 2 [I° NO)-x° * [N(O)—x°]2]n-o’
(3.1)

where the primes on the response functions indi-
cate that we are taking their derivatives with re-
spect to H and we note that x° (§=0, w=0)=N(0).
Calculation shows that the effect of the density
fluctuations (zero sound) is very small and we have
neglected it in writing down (3.1). In the important
paramagnon regime, the leading-order terms are
given by

R(g,w)=%[R,(q, w)+R(q, w)], (3.2)
where
R,(q,w)
~ i LK, +J3)
2[A,(a/a, P +A,Rw/qupf —iA,(2w/qug)]
(3.3)
Rt(q, w)
%IOFL

S A, G/2 AR 0/qv Y i A, (3w q05)]

_ 2 1, D}2w/que) (qp/q)
€2[A,(q/qr+A,2w/quF —iA, 2w/ qu )P °
(3.4)
In contrast to all the other terms, the transverse

contribution coming from the second term in the
large square brackets in Eq. (3.1) is independent of

I,, which is somewhat unphysical. This is pre-
sumably a consequence of the fact that the numer-
ators in the original RPA expression were not re-
normalized. MK have argued® that in fact this
term should be multiplied by I (which is of order
unity in the cases of interest). We have followed
this procedure in writing down the last term in
(3.4).

Making use of these results and integrating over
q, we find (for w<eg)

= _3N V3 <A1>1/3
ﬁ?lm’“a"")uq 18¢, \4,

2 2 1/3
(521 R)(E)

=-T£<i)l/3. (3.5)

o
Using this in (2.26), we obtain*
AL, T) =TT [2/m) £(£) T($)1(T/T)*/?
=2.057T1 (T/T5)*/* (3.6)

for the contribution due to thermally excited spin
fluctuations, i.e., the part proportional to the Bose
factor Ny(w).

Inserting (3.6) into (2.11), T¢ is determined by
the equation

1-T[1= % n3(T/Tpl+ -+ |+A(T=0)
+2.057TI (T,/T)*3=0, (3.7

where A(T =0) denotes the contribution of the zero-
point spin fluctuations. Neglecting this tempera-
ture-independent term, (3.7) gives

T4/To=C[(T-1)/T]*’% C =(2.057)%/%, (3.8)

Using numerical coefficients appropriate to a free
electron gas (see Ref. 4 and Appendix B), we find

r=2.87+2.38 (3.9)

and hence C =0.17. In contrast, MK obtain I" =2
x2.38 and C =0.18. We feel that the fact that our
symmetric treatment of longitudinal and trans-
verse spin fluctuations is in such close agreement
with the MK work based on the transverse spin rep-
resentation is strong evidence that the MK way of
introducing self-consistency is internally consis-
tent. Moreover, it justifies working in the simpler
transverse picture. In Fig. 1, we plot T /T, vs I
using (3.9) and compare it with the usual Stoner re-
sult which follows from (2.12),

T$/Tp=~1.103[(T-1)/T}/2. (3.10)

On the same figure, we also show some numerical
results which are based on using the full expres-
sion (3.1), for different values of the cutoff g,. As
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FIG. 1. T./Ty versus the Stoner parameter I. Using
several cutoffs, we also show the results based on the
full expression (3.1). A single parabolic band has been
used.

we mentioned at the end of Sec. II, the paramagnon
regime dominates as long as g, =< 0.5g and the re-
sults are not very sensitive to the value of g.. In
this case, (3.5) is an excellent approximation for
the result based on (3.1).

Let us emphasize that in bot% the Stoner and MK
theories on which Fig. 1 is based, the condition for
ferromagnetism is still I(T=0)>1. This is be-
cause A(T =0) has been neglected in (3.7). As MK
argue, this is expected to be the case for weak
ferromagnets; whether it can be safely omitted for
an intermediate case like Ni is unknown at the
present time. Still, the MK theory does enable us
to say that even if the Stoner criterion for ferro-
magnetism at 7=0°K is even qualitatively correct,
the Stoner theory still leads to a gross overesti-
mate (roughly by a factor of 10) of the tempera-
ture at which ferromagnetism disappears. This is
because T’} is determined by the number of nonin-
teracting particle holes which are thermally ex-
cited around the Fermi surface while 7¥X is de-
termined by the number of low-frequency spin-
fluctuation modes which are being thermally ex-
cited.

IV. FERROMAGNETIC REGION

Moriya and Kawabata have extended their ap-
proach to deal with the ferromagnetic phase® (T
<T,). In this section, we use their method to de-
termine the ferromagnetic transition temperature
Ty, defined as the temperature at which the propa-
gating spin-wave modes go soft. We find that T
and the T obtained in Sec. III are essentially the
same.

The analysis of the ferromagnetic regime® is
based on the fact that the spontaneous magnetiza-
tion M is determined by

8F(M,T) 0 _3F,(M,T) _M+3AF(M, T) )
oM |y oM 7 2u2 aM 7
(4.1)
However, since we know that
— 3F (M, T)
HM,T) E—Daﬁ'—’ (4.2)

we can solve (4.1) for M(T) once we have decided
on some appropriate approximation for the free en-
ergy AF(M,T). Within the RPA given by (2.22), we
have

dAF(M,T) .

——8(7”-’—=kBT Z P(§, iw,; M), (4.3)
qQwy,

with

- 12 a4
P(q:lw M)__zo [<xfaM O{az(w)/[l IOXTXJ]
9 0
0 A=
(X*- oM

The first term onthe right-hand side comes from
longitudinal fluctuations. In MK-II, P(q,iw,;M)
is given by twice the second term (due to trans-
verse spin fluctuations).

Since the fluctuation free energy AF(M,T) plays
an important role [see (4.1)] in determining the
value of M(T) below T,, we must base our discus-
sion on a form of AF which gives the free energy
of spin fluctuations whose dispersion relation is
self-consistently determined. Following the argu-
ment of MK, the simple RPA expression in (4.4)
can be made self-consistent by modifying the reso-
nant denominators such that they vanish at the re-
normalized spin-fluctuation energies. However,
the weights of these poles are not renormalized.
Since we are only interested in temperatures just
below T, where M(T) is very small, we need only
concern ourselves with the low-frequency, long-
wavelength spin-wave modes which go soft as T
—~Tg. It is these modes which will make the dom-
inant contribution to (4.3) as T —~T75.

|
A

[1-1, x‘i-]). (4.4)
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It is easy to verify that
x2.(G=0, w=0;M)=M/2p¢HM,T). (4.5)

Clearly the second term on the right-hand side of
(4.4) would not exhibit a spin-wave pole which went
soft as M —~0. However, if we make the transfor-
mation

1 1
1-1,x°.@G, w;M) [L,M/2p2H0N)]-1,x°.(F, w; M)’

(4.6)

we see that the renormalized transverse part of
(4.4) will exhibit low-frequency, long-wavelength
spin-wave modes whose dispersion relation is
given by (for a given value of M)

Rex,.(d, w;M)=M/2pH(M). (4.7)

Clearly this is consistent with the spin-wave modes
going soft as M -0, For small values of q/q, the
dispersion relation for a spin-wave mode in a cubic
crystal is found to be

w=D(M)q?, (4.8)

with the stiffness coefficient given by the expres-
sion

D(M) =6—MA% > [folegn) +foleq)] Ve

_651\_4 E[fo(eif) ‘fo(Eiu )] (vaia)z,
@ (4.9)

with H=H(M) defined by (4.2). It is not hard to
show that for any single band model, D(M) in (4.9)
is of order M when the magnetization is small. In
particular, if we presume a parabolic band with
some effective mass, then'®

D(M) =4 (M/ o N)+ O(M?). (4.10)

The poles of the longitudinal part of (4.4) do not
correspond to the well-defined propagating spin-
wave modes of the transverse part. However, they
do exhibit fluctuations whose intensity becomes
large in the limit as M -0 (somewhat reminiscent
of paramagnons above T_,). We renormalize these
modes in this limit, in a way analogous to our re-
normalization of the paramagnon modes in Sec. II.

We now have a way of computing the contribution
of 8AF(M,T)/9M due to long-wavelength transverse
and longitudinal spin fluctuations whose dispersion
relation depends on M. Using this in (4.1) we may
then find the value of the magnetization M self-
consistently and thus T';, Working to lowest order
in M and using (2.21), calculation shows that (4.4)
in the paramagnon region is given by

B(§, w; M) =R(§, w) (M/x,)+0(M?), (4.11)

where R is given in (3.2) and y,=2p3 N(0). Thus
we find

9AF(M, T) _A(,, T)
M X

where A(,, T) is defined in (3.6), and hence (4.1)
reduces to

[1 - I,N(T)+ AL, T)]M + O(M?3)=0

M +0(M?), (4.12)

(4.13)

for T just below T;. We have explicitly checked
that the coefficient of the cubic term is positive
and thus the transition is second order.

We see that as far as the longitudinal spin-fluc-
tuation contributions are concerned, the MK ap-
proach of just renormalizing the RPA denominators
leads to identical expressions for T; and T;. This
is not so for the transverse contributions because
of the anomalous term in (3.1) which is independent
of I,. However, the MK procedure of multiplying
this term by 7 (~1) is indirectly justified's by the
fact that the transverse contribution to 7%, then be-
comes identical to that obtained for T,

V. RELATION TO CLASSICAL FLUCTUATION THEORY

It can be argued that when a system is close to a
second-order phase transition which is driven by
soft modes, the dominant contribution to the free
energy comes from the zero-frequency component
(w,=0).

Let us first consider the value of M just below
T, and work in the transverse representation (2.3).
From the results of Sec. IV, we have the renor-
malized MK expression

AAF(M) _ Ix°.(a,M)8x° (§,M)/oM
o kel ; X0 G
(5.1)

The cutoff ¢/ is much less than g, used earlier
since it must incorporate the fact that only spin
fluctuations of energy skzT are to be included.
Since g and M are small in the region of interest,
we can use the expansion

XS(a, M) =x%(q, w,=0;M)

=N(0) {1 -4, (%,)2 '% [F‘ +Fs (‘%)2]

With this result, we can easily evaluate (5.1) to
obtain (to lowest order in M)
8AF(M,T) 3N I, kT F, M ¢’

=B 1 dc 5.3
oM 4er N(0) € 24, 3 qp 6-3)
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Using (5.3) and (2.21), (4.1) can be reduced to

3N 1 T Fq,

(1 I+ I T2

>M(T)=0. (5.4)
In contrast with the results of Sec. IV, the fluctu-
ation part in (5.4) is very dependent on the value of
the cutoff g.. However (5.4) is equivalent to our
preceding result (4.13) if we take the temperature-
dependent cutoff to be

4T _AUuT)A, Ty tep 65.5)
dr I, F, T 3N

In a simple parabolic-band model, A(J,,T) is given
by (3.8) and thus (5.5) reduces to (see also Refs. 7
and 9)

q(T) _a T 1/3_ l 1/3
r. =11. 11F1 TF =2.,78 T, <1,

(5.6)

In the paramagnetic phase, as Moriya and Kawa-
bata® have shown, keeping only the w,=0 term
leads to

- 3N T F, q! 1
2y S _Z14c¢ _1I1/2
AL, T)=2—1, To A . 1- T/ arctansyrs ),
(5.7)
where II is essentially the inverse of the static
spin susceptibility,

(T) = 6(T) (5.8)

Xo__
x AI(T)q2?
In deriving (5.7), we have made use of the fact that
q.<<gp. Combining (2.8) with (5.7) and (5.8), the self-
consistent equation for II(T) can be written in the
form5

T, T

H=_T§+-170 (1_ /2 gretan '1'1%/'2>’ 5.9)
where

T, _Aiq, (3N 1 \*

Ty F,qr <4eFN(0)> ; (5.10)
and

T, T-1A4,q,(3N 1 \*

L= 2 4F

T, T F q <4<,N(0)> . (5.11)

Note that both 7, and T, are dependent on T through
gl. Clearly (5.9) has the solution I1=0 (i.e., x —«)
when T=T,(T). Thus (5.11) gives a value of T,
which is the same as that predicted by (5.4). More-
over, it is identical to our preceding results for

T, [see Secs. III and IV] if we choose the cutoff
qX(T) to be given by (5.5). We have also carried

out similar calculations using a purely longitudinal
representation (2.4) for the spin fluctuations,
Without giving any details we simply state that II is

once more given by (5.9) close to T, the only
change being the replacement

Fl"%(Kl"'Jf), (5-12)

in the defining relations (5.10) and (5.11). For the
electron gas, the relevant replacement is 1-3
(see Appendix B).

As pointed out by Moriya and Kawabata,’ the w,
=0 approximation is especially interesting in that
the results can be brought into contact with those
derived by the quite different technique used by
Murata and Doniach (MD).>*® Basically, the MD
approach uses a functional-integral method to deal
with the spin fluctuations. This approach yields a
Ginzburg-Landau free energy F which includes
quartic terms in the (longitudinal) magnetization,
i.e.,

F= f dT{a,2(F)+ a b (F )+ a, [VA(E)]?}. (5.13)

Fourier transforming and decoupling the quartic
term in a mean-field approximation,'® one has

F=kpT Y, U R@E)A(-T), (5.14)
a<dg
where the “fluctuation energy” of mode ¢ is
kpT(g), with
QAg)=a,+3a,(h*)+a,q°. (5.15)
Here
(%) Z (R@)n(-4)) (5.16)

a<d:

and by explicit calculation of the thermal average
using (5.14), one finds that

= a -

a<ae

(5.17)

In this model, the static spin susceptibility is
given by

=[2u3 (R5T)™ /g =0)]. (5.18)
Defining IT by
2u2 (k7)™ _a, +3a,({h?)
m=2Ho\ao) , 5.19
X ag qr azq; ( )
we see that (5.17) can be rewritten as
2\ -
(n?) 2 +q 5 - (5.20)

The preceding two equations can be combined to
find a self-consistent equation for I1,%!® namely,

3 a, 1 1
n=-%_ 22 2 (1_m/2 .
aq7 oz alq <1 arctan gy7z

(5.21)
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We observe that (5.21) has the same structure as
(5.9). The Ginzburg-Landau parameters occurring
in the MD theory are given by

a,=1-1,
az=%K1T(Io/€F) (T/Tp),
a, =A27,

(5.22)

for an itinerant model (these results are different
from those in Refs. 3 and 9). The resulting tran-
sition temperature is given by

T Tt e (8 A"
TF I Kl qc(Tc) 4€F N(O)

Apart from ‘the numerical coefficients, this re-
sult is identical to the result [see (5.11)] we ob-
tained in the w,=0 approximation to the MK for-
malism. In particular, in the case of longitudinal
fluctuations, the change is K, - 3(K, +J2). At least
in the parabolic band approximation, these coeffi-
cients are comparable (see Appendix B) and thus
the transition temperatures differ by very little.
Using functional-integral methods, several au-
thors®® have recently commented on the correct-
ness of the original MD theory, i.e., to what ex-
tent (5.13) can be microscopically derived and also
the validity of using a mean fluctuation-field ap-
proximation for the quartic term in (5.13). The
main point we want to make here is that the MD
result for the transition temperature is, in some
sense, vindicated as a result of the quite different
microscopic approach initiated by Moriya and
Kawabata?r5® which leads to a very similar result.

(5.23)

VI. CONCLUSION

Our major goal in this paper has been to give a
detailed exposition of the MK theory of the ferro-
magnetic transition. In particular we have dis-
cussed several points which were not emphasized
in the original work of MK, namely, (i) the theory
only makes sense if the wave-vector cutoff ¢, is
somewhat less than g, (ii) equal weight is given
to both the longitudinal and the transverse spin
fluctuations, (iii) determination of T, from both the
paramagnetic and the ferromagnetic side, and (iv)
emphasis on the MK theory as a soft-mode theory
and the resulting relation to other discussions in
the literature.

In assessing the MK theory as well as this paper,
it is important to keep clearly in mind the fact that
it is not an attempt at a rigorous theory of the fer-
romagnetic transition in metals. Rather it is an
approach which generalizes the Stoner mean-field
picture by including the effect of spin fluctuations
in a simple, but still self-consistent, manner. Any
value it has lies in its simplicity as well as the
fact that it leads to an expression for T, which in-

volves, in an explicit manner, the long-wavelength
low-frequency parts of the irreducible spin suscep-
tibilities. For example, the constant C in (3.8) is
given in terms of the band-structure-dependent
constants K,, J,, F,, A,, and A, (see Appendix B).
In this regard, future work on the MK theory might
well be a systematic attempt at comparing its pre-
dictions for T, with experimental data on transition
metals and their alloys. It would be useful to ex-
tend the MK calculations to cover the case of alloys.
We recall that the Stoner theory often has given
some qualitative insight into how T, varied with al-
loying and it would be of interest to see if the MK-
type theory would make this more quantitative.

A more theoretical question is the precise rela-
tion between the MK theory and other more sys-
tematic attempts®~® to include fluctuations. Most
of these are based on functional-integral methods
and hence any direct comparison is difficult. How-
ever we have seen in Sec. V that the MK theory
does give rise to very similar results as the MD
calculation, which in turn may be viewed as a sim-
ple version of more systematic calculations.®”® We
might also note that the MK theory, crude as it is,
is not restricted to the static approximation.

A strength of the MK theory is that it is directly
based on the free energy (2.25) of a system of un-
coupled spin fluctuations, care being taken to re-
normalize the frequencies in a self-consistent man-
ner. Thus while the way the renormalization is
done is somewhat ad koc, at least it involves a
quantity (the spin-fluctuation frequency) which has
a direct physical significance. This is to be con-
trasted with the situation in other methods.%™°

One problem in which one expects the inclusion
of spin fluctuations to be important is in determin-
ing how the ferromagnetic transition temperature
of thin metallic films depends on the thickness. A
very detailed analysis based on the Stoner theory
has been recently given.!” We hope to extend that
work to include spin fluctuations in a future publi-
cation using the MD method.

It is quite straightforward to apply the MK for-
malism (as well as the MD approach) to a 2-d elec-
tron gas. The results'® are consistent with the ex-
pectation that such a system never exhibits a fer-
romagnetic phase. However we feel there is some
question of how internally consistent such calcula-
tions are. We recall that the whole MK approach
is built on the low-frequency spin fluctuations be-
coming dominant near 7', and making use of this
facttodevelop a simple theory of the effect of these
fluctuations. This whole justification is removed
when one is dealing with a system in which the spin
fluctuations never go soft, i.e., x is always finite.
As we have stated earlier, while the whole MK ap-
proach makes sense very close to T, it breaks
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down when one is far from 7', or, more especially,
when there is no transition. This criticism also
applies to the recent calculation of Ramakrishnan’
of the spin susceptibility of a 2-d model of nickel.

Finally, let us emphasize that while we feel the
MK theory as discussed in this paper gives an ad-
equate estimate of the effect of thermal fluctua-
tions, nothing has been said about the temperature-
independent part of A in (2.8), i.e., the zero-point
energy of the short-wavelength spin fluctuations.
However, we feel that the ferromagnetic instability
will be determined by the excitation of low-fre-
quency spin fluctuations as long as T, is somewhat
less than the Fermi temperature. This driving
mechanism is different from that in the original
Stoner theory for T, and, in fact, leads to a tran-
sition temperature which is about 10 times smaller
whatever the value of I(7 =0) (see Fig. 1). As a
starting point, we feel the MK theory should be
used in place of the Stoner theory (even for inter-
mediate ferromagnets) when one is estimating the
transition temperature.

APPENDIX A

In this Appendix, we discuss the relation between
(2.1) and the more fundamental interaction between
d electrons. In the localized site representation,
the latter is given by*®

7 1 ~ -~ -~ -~
V=§2 E Vg 8lo8 o8y By, (A1)

0,0° iy §
¥,
where V,;,.; is the matrix element of an appropri-
ately screened Coulomb interaction. We shall only
keep the one-site (i =j=:i"=35') and two-site (i=1’,
j=j'; i=j', j=i') terms and use the notation

V=K V=l Vau=h. (A2)
The single-site contribution to (A1) is
‘71=%Io Zzataasa‘aiwaia' (A3)
Gya' i

Using the identities @3,=0 and #3,=7,,, this can be
expressed in the Hubbard form [which is equivalent
to (2.2)]

171=§1022‘:ﬁ,0ﬁ,.,_q, (A4)
r
as well as in the alternative forms
V=LY (3,4, - 8589 (A5)
i
and
Vi =iLN+3LY (3,7,-8,8)- (A6)

Here we have introduced the usual spin operators

§y=alya,,; §1=al,ayy; §i=3@,-7y,). (A7)
The two-site contribution to (A1) corresponds to
interaction between different sites. After a little
algebra, this can be written in the form

s 1 JA " = =
V2=§Z(K”—I”)ninﬁz:l,,(%n‘n,—sg'S;)-
iy iy 4
# #
(A8)

The second sum on the right-hand side of (A8) is
due to interatomic exchange and clearly has the
same structure as the part arising from intra-
atomic exchange [see (A6)]. It is a straightforward
matter to extend the discussion in Sec. II of this pa-
per so as to include the contribution of (A8) in ad-
dition to that of (A6).

As a final remark, we note that (A6) is manifest-
ly rotational invariant in spin space and is the form
on which most field-theoretic discussions are
based.!'**? However one can also rewrite the Hub-
bard Hamiltonian (A4) in the form

V,=tL,N-31Y 5,3, (A9)

and sometimes this rotationally invariant form has
been advocated.”® In an exact calculation, of
course, all the different ways of expressing (A4)
would lead to the same results. However, this is
not true in approximate calculations and the ques-
tion then is to decide which is best. We feel that
(A6) is to be preferred since it includes both lon-
gitudinal and transverse fluctuations on an equal
basis.

APPENDIX B

We give here the susceptibilities and their deriv-
atives in the paramagnon limit (w<<ep, g<gp,
2w/qup<<1), for a single isotropic-band model:

X°(@, ) =N(0) [1+iA, 2w/qv - Ay(q/q5)
- Ay20/qugf+- -, (B1)

ax%.(q,v)
9H

H=0

=Ho N(o [D 20 g, 2_“’_‘1_+] B2
€r © Yqup g T2 qupqp » (B2)

3x°g;q, w)

H=0

2 2(0 2
o Fon(0) | 7 9 (..__) -J
051«" (0)[ L+, (‘IF +d, P + ,

(B3)
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w5, oo on G2 )
+F, (ti>z+- . ] , (B4)
9% 2(g, w)
OH? |5,
=_€ﬂ;z N(0) [K1+K2 (ti>z+K3 (b?v%)ﬂ.. }

For a 3-d electron gas with a parabolic band, the
numerical coefficients are (the transverse sus-
ceptibility results are in agreement with those
given in Ref. 4)

1 -1
A, =3m, Ay=55,

D1=%': F, =%, (B6)
J1=%a Jz’_';—.“ Ja"%,
K1=%, K2=1_12’ K3=%'
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More generally, the coefficients can be worked out
for a band structure which more closely simulates
that of transition metals. For an isotropic band,
every coefficient [with the exception of A, in (B1)]
can be written? in terms of N(0), N’(0), and N”(0),
where N’(0) and N”(0) are the first and second de-
rivatives with respect to energy of the density of
states at the Fermi level.

For an arbitrary band structure, J,, F,, and K,
are still fairly simple because they involve the g
-0 limit. One finds

J, =£V'(O) €
15N(0) €F

k< [(VO) _N"0)] ,
T I\M0) ) T [<F
In contrast, the coefficients A, and A, (which enter

prominently into the expressions for T,) are some-
what complex.?*+2?
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